PROJECT CONSTRAINTS: max. 5 mSv/y to exposed workers #### Maintenances at SPES Plan design # Constraints in the dose rate for maintenance proposes #### Exposed workers- Year workload 2000h | Frequen | cy of intervention | Maximum dose rate | | | | | | | | |---------|--------------------|--|--|--|--|--|--|--|--| | Low | < 5 times/y | 100 μSv h ⁻¹ (5 h total)
10 μSv h ⁻¹ (30 h total) | | | | | | | | | Medium | > 5 times < 20 /y | 6.0 μSv h ⁻¹ (15 h)
2.5 μSv h ⁻¹ (50 h) | | | | | | | | | High | > 20 times <35/y | 2.5 μSv h ⁻¹ (15 h)
1.0 μSv h ⁻¹ (80 h) | | | | | | | | ### Radiation field in the cyclotron vault | Perdite di fascio | Energia
[MeV] | % | di 750 μA | |-------------------|------------------|------|----------------------------------| | Nel ciclotrone | 30 | 3% | 22.5 μΑ | | | 40 | 3% | 22.5 μΑ | | | 50 | 1.5% | 11.25 μΑ | | | 60 | 1.5% | 11.25 μΑ | | | 70 | 6% | 45 μΑ | | Nei dipoli | | 0.6% | 3 μA (1 tgt) - 4.5 μA (2 tgt) | | Nei quadrupoli | | | | | | 70 | 3% | 15 μA (1 tgt) - 22.5 μA (2 tgt) | | Linea di fascio | | | | | | | 0.3% | 1.5 μA (1 tgt) – 2.25 μA (2 tgt) | After 10 days of cooling time, 1 run, there are zones very closed and around the cyclotron where maintenance operations can be done with a gamma a.d.e.r of 100 μ Sv/h #### Radiation field in the irradiation bunker The target is in place in the irradiation #### Radiation field in the irradiation bunker The target has been removed from the irradiation ### Wien Filter | Z\A | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | |-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------------|----------|----------|----------|--|----------|----------|--|----------|-----------------|-------------------|----------| | 42 | 0.00E+00 0.00E+ <u>00</u> | 0.00F+00 0)80E+00 | | 43 | 0.00E+00 0.008+9/ | ₽ 66€+88 | 9.005 1 00 | 00E+00 | | 44 5 | 0.00E+00 | 45-2 | 0.00E+00 | 46 ⊑ | 0.00E+00 | 47 ⊊ | 0.00E+00 | 48 <u>∪</u> | 0.00E+00 | 49 \Xi | 3.60E+09 | 2.52E+09 | 4.20E+09 | 3.85E+09 | 4.19E+09 | 2.98E+09 | 2.52E+09 | 1.72E+09 | 1.26E+09 | 3.03E+08 | 1.73E+08 | 9.94E+07 | 2.31E+07 | 1.93E+06 | 1.96E+05 | 0.00E+00 | 50 ⊆ | 9.96E+09 | 1.84E+10 | 1.29E+10 | 2.10E+10 | 1.57E+10 | 2.36E+10 | 1.85E+10 | 2.42E+10 | 2.03E+10 | 2.43E+10 | 1.63E+10 | 1.30E+10 | 2.60E+09 | 2.52E+09 | 1.25E+09 | 2.09E+08 | 2.79E+07 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | 51 | 0.00E+00 | 52 | 0.00E+00 | 3 | 0.00E+00 | 54 | 0.00E+00 0.005+00 | 0 00E+00 | 0.00E+00 0.005+00 | 0.005+00 | | 55 | 0.00E+00 | 3.15E+06 | 1.95E+07 | 2.23E+07 | 1.24E+08 | 1.88E+08 | 5.05E+08 | 7.47E+08 | 1.40 | | F | | | | | | | | | | |)9 | | 56 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 1.50E+06 | 1.51E+06 | 1.66E+07 | 6.34E+07 | 1.01 | | 1 | | | 400 | <u></u> | -000 | Ļ | 4000 | | | |)9 | | 57 | 0.00E+00 3.77 | Ŏ | | | | Darce | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | Minne | Ellino I | DAMAGE TO STATE OF THE | D | | |)9 | | 58 | 0.00E+00 0.00 | 7 | | | 8 | 7 | | | • | | | | |)0 | | 59 | 0.00E+00 0.00 | er | | | | Ĩ | | | | - 1 | Q. | | |)0 | | 60 | 0.005.00 | 0.005.00 | 0.005.00 | 0.005.00 | 0.005.00 | 0.005.00 | 0.005.00 | 0.005.00 | 0.04 | \simeq | | | | | | | • | - | 9 | | | 10 | TRACEWIN calculations, L. Bellan Pre-separator: $|\Delta p/p| > 2\%$ For a ¹³²Sn beam: $127 \le A \le 137$ #### Wien filter - Hundreds of species potential radioactive sources on the WF - After 2-3 years of operation maintenance needed - Non urgent maintenance: before touching the element it is allowed to wait months - Reasonably, species with half lives longer than 2 weeks will be worth of consideration - Reduction to about 50 species #### Wien filter Decay chain for each radionuclide Half life longer than 2 weeks are selected If the half life is 2 weeks, after 6 months (12 half lives) the remaining activity is 0.02% Specific gamma, mSv/h/1 MBq @ 1 meter Dose rate @ 1 meter from the Wien filter after ¹³²Sn extraction, 3 mSv/h #### Wien filter About **100 uSv/h** from the activation due to fission neutrons (negligible compared to **3 mSv/h** from the radioactivity of the unselected RIB ### 90° magnet During the extraction 40 mSv/h After 2 weeks < 2 mSv/h Pre-separator: $|\Delta M/M| > 1/200$ For a ¹³²Sn beam: : 132 isobars resolved ## High Resolution Mass Spectrometer Maintenance on the charge breeder: possible removal of the plasma chamber for cleaning Beams considered: 90Rb, 135I, 137Te, 94Kr, 138Xe, 132Sn, 134Sn #### External gamma dose rate: 90 Rb - After 1 day everywhere < 1 μ Sv/h After 1 week for distances $> 30 \text{ cm} < 1 \mu \text{Sv/h}$ 137 Te – After 1 h the dose rate is < 1 uSv/h for distances > 30 cm; at contact with the surface of CB max. rate of 100 uSv/h. The presence of 137 Cs in the decay chain of 137 Te keeps the dose rates further costant. ⁹⁴Kr - After 1 day the dose rate is < 1 uSv/h for distances > 30 cm; at contact with the surface of CB max. rate of 100 uSv/h. After a week everywhere < of 1 uSv/h 138 Xe - After 1 day everywhere $< 1 \mu Sv/h$ 134 Sn – After 3-4 days max. rate 1 uSv/h for distances > 30 cm; at contact with the surface of CB max. rate of 100 uSv/h. ¹³²Sn – After 10 days dose rate still high; close to the surface rates near to 1 mSv/h. Beams considered: 90Rb, 135I, 137Te, 94Kr, 138Xe, 132Sn, 134Sn #### **Internal dose**: 90 Rb - No contaminated beams are present e none gaseous element present 90 Rb → 90 Sr → 90 Y → 90 Zr ¹³⁵I – Gaseous elements ¹³⁵I e ¹³⁵Xe. After 2 weeks total radioactivity present equal a 1 Bq. ¹³⁷Te - Gaseous elements ¹³⁷I e ¹³⁷Xe. After 2 weeks the total radioactivity present is less than 1 Bq. ⁹⁴Kr – After 10 seconds is compleed decay. 138 Xe – After 2 weeks less than 1 Bq. ¹³²Sn – The only that can create problems because of 132 Te, present in the decay chain, with half life of 3,2 days, not sufficient for decaying of all the gaseous products between 2 runs. The result is that the present quantity of 132 I will be $> 8 \times 10^8$ Bq. This value can become smalle if the time between 2 runs is going to be greater than 14 days. $^{132}\text{Sn} \rightarrow ^{132}\text{Sb} \rightarrow ^{132}\text{Te} \rightarrow ^{132}\text{I} \rightarrow ^{132}\text{Xe}$ Internal exposure by accidental introduction: **inhalation** of <u>volatile</u> radioactivity («All elements are solid at room temperature, except Kr e Xe, <u>if the CB is in atmosferic pressure</u>. In vacuum, someone like iodine is particularly volatile and can sublime slowly arriving up to the pumps» A. Galatà.) ### 132 I $\approx 10^9$ Bq two weeks after the end of beam (hundreds of mSv/h in 10 m³ room with adult breath rate 1,2m³/h using the coefficient 9,4 x10⁻¹¹ Sv/Bq) ### Conclusion