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•  Cosmic rays cover an energy range up to 
1020 eV

•  Most of cosmic rays are protons and 
nuclei produced by standard astrophysical 
mechanisms

•  New physics can be hidden in rare 
components spectra (e+/-, p, D, γ, …. )




The nature of the incoming cosmic rays can be 
precisely identified only outside the atmosphere
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The quest for Dark Matter
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Dark Matter annihilation can produce matter and antimatter 
Cosmic Rays
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Dark Matter annihilation can produce matter and antimatter 
Cosmic Rays
The same products are also produced by standard 
astrophysical processes.


KNOW YOU BACKGROUND!
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Diffusion, Convection, Fragmentation, Energy losses 
A comprehensive standard model of CR origin, 
acceleration and propagation is mandatory to 

search for antimatter excesses in CRs.
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AMS-02 Physics
FUNDAMENTAL PHYSICS

•  Indirect search for Dark Matter (e+, anti-p,….)
•  Search for primordial antimatter (anti-He)

COSMIC RAY COMPOSITION AND ENERGETICS
•  Precise measurement of the energy spectra of H, He, Li, B, C

to provide information on CR interactions and propagation in the galactic environment

TO ACHIEVE THIS…..

Particle identification and Energy measurement up to TeVs
•  Matter/antimatter separation using magnetic field
•  e/p separation using independent subdetectors

Maximize the data sample
•  Detector size (acceptance)

•  Exposure time: ISS in space

6




The AMS-02 experiment on the ISS
Valerio Vagelli


AMS-02 on the ISS
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The AMS-02 detector
•  Size 5 x 4 x 4 m, 7500 kg

•  Power 2500 W

•  Data Readout 300,000 channels

•  <Data Downlink> ~ 12 Mbps

•  Magnetic Field 0.14 T

•  Mission duration until the end of the 
ISS operations (currently 2024)

1 anno / 35 Tera


Col superconduttore


Col superconduttore
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AMS: TeV precision spectrometer
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AMS: TeV precision spectrometer
Full coverage of anti-matter and CR physics
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Cosmic rays collected in space

~ 70,000 million events collected after 50 months of AMS operations

p, He, e+,e- 
Li (status report)

 Events collected!
 Events reconstructed!

2011! 2012! 2013! 2014! 2015!

(30 months)

(40 months)
Anti-p, C, B/C (status reports)
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AMS physics results

LEPTONS / ANTIMATTER
•  Positrons fraction e+/(e++e-)
•  Electron and Positron fluxes (e+, e-)
•  Electron plus Positron flux (e++e-)
•  Antiprotons/protons

HADRONS
•  Proton and Helium (p, He)
•  Lithium, Boron, Carbon (Li, B, C)

AMS-02 is providing precise data to search for new physics in the Cosmic Ray 
channels while improving the understanding of the astrophysical background with a 

coherent set of data

Sensitive to  
Dark Matter signal 

Probes to improve 
the astrophysical background 

knowledge 
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Identification of e+/-
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Positron Fraction
Rise in the fraction of positrons (antimatter) over electrons (matter) not expected by 

the current Standard Model of CR origin and propagation
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Unprecedented accuracy and energy range allowed a detailed study of the positron 
fraction behavior with energy
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Positron Fraction
Rise in the fraction of positrons (antimatter) over electrons (matter) not expected by 

the current Standard Model of CR origin and propagation
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LOW ENERGIES	
   HIGH ENERGIES	
  

•  Precision measurement of the fraction minimum
•  No sharp structures observed in the spectrum
•  The slope decreases with increasing energy

Turning point

E = 275 ± 32 GeV 	
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Positron Fraction
Rise in the fraction of positrons (antimatter) over electrons (matter) not expected by 

the current Standard Model of CR origin and propagation

Rise well described by an empirical model with a common e+/- source 

Φe− ¼ Ce−E−γe− þ CsE−γse−E=Es ; ð2Þ

(with E in GeV). A fit of this model to the data with their
total errors (the quadratic sum of the statistical and
systematic errors) in the energy range from 1 to
500 GeV yields a χ2=d:f: ¼ 36.4=58 and the cutoff
parameter 1=Es ¼ 1.84% 0.58 TeV−1 with the other
parameters having similar values to those in [2],
Ceþ=Ce− ¼ 0.091% 0.001, Cs=Ce− ¼ 0.0061% 0.0009,
γe− − γeþ ¼ −0.56% 0.03, and γe− − γs ¼ 0.72% 0.04.
(The same model with no exponential cutoff parameter,
i.e., 1=Es set to 0, is excluded at the 99.9% C.L. when fit to
the data.) The resulting fit is shown in Fig. 4(b) as a solid
curve together with the 68% C.L. range of the fit param-
eters. No fine structures are observed in the data. In our
previous Letter, we reported that solar modulation has no
observable effect on our measured positron fraction, and
this continues to be the case.
An analysis of the arrival directions of positrons and

electrons was presented in [2]. The same analysis was
performed including the additional data. The positron to
electron ratio remains consistent with isotropy; the upper
limit on the amplitude of the dipole anisotropy is δ ≤ 0.030
at the 95% C. L. for energies above 16 GeV.
Following the publication of our first Letter [2], there

have been many interesting interpretations [3] with two
popular classes. In the first, the excess of eþ comes from
pulsars. In this case, after flattening out with energy, the
positron fraction will begin to slowly decrease and a dipole
anisotropy should be observed. In the second, the shape of
the positron fraction is due to dark matter collisions. In this
case, after flattening out, the fraction will decrease rapidly
with energy due to the finite and specific mass of the dark
matter particle, and no dipole anisotropy will be observed.
Over its lifetime, AMS will reach a dipole anisotropy
sensitivity of δ≃ 0.01 at the 95% C.L.

The new measurement shows a previously unobserved
behavior of the positron fraction. The origin of this
behavior can only be ascertained by continuing to collect
data up to the TeV region and by measuring the antiproton
to proton ratio to high energies. These are among the main
goals of AMS.
In conclusion, the 10.9 × 106 primary positron and

electron events collected by AMS on the ISS show that,
above ∼200 GeV, the positron fraction no longer exhibits
an increase with energy. This is a major change in the
behavior of the positron fraction.
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payload. We also acknowledge the continuous support of
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of the DOE. We also acknowledge the continuous support
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Marc Kastner, Ernest Moniz, Edmund Bertschinger, and
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NNSF, MOST, NLAA, and the provincial governments
of Shandong, Jiangsu, and Guangdong, China; CNRS,
IN2P3, CNES, Enigmass, and the ANR, France, and
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FIG. 3 (color). The positron fraction above 10 GeV, where it
begins to increase. The present measurement extends the energy
range to 500 GeV and demonstrates that, above ∼200 GeV, the
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FIG. 4 (color). (a) The slope of the positron fraction vs energy
over the entire energy range (the values of the slope below 4 GeV
are off scale). The line is a logarithmic fit to the data above
30 GeV. (b) The positron fraction measured by AMS and the fit of
a minimal model (solid curve, see text) and the 68% C.L. range of
the fit parameters (shaded). For this fit, both the data and the
model are integrated over the bin width. The error bars are the
quadratic sum of the statistical and systematic uncertainties.
Horizontally, the points are placed at the center of each bin.
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30 months!
9.3 million e- events!

30 months!
0.6 million e+ events!

Electrons [0.5 – 700] GeV! Positrons [0.5 – 500] GeV!

e+ and e- Fluxes

e+ and e- flux are significantly different in their 
magnitude and energy dependence

The positron fraction rise is due to an excess 
of positrons, not due to a unpredicted 

decrease of electrons.

astrophysical models including the minimal model dis-
cussed in Refs. [1,2]. This will be presented in a separate
publication.
The differing behavior of the spectral indices versus

energy indicates that high-energy positrons have a
different origin from that of electrons. The underlying
mechanism of this behavior can only be ascertained
by continuing to collect data up to the TeV region
(currently, the largest uncertainties above ∼200 GeV are
the statistical errors) and by measuring the antiproton to
proton ratio to high energies. These are among the main
goals of AMS.
In conclusion, the electron flux and the positron flux

each require a description beyond a single power-law
spectrum. Both the electron flux and the positron flux
change their behavior at ∼30 GeV, but the fluxes are
significantly different in their magnitude and energy
dependence. Between 20 and 200 GeV, the positron
spectral index is significantly harder than the electron
spectral index. These precise measurements show that
the rise in the positron fraction is due to the hardening
of the positron spectrum and not to the softening of the
electron spectrum above 10 GeV. The determination

of the differing behavior of the spectral indices versus
energy is a new observation and provides important
information on the origins of cosmic-ray electrons and
positrons.
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(e++e-) Flux
Independent measurement of the total e+/- flux without identification of the charge sign.

Higher energy reach and improved accuracy due to looser selection.
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(e++e-) Flux
Independent measurement of the total e+/- flux without identification of the charge sign.

Higher energy reach and improved accuracy due to looser selection.

(e++e-) [0.5 – 1000] GeV!
30 months!

10.6 million (e++e-) events!
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The (e++e-) flux is smooth, and can be described by a single power law starting 
from 30 GeV up to 1 TeV.

No evidence of fine structures has been observed in the (e++e-) spectrum.
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What’s next…..
Explore the TeV energy range
•  Overlap with ground experiments
•  Search for spectral features
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Explore the GeV range to study for Solar time dependent modulation and transient effects
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M. Graziani, status report! M. Graziani, status report!
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What is AMS observing?
Something “different” with respect to conventional models of e+ production by 

collisions of CR hadrons with the interstellar medium (ISM)
Astrophysical Sources?
•  Local sources as pulsars (e+/- only source, anisotropy..)
•  Additional acceleration mechanisms (reacceleration of CR hadrons in old SNRs)
Dark matter?
•  Isotropic distribution arrival for e+/-

•  Signatures in other channels (like antiprotons)

Positrons: χ + χ → e+ + … 
mχ=800 GeV 
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Antiprotons
p/p ratio [1 – 450] GeV!

40 months!
290,000 antiproton events!

The AMS measurement extends with high precision into a new energy frontier.
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Antiprotons

The accuracy of the AMS measurement challenges the current knowledge of  
cosmic background

25


Figure 2: The combined total uncertainty on the predicted secondary p̄/p ratio, superim-

posed to the older Pamela data [48] and the new Ams-02 data.

expected to be relevant only at small energies and in any case to have a small impact.

Finally, p̄’s have to penetrate into the heliosphere, where they are subject to the phenomenon
of Solar modulation (abbreviated with ‘SMod’ when needed in the following). We describe this
process in the usual force field approximation [47], parameterized by the Fisk potential �F ,
expressed in GV. As already mentioned in the Introduction, the value taken by �F is uncertain,
as it depends on several complex parameters of the Solar activity and therefore ultimately on
the epoch of observation. In order to be conservative, we let �F vary in a wide interval roughly
centered around the value of the fixed Fisk potential for protons �p

F (analogously to what done
in [25], approach ‘B’). Namely, �F = [0.3, 1.0] GV ' �p

F ± 50%. In fig. 1, bottom right panel,
we show the computation of the ratio with the uncertainties related to the value of the Fisk
potential in the considered intervals. Notice finally that the force field approximation, even if
‘improved’ by our allowing for di↵erent Fisk potentials for protons and antiprotons, remains
indeed an e↵ective description of a complicated phenomenon. Possible departures from it could
introduce further uncertainties on the predicted p̄/p, which we are not including. However it
has been shown in the past that the approximation grasps quite well the main features of the
process, so that we are confident that our procedure is conservative enough.

Fig. 2 constitutes our summary and best determination of the astrophysical p̄/p ratio and
its combined uncertainties, compared to the new (preliminary) Ams-02 data. The crucial
observation is that the astrophysical flux, with its cumulated uncertainties, can reasonably well
explain the new datapoints. Thus, our first —and arguably most important— conclusion is
that, contrarily to the leptonic case, there is no clear antiproton excess that can be identified in
the first place, and thus, at this stage, no real need for primary sources. This also means that,

6

Giesen et al. (2015)	
  

Ek ⌘ D0 � vA dVC/dz �p qC �C �
[GeV] units [km/s] [km/s/kpc] [⇥103] [GV]

Min models
1 0.30 3.32 0.30 32.2 0.04 2.58 2.74 2.53 0.77
10 0.68 2.85 0.38 28.6 0.03 2.54 2.83 2.48 0.86
100 -0.16 1.17 0.75 9.31 6.78 2.38 3.40 2.17 0.57

Max models
1 0.84 0.85 0.74 0.52 5.65 2.40 3.80 2.18 0.53
10 -0.92 0.83 0.68 7.71 4.05 2.44 4.03 2.22 0.54
100 0.60 2.85 0.23 27.4 6.88 2.62 2.95 2.59 0.75

Table 3. Model parameters giving the minimum (maximum) contribution of secondary anti-protons at energy
E = 1, 10, 100 GeV.

di↵erent values for L up to 16 kpc. In order not to lose the perfect agreement with the secondary
over primary data, we increase the D0 value accordingly (see the right plot in figure 3). As shown in
figure 3, di↵erent choices for L in this range do not a↵ect our predictions for the secondary antiproton
flux.

Although in this paper we assumed a uniform value of � in the whole Galaxy, it was recently
shown that di↵use �-ray data favor a scenario characterized by radially-dependent CR transport
properties [52, 53]. In order to investigate the possible impact of that scenario on our results, we
computed the local secondary antiproton spectrum for the KRA� model considered in those paper
finding a negligible correction.

3.3 Antiproton production cross-section uncertainties

We compare here the propagation uncertainties derived in the previous sections with those associated
with the antiproton production processes.

In figure 4, we show the relative ratio between the minimum (maximum) secondary antiproton
flux and that obtained using the best-fit propagation model. The corresponding region represents the
uncertainty on the secondary flux associated with galactic propagation.

We compare this uncertainty band with the relative di↵erences associated with production cross
sections. To this end, we compute secondary antiprotons with the new prescriptions recently proposed
by [14] and we evaluate them against the traditional fitting relations given in [23, 37].

We find that nuclear uncertainties can be as large as 50% even at ⇠ 100 GeV, and are much
larger below few GeVs. However, with the available CR data, the propagation uncertainties dominate
over the entire energy range as shown in figure 4.

Upcoming measurements (in particular, from AMS-02 [1], CALET [54], and ISS-CREAM [49])
are expected to significantly improve our knowledge of propagation parameters and then to reduce
the associated uncertainties. In that situation, antiproton production cross sections will prevent us
to provide predictions for the astrophysical backgrounds as accurate as the forecasted sensitivities.

3.4 The role of charge-dependent solar modulation

As pointed out in section 2.4, charge-dependent solar modulation can be relevant when the TOA
antiproton flux is evaluated. Therefore, we compare here our predictions of the extreme fluxes based
on the force-field approximation with those obtained with a charge-dependent modulation model.

To modulate the antiproton flux in the charge-dependent scenario, we develop the following
strategy:

• For each propagation model, we consider as free parameters: 1) solar magnetic field polarity; 2)
↵ (HCS tilt angle); 3) �0 (normalization of the parallel mean free path); 4) � (power-law slope
of the heliosphere di↵usion coe�cient as function of rigidity). Solar polarity and ↵ are fixed
by the data-taking period, since they can be obtained by direct measurements [55], while we

– 8 –

Evoli, Grasso, Gaggero (2015)	
  
Figure 4. Comparison between the propagation and the nuclear uncertainties. Yellow band: Error on the
p̄ flux due to the uncertainty in the propagation parameters. Blue lines: The relative ratios between the p̄
flux computed using the maximal (dot-dashed), fiducial (dashed), and minimal (solid) cross section from [14]
(KW) and the same flux computed adopting the parameterization from [23, 37] (TN).

Figure 5. The envelope of the secondary antiproton spectra computed with the charge-dependent modulation
(black lines) and compared with that one obtained with the force-field approximation (yellow band).

determine �0 and � by fitting the predicted TOA proton flux against the low-energy PAMELA
measurements.

• We use the same set of parameters obtained from protons to modulate the LIS antiproton flux.

In figure 5 we show the extreme antiproton fluxes as obtained with our charge-dependent modu-
lation model. We immediately notice that the more detailed treatment of solar modulation does not

– 9 –

X-section models	
  

Evoli, Grasso, Gaggero (2015)	
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AMS physics results

LEPTONS / ANTIMATTER
•  Positrons fraction e+/(e++e-)
•  Electron and Positron fluxes (e+, e-)
•  Electron plus Positron flux (e++e-)
•  Antiprotons/protons

HADRONS
•  Proton and Helium fluxes (p, He)
•  Lithium, Boron, Carbon (Li, B, C)

AMS-02 is providing precise data to search for new physics in the Cosmic Ray 
channels while improving the understanding of the astrophysical background with a 

coherent set of data

Sensitive to  
Dark Matter signal 

Probes to improve 
the astrophysical background 

knowledge 
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AMS-02 Charge Measurement

Redundant measurements of the nuclear charge at different depths of the detector.



Precise understanding of nuclear fragmentation in the materials.



Charge Measurements of 
Light CR Nuclei

27




The AMS-02 experiment on the ISS
Valerio Vagelli


Proton and Helium Fluxes
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Proton and Helium Fluxes
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Protons!

30 months!
300 million p events!

30 months!
50 million He events!

Helium!
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Proton and Helium Fluxes
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Protons! Helium!

The H and He spectra harden with increasing rigidity
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Proton and Helium Fluxes
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Protons!

The H and He spectra harden with increasing rigidity

Helium!

Both fluxes cannot be described by single power laws. A break in the power law at 
R~300 GV is required to describe the data.

Δγ=0
 Δγ=0


Fit to data

Δγ=0

Χ2 / n.f. = 22/27


Fit to data

Δγ=0

Χ2 / n.f. = 25/26
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Proton and Helium Fluxes
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33




The AMS-02 experiment on the ISS
Valerio Vagelli


Lithium

Lithium identification!

1.  Inner Tracker Charge selection

(H,He contamination << 0.1%)




2.  Tracker Layer 1 Charge used to 
estimate heavier nuclei fragmentation 


Analisi litio simile a quella dell’elio,

Quindi è un byproduct di quella e ha piu statistica



Il carbonio è una analisi a parte, fatta con un sacco di tagli xche premlimiare,

Quindi con meno statistica	
  

 Inner Tracker |Z| selection

Tracker L1 fragmentation estimation

34




The AMS-02 experiment on the ISS
Valerio Vagelli


Lithium Flux
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The large size of the collected statistics and the 
charge identification capabilities of AMS allow to 
measure the Li flux with unprecedented 
precision.

Lithium!
30 months!

1.5 million Li events!

Fit to data

Δγ=0
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Carbon and Boron

) [GeV/n]
k

kinetic Energy (E
1 10 210 310

]
1.

7
 (G

eV
/n

)
-1

 s
r

-1
 s

-2
 [ 

m
2.

7
k

C
ar

bo
n 

Fl
ux

 * 
E

0

10

20

30

40

50

60
AMS-02
PAMELA (2014)
TRACER (2011)
ATIC (2009)
CREAM II (2009)
Buckley et al. (1994)
Derrickson et al. (1992)
CRN-Spacelab2 (1991)
HEAO3-C2 (1990)
Simon et al. (1980)
Orth et al. (1978)
Lezniak & Webber (1978)
Juliusson et al. (1974)

No structures or features are observed in the C flux nor in the B/C ratio.

Additional statistics will provide more quantitative information on the behavior at high energies

Carbon!

Kinetic Energy (GeV/n)
1 10 210 310

Bo
ro

n-
to

-C
ar

bo
n 

R
at

io
0.02

0.03

0.04
0.05

0.1

0.2

0.3

0.4

AMS-02
PAMELA (2014)
TRACER (2006)
CREAM-I (2004)
ATIC-02 (2003)
AMS-01 (1998)
Buckley et al. (1991)
CRN-Spacelab2 (1985)
Webber et al. (1981)
HEAO3-C2 (1980)
Simon et al. (1974-1976)
Dwyer & Meyer (1973-1975)
Orth et al. (1972)

Boron/Carbon!
40 months!

7 million C events!
2 million B events!
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Future experiments

AMS-02 will be the unique magnetic spectrometer in space
able to distinguish matter from antimatter for the next 10 years.
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Conclusions

38


•  AMS is providing simultaneous measurements of different cosmic ray 
species with O(% ) accuracy in an extended energy range.

•  New phenomena are being highlighted by these measurements, whose 
nature will be further clarified as more data will be collected by the 
experiment.



The AMS-02 experiment on the ISS
Valerio Vagelli


Conclusions

39


AMS will match the lifetime of the Space Station
•  Continue the search for Dark Matter

•  Improve the CR origin and propagation models
•  Quest for the existence of primordial Antimatter

•  Search for new phenomena, …
•  Time dependent effects of low energy CR 
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Thank you for your attention 

40



