Robust collider limits on heavy-mediator Dark Matter

D. Racco, A. Wulzer, F. Zwirner JHEP **1505** (2015) 009, arXiv: 1502.04701

Davide Racco

Université de Genève

ECT* - Trento

Thursday, 10th September 2015

FACULTÉ DES SCIENCES Département de physique théorique

Dark Matter (DM) searches at colliders

- Assumption¹ that DM interacts with the Standard Model (SM) also through some non-gravitational interaction.
- Production of DM in pairs (\mathbb{Z}_2 symmetry). Example: R-parity in SUSY.
- Need the associated production of another object: jet, photon electroweak boson, . . .

- What about the grey mysterious boxes?
- Importance of model independence.

¹Well motivated assumption: DM production mechanisms in the early Universe, reheating...

Dark Matter (DM) searches at colliders

- Assumption¹ that DM interacts with the Standard Model (SM) also through some non-gravitational interaction.
- Production of DM in pairs (\mathbb{Z}_2 symmetry). Example: R-parity in SUSY.
- Need the associated production of another object: jet, photon, electroweak boson, . . .

- What about the grey mysterious boxes?
- Importance of model independence.

¹Well motivated assumption: DM production mechanisms in the early Universe, reheating. . .

Description of interactions between DM and SM

Effective field theories (EFT)

The Lagrangian includes only the degrees of freedom relevant below a given mass threshold, that we call $M_{\rm cut}.$

- ✓ Ample generality: they parametrise potentially *any* model;
- √ Limited number of parameters;
- X The predictions of the EFT are reliable only if the energy scale of the event is below $M_{\rm cut}$.

Simplified models

They include only the essential ingredients: the DM particle, and the mediator(s) with the SM. Minimal number of assumptions about them.

- √ Each simplified model can reproduce a class of more complete theories;
- √ Enlarged regime of validity;
- X Higher number of parameters or, generically speaking, of assumptions.

Description of interactions between DM and SM

Effective field theories (EFT)

The Lagrangian includes only the degrees of freedom relevant below a given mass threshold, that we call $M_{\rm cut}.\,$

- ✓ Ample generality: they parametrise potentially any model;
- √ Limited number of parameters;
- X The predictions of the EFT are reliable only if the energy scale of the event is below $M_{\rm cut}$.

Simplified models

They include only the essential ingredients: the DM particle, and the mediator(s) with the SM. Minimal number of assumptions about them.

- √ Each simplified model can reproduce a class of more complete theories;
- √ Enlarged regime of validity;
- X Higher number of parameters or, generically speaking, of assumptions.

Universal bounds from the Effective Field Theory (EFT)

Goal

Use the EFT to get completely general bounds from DM searches at colliders.

- Three free parameters in EFT:
 - $0 m_{\mathsf{DM}}$
 - ② M_* : effective operator coefficient $\left(1\Big/M_*^{d-4}\right)$ —

parameters!

ullet $M_{
m cut}$: $\it cut-off\ scale\ for\ the\ validity\ of\ the\ EFT$

Universal bounds from the Effective Field Theory (EFT)

Goal

Use the EFT to get completely general bounds from DM searches at colliders.

- Three free parameters in EFT:
 - $0 m_{\mathsf{DM}}$
 - $lacksymbol{0} M_*$: effective operator coefficient $\left(1\Big/M_*^{d-4}\right)$
 - \bullet M_{cut} : cut-off scale for the validity of the EFT \bullet parameters!

Universal bounds from the Effective Field Theory (EFT)

Goal

Use the EFT to get completely general bounds from DM searches at colliders.

- Three free parameters in EFT:
 - $0 m_{\rm DM}$
 - \bigcirc M_* : effective operator coefficient $\left(1/M_*^{d-4}\right)$ Indipendent
 - \bullet $M_{\rm cut}$: cut-off scale for the validity of the EFT \bullet parameters!

Our strategy

We restrict the signal to the events for which

$$E_{\sf cm} < M_{\sf cut}$$
 ,

where E_{cm} is the total invariant mass of the hard final states of the reaction:

$$E_{\rm cm} = \sqrt{\hat{s}} = \sqrt{\left(p^\mu({\rm DM}_1) + p^\mu({\rm DM}_2) + p^\mu({\rm jet})\right)^2} \,. \label{eq:Ecm}$$

• Indeed, the following always holds:

$$\sigma_{\rm true\ model}^{\rm signal} \ > \ \sigma_{\rm corresp.\ EFT}^{\rm signal} \bigg|_{E_{\rm cm} < M_{\rm cut}} \ . \label{eq:signal_em}$$

Thus we obtain conservative but reliable limits.

Our strategy

We restrict the signal to the events for which

$$E_{\sf cm} < M_{\sf cut}$$
 ,

where E_{cm} is the total invariant mass of the hard final states of the reaction:

$$E_{\rm cm} = \sqrt{\hat{s}} = \sqrt{\left(p^\mu({\rm DM}_1) + p^\mu({\rm DM}_2) + p^\mu({\rm jet})\right)^2} \,. \label{eq:Ecm}$$

• Indeed, the following always holds:

$$\sigma_{\rm true\ model}^{\rm signal} \ > \ \sigma_{\rm corresp.\ EFT}^{\rm signal} \bigg|_{E_{\rm cm} < M_{\rm cut}} \ . \label{eq:signal_em}$$

Thus we obtain conservative but reliable limits.

Some details about our analysis in 1502.04701

 \bullet We consider a Majorana fermion X as DM, with effective interaction with quarks given by

$$\mathcal{L}_{\mathsf{EFT}} = -\frac{1}{M_*^2} \left(\overline{X} \gamma^\mu \gamma^5 X \right) \left(\sum_{\mathsf{flavours}} \overline{q} \gamma_\mu \gamma^5 q \right) \,.$$

• Monojet search: ATLAS-CONF-2012-147 (10.5 fb $^{-1}$ at $\sqrt{s}=$ 8 TeV)

signal region	SR1	SR2	SR3	SR4
p_{T}^{jet} and E_{T}^{miss} [GeV]	>120	> 220	>350	> 500
$\sigma_{ m exc}[{\sf pb}]$, 95% CL	2.7	0.15	4.810^{-2}	1.510^{-2}

- We perform a parton-level analysis, and we compute cross-section σ and acceptance A with MadGraph5.
- \bullet We estimate the efficiency ϵ by matching this output to the experimental limit.

Results for fixed $M_{\rm cut}$ $(E_{\rm cm} < \overline{M_{\rm cut}})$

What are reasonable M_{cut} values?

• EFT Lagrangian:

$$\mathcal{L}_{\mathsf{EFT}} = -\frac{1}{M_*^2} \, \left(\overline{X} \gamma^\mu \gamma^5 X \right) \left(\sum_{\mathsf{flavours}} \overline{q} \gamma_\mu \gamma^5 q \right) \, .$$

ullet We can link the two dimensionful parameters M_* and $M_{
m cut}$ through

$$M_{\mathsf{cut}} = g_* M_*$$
 .

 g_* : effective coupling strength of the EFT. Justification:

$$\mathcal{M}(2 \to 2) \sim \frac{E^2}{M_*^2} \underset{\text{at cut-off}}{\to} \frac{M_{\rm cut}^2}{M_*^2} \equiv g_*^2 \; .$$

Results for fixed g_* $(E_{cm} < g_* M_*)$

Why is there a lower limit in the excluded region?

Kinematical threshold:

$$E_{\rm cm}^{\rm min} = p_{\rm T}^{\rm jet} + \sqrt{\left(p_{\rm T}^{\rm jet}\right)^2 + 4 \, m_{\rm DM}^2} \,.$$

The lower is $p_{\rm T}^{\rm jet}$, the stronger is the lower limit in the exclusion interval.

Why is there a lower limit in the excluded region?

Kinematical threshold:

$$E_{\rm cm}^{\rm min} = p_{\rm T}^{\rm jet} + \sqrt{\left(p_{\rm T}^{\rm jet}\right)^2 + 4 \, m_{\rm DM}^2} \,. \label{eq:Ecm}$$

The lower is $p_{\rm T}^{\rm jet}$, the stronger is the lower limit in the exclusion interval.

Why is there a lower limit in the excluded region?

$$\sigma_{\mathrm{EFT}}^{\mathrm{signal}}\Big|_{E_{\mathrm{cm}} < g_* M_*} \propto \frac{1}{M_*^4} \cdot \mathrm{Acceptance} \ \longrightarrow \ \begin{cases} \frac{1}{M_*^4} & \text{for } M_* \to \infty \,, \\ 0 & \text{for } M_* \to 0 \,. \end{cases}$$

Kinematical threshold:

$$E_{\rm cm}^{\rm min} = p_{\rm T}^{\rm jet} + \sqrt{\left(p_{\rm T}^{\rm jet}\right)^2 + 4\,m_{\rm DM}^2}\,. \label{eq:emin}$$

The lower is $p_{\rm T}^{\rm jet}$, the stronger is the lower limit in the exclusion interval.

$$\mathcal{L}_{\mathsf{EFT}} = -\frac{1}{M_*^2} \left(\overline{X} \gamma^{\mu} \gamma^5 X \right) \left(\sum_q \overline{q} \gamma_{\mu} \gamma^5 q \right).$$

Model A: s-channel vector mediator

$$\mathcal{L}_{\mathrm{int}}^{\mathrm{A}} = Z_{\mu}^{\prime} \bigg(g_q \sum_{q} \overline{q} \gamma^{\mu} \gamma^5 q + g_X \overline{X} \gamma^{\mu} \gamma^5 X \bigg)$$

Model B: t-channel scalar mediator

$$\mathcal{L}_{\text{int}}^{\text{B}} = -g_{\text{DM}} \left[\sum_{i=1}^{3} \left(\tilde{u}_{iL} \, \overline{u_{iL}} + \tilde{d}_{iL} \, \overline{d_{iL}} \right. \right. \\ \left. + \tilde{u}_{iR} \, \overline{u_{iR}} + \tilde{d}_{iR} \, \overline{d_{iR}} \right) X + \text{h.c.} \right]$$

$$\left[\frac{g_{\text{SS}}}{q} \right] X \left[\frac{g_{\text{SS}}}{q}$$

• Blue line: from model-independent limit, with the identification

$$M_* = \frac{2\widetilde{m}}{g_{\rm DM}} \,, \qquad M_{\rm cut} = \widetilde{m} \,. \label{eq:mass_model}$$

Red lines: only from the resonant production of the mediator.
 The EFT limit is complemented by the limit from the resonant production.

• Grey lines: fixed mediator width

The plane (m_{med}, M_*) is not suitable to draw a limit for fixed mediator width.

• Blue line: from model-independent limit, with the identification

$$M_* = rac{2\widetilde{m}}{q_{
m DM}}\,, \qquad M_{
m cut} = \widetilde{m}\,.$$

- Red lines: only from the resonant production of the mediator.
 The EFT limit is complemented by the limit from the resonant production.
- Grey lines: fixed mediator width

The plane (m_{med}, M_*) is not suitable to draw a limit for fixed mediator width.

• Blue line: from model-independent limit, with the identification

$$M_* = rac{2\widetilde{m}}{q_{
m DM}}\,, \qquad M_{
m cut} = \widetilde{m}\,.$$

- Red lines: only from the resonant production of the mediator.
 The EFT limit is complemented by the limit from the resonant production.
- Grey lines: fixed mediator width.

 The plane (m_{med}, M_*) is not suitable to draw a limit for fixed mediator width.

Conclusions

- The EFT allows to extract universal bounds from DM searches.
 (reinterpretable in any UV model)
- ${\bf @}$ The prescription $E_{\rm cm} < M_{\rm cut}$ can be used for any effective operator.
- lacktriangle An effective operator as D_8 may have several microscopic origins.
- Exclusion intervals in M_* have also a *lower* bound. The softer SRs are useful to extend the limits for small M_* .
- Extended simplified model reach due to resonant production.
 ⇒ complement the monojet EFT search with direct mediator search.
- Limitation of the plane m_{med} , M_* (inconsistent width).

1. BACKUP SLIDES

Comparison with the choice of Q_{tr}

