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Quantum Gravity,  
from the atoms of space to cosmology 

The Universe as a Quantum Condensate



Quantum spacetime:  
the difficult path from microstructure to macrophysics

Quantum Gravity problem: 

identify microscopic d.o.f. of quantum spacetime and their fundamental dynamics

derive effective (QG-inspired) models for macroscopic continuum physics:

explain features of early Universe, obtain testable QG predictions



Quantum spacetime:  
the difficult path from microstructure to cosmology

Quantum Gravity problem: 

identify microscopic d.o.f. of quantum spacetime and their fundamental dynamics

derive effective (QG-inspired) models for (quantum) cosmology:

explain features of early Universe, obtain testable QG predictions

various models: loop quantum cosmology, ....

task is daunting (compare with analogue problem in condensed matter theory)

various approaches: group field theory, loop quantum gravity
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(causal) Dynamical 
Triangulations



Group field theories

' : G⇥d ! CQuantum field theories over group manifold  G (or corresponding Lie algebra)

relevant classical phase space for “GFT quanta”: (T ⇤G)⇥d ' (g⇥G)⇥d

can reduce to subspaces in specific models depending on conditions on the field

'(g1, g2, g3, g4)$ '(B1, B2, B3, B4)! Cexample: d=4

can be defined for any (Lie) group and dimension d, any signature, .....

d is dimension of  “spacetime-to-be”

very general framework; interest rests on specific models/use
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Fock vacuum: “no-space” (“emptiest”) state   | 0 >

single field “quantum”: spin network vertex or tetrahedron

(“building block of space”)
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generic quantum state: arbitrary collection of spin network vertices (including glued ones) or 
tetrahedra (including glued ones)

Fock vacuum: “no-space” (“emptiest”) state   | 0 >

single field “quantum”: spin network vertex or tetrahedron
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generic quantum state: arbitrary collection of spin network vertices (including glued ones) or 
tetrahedra (including glued ones)

Fock vacuum: “no-space” (“emptiest”) state   | 0 >

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]
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Kristina Giesel Dynamics of LQG

single field “quantum”: spin network vertex or tetrahedron

(“building block of space”)
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Group field theories

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.
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Group field theories

“combinatorial non-locality”

in pairing of field arguments

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
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“combinatorial non-locality”

in pairing of field arguments

classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)

S(',') =
1
2

Z
[dgi]'(gi)K(gi)'(gi) +

�

D!

Z
[dgia]'(gi1)....'(ḡiD)V(gia, ḡiD) + c.c.

combinatorics of field arguments in interaction: gluing of 5 tetrahedra across common 
triangles, to form 4-simplex (“building block of spacetime”)

simplest example (case d=4): simplicial setting
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Figure 1: GFT propagator and vertex

2.2 Non-commutative Fourier transform and bivector formulation

The simplicial geometry encoded in the model (5) is best understood in a dual formulation,
coined ‘metric representation’ in [21], obtained by a group Fourier transform of the field. The
relevant Fourier transform here is the obvious extension of the non-commutative SO(3) Fourier
transform [33, 34, 35] to the group [SO(3)⇤ SO(3)]4:

⇤⇤(x1, · · · x4) :=
⇥

[dgi]4 ⇤(g1, · · · g4) eiTrx1g1 · · · eiTrx4g4 (7)

The variables xi belong to the Lie algebra so(4) = su(2) ⌅ su(2). The kernel of the Fourier
transform is a product of ‘plane waves’ Eg(x) = eiTrxg, where the trace Tr is defined in terms of
the usual trace of 2⇤ 2 matrices1 as Trxg=

�
± ⇥g±tr[x±g±] with ⇥g±=sign(trg±). Thus Eg(x)

is itself a product of two SO(3) plane waves eg±(x±) :=ei�g±trx±g± . The plane waves satisfy the
properties: ⇥

d6x Eg(x) = �(g), Eg-1(x) = Eg(�x) (8)

1Let ⇧j be i times the Pauli matrices, then tr⇧i⇧j =��ij . Given and SU(2) element u=e�nj⇥j parametrized by
the angle ⇤ ⇤ [0, ⌅] and the unit R3-vector ⌦n and a=aj⇧j in the algebra su(2), we thus have tr[au]=� sin ⇤⌦n · ⌦a.
Also ⇥u :=sign(tru)=sign(cos ⇤).

5

simplest example (case d=4): simplicial setting



Feynman perturbative expansion around trivial vacuum

Z =
Z
D'D' ei S�(',') =

X
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Feynman perturbative expansion around trivial vacuum

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =


= stranded diagrams dual to cellular complexes of arbitrary topology 


(simplicial case: simplicial complexes obtained by gluing d-simplices in arbitrary ways)
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Feynman perturbative expansion around trivial vacuum

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =


= stranded diagrams dual to cellular complexes of arbitrary topology 


(simplicial case: simplicial complexes obtained by gluing d-simplices in arbitrary ways)
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2-complex J bordered by the graphs of γ and γ′ respectively, a collection of spins {jf} associated
with faces f ∈ J and a collection of intertwiners {ιe} associated to edges e ∈ J . Both spins and
intertwiners of exterior faces and edges match the boundary values defined by the spin networks s
and s′ respectively. Spin foams F : s → s′ and F ′ : s′ → s′′ can be composed into FF ′ : s → s′′

by gluing together the two corresponding 2-complexes at s′. A spin foam model is an assignment
of amplitudes A[F ] which is consistent with this composition rule in the sense that

A[FF ′] = A[F ]A[F ′]. (74)

Transition amplitudes between spin network states are defined by

⟨s, s′⟩phys =
∑

F :s→s′

A[F ], (75)

where the notation anticipates the interpretation of such amplitudes as defining the physical scalar
product. The domain of the previous sum is left unspecified at this stage. We shall discuss this
question further in Section V. This last equation is the spin foam counterpart of equation (73).
This definition remains formal until we specify what the set of allowed spin foams in the sum are
and define the corresponding amplitudes.
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Figure 5: A typical path in a path integral version of loop quantum gravity is given by a series of
transitions through different spin-network states representing a state of 3-geometries. Nodes and
links in the spin network evolve into 1-dimensional edges and faces. New links are created and
spins are reassigned at vertexes (emphasized on the right). The ‘topological’ structure is provided
by the underlying 2-complex while the geometric degrees of freedom are encoded in the labeling of
its elements with irreducible representations and intertwiners.

The background-independent character of spin foams is manifest. The 2-complex can be
thought of as representing ‘space-time’ while the boundary graphs as representing ‘space’. They do
not carry any geometrical information in contrast with the standard concept of a lattice. Geometry
is encoded in the spin labelings which represent the degrees of freedom of the gravitational field.

In standard quantum mechanics the path integral is used to compute the matrix elements of the
evolution operator U(t). It provides in this way the solution for dynamics since for any kinemat-
ical state Ψ the state U(t)Ψ is a solution to Schrödinger’s equation. Analogously, in a generally
covariant theory the path integral provides a device for constructing solutions to the quantum
constraints. Transition amplitudes represent the matrix elements of the so-called generalized ‘pro-
jection’ operator P (i.e., ⟨s, s′⟩phys = ⟨sP, s′⟩ recall the general discussion of Sections 2.2) such
that PΨ is a physical state for any kinematical state Ψ. As in the case of the vector constraint

30

Group field theories

Feynman amplitudes (model-dependent):


equivalently:

• spin foam models (sum-over-histories of 

spin networks)


• lattice path integrals         

(with group+Lie algebra variables)

Reisenberger,Rovelli, ’00

A. Baratin, DO, ‘11



Feynman perturbative expansion around trivial vacuum

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =


= stranded diagrams dual to cellular complexes of arbitrary topology 


(simplicial case: simplicial complexes obtained by gluing d-simplices in arbitrary ways)

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

2-complex J bordered by the graphs of γ and γ′ respectively, a collection of spins {jf} associated
with faces f ∈ J and a collection of intertwiners {ιe} associated to edges e ∈ J . Both spins and
intertwiners of exterior faces and edges match the boundary values defined by the spin networks s
and s′ respectively. Spin foams F : s → s′ and F ′ : s′ → s′′ can be composed into FF ′ : s → s′′

by gluing together the two corresponding 2-complexes at s′. A spin foam model is an assignment
of amplitudes A[F ] which is consistent with this composition rule in the sense that

A[FF ′] = A[F ]A[F ′]. (74)

Transition amplitudes between spin network states are defined by

⟨s, s′⟩phys =
∑

F :s→s′

A[F ], (75)

where the notation anticipates the interpretation of such amplitudes as defining the physical scalar
product. The domain of the previous sum is left unspecified at this stage. We shall discuss this
question further in Section V. This last equation is the spin foam counterpart of equation (73).
This definition remains formal until we specify what the set of allowed spin foams in the sum are
and define the corresponding amplitudes.

l

l

j

k

j

l

k

q

q

o

p

p

o
s

m

n

j

k

→
j

j

j

k

k

k

l

l

l

p

o
q

q

p

o m

n s

j

k

l

m

n
s

Figure 5: A typical path in a path integral version of loop quantum gravity is given by a series of
transitions through different spin-network states representing a state of 3-geometries. Nodes and
links in the spin network evolve into 1-dimensional edges and faces. New links are created and
spins are reassigned at vertexes (emphasized on the right). The ‘topological’ structure is provided
by the underlying 2-complex while the geometric degrees of freedom are encoded in the labeling of
its elements with irreducible representations and intertwiners.
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is encoded in the spin labelings which represent the degrees of freedom of the gravitational field.
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ical state Ψ the state U(t)Ψ is a solution to Schrödinger’s equation. Analogously, in a generally
covariant theory the path integral provides a device for constructing solutions to the quantum
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all current spin foam models have GFT formulation



GFTs, loop quantum gravity, spin foam models

appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes 
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G



GFTs, loop quantum gravity, spin foam models

appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes 
into lattice gauge theories/discrete gravity path integrals/spin foam models

e.g. gauge invariance of GFT fields under diagonal action of group G

example: d=3 '` : SO(3)3/SO(3) ! R

GFT ROOTS GFT OVERVIEW OF RESULTS CONCLUSIONS

(COLORED) GFT FOR 3D EUCLIDEAN GRAVITY

Boulatov, hep-th/9202074 (Gurau, arXiv:0907.2582 [hep-th])

4 fields ϕℓ for ℓ = 1, .., 4 function on SO(3)⊗3, subject to gauge invariance:

∀h ∈ SO(3), ϕℓ(hg1, hg2, hg3) = ϕℓ(g1, g2, g3)

action S[ϕℓ] = Skin[ϕℓ] + Sint[ϕℓ]:

Skin[ϕℓ] =

Z
[dgi]

3

4X

ℓ=1

ϕℓ(g1, g2, g3)ϕℓ(g1, g2.g3),

Sint[ϕℓ] = λ

Z
[dgi]

6 ϕ1(g1, g2, g3)ϕ2(g3, g4, g5)ϕ3(g5, g2, g6)ϕ4(g6, g4, g1)

+λ

Z
[dgi]

6 ϕ4(g1, g4, g6)ϕ3(g6, g2, g5)ϕ2(g5, g4, g3)ϕ1(g3, g2, g1)

spin network representation obtained by Peter-Weyl expansion

ϕℓ(g1, g2, g3) =
X

C
j1,j2,j3
m1,m2,m3φ

j1,j2,j3
ℓ,n1,n2,n3

D
j1
m1n1

(g1)D
j2
m2n2

(g2)D
j3
m3n3

(g3)

field↔ spin network vertex

16 / 41

+     simplicial interaction

with only delta functions 

can be computed in different (equivalent) representations (group, spin, Lie algebra)
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GFTs, loop quantum gravity, spin foam models
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spin foam formulation of 3d gravity/BF theory

discrete 1st order path integral for 3d gravity/BF theory 
on simplicial complex dual to GFT Feynman diagram

lattice gauge theory formulation of 
3d gravity/BF theory 



GFTs, loop quantum gravity, spin foam models

GFT models of 4d gravity:

based on classical (Plebanski) formulation of GR as BF theory + (simplicity) constraints

start from GFT formulation of 4d BF theory 
                                                                    + impose simplicity constraints (geometricity of simplicial structures)

(Barbieri, Baez, Barrett, Crane, Reisenberger, Perez, De Pietri, Engle, Pereira, Freidel, Krasnov, Rovelli, Livine, Speziale, Baratin, DO, ......)
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(Barbieri, Baez, Barrett, Crane, Reisenberger, Perez, De Pietri, Engle, Pereira, Freidel, Krasnov, Rovelli, Livine, Speziale, Baratin, DO, ......)

decompose GFT field in SU(2) data + 
geometricity conditions

GFT dynamics to LQG quantum states

concrete, well-defined GFT (spin foam) model(s) for 4d QG dynamics - nice discrete geometry, lots of results ….. 



GFTs, loop quantum gravity, spin foam models

(LQG spin network states ~ many-particles states, “particle” ~ spin network vertex)

second quantized version of Loop Quantum Gravity 

but dynamics not derived from canonical quantization of GR DO, 1310.7786 [gr-qc]

DO, J. Ryan, J. Thuerigen, ‘14



GFTs, loop quantum gravity, spin foam models

(LQG spin network states ~ many-particles states, “particle” ~ spin network vertex)

second quantized version of Loop Quantum Gravity 

but dynamics not derived from canonical quantization of GR DO, 1310.7786 [gr-qc]

G12

1

2

3

4

G23G34

G14

G13

G24

DO, J. Ryan, J. Thuerigen, ‘14



GFTs, loop quantum gravity, spin foam models

(LQG spin network states ~ many-particles states, “particle” ~ spin network vertex)

second quantized version of Loop Quantum Gravity 

but dynamics not derived from canonical quantization of GR DO, 1310.7786 [gr-qc]

1

g
1
3

g1

1

g
1

2

g
4

2

g
4

3

g
4
1

4

2g
3

g3

3 g
3

1

3

g
2

2

g3

2

g
2

1

2

G12

1

2

3

4

G23G34

G14

G13

G24

DO, J. Ryan, J. Thuerigen, ‘14



GFTs, loop quantum gravity, spin foam models

(LQG spin network states ~ many-particles states, “particle” ~ spin network vertex)

second quantized version of Loop Quantum Gravity 

but dynamics not derived from canonical quantization of GR DO, 1310.7786 [gr-qc]

1

g
1
3

g1

1

g
1

2

g
4

2

g
4

3

g
4
1

4

2g
3

g3

3 g
3

1

3

g
2

2

g3

2

g
2

1

2

G12

1

2

3

4

G23G34

G14

G13

G24

GFT Hilbert space = Fock space of open spin network vertices - contains any LQG state (all spin networks)

any LQG observable has a 2nd quantised, GFT counterpart

choice of LQG dynamics (Hamiltonian constraint operator) translates into choice of GFT action

DO, J. Ryan, J. Thuerigen, ‘14



GFTs, loop quantum gravity, spin foam models

(LQG spin network states ~ many-particles states, “particle” ~ spin network vertex)

second quantized version of Loop Quantum Gravity 

but dynamics not derived from canonical quantization of GR DO, 1310.7786 [gr-qc]

1

g
1
3

g1

1

g
1

2

g
4

2

g
4

3

g
4
1

4

2g
3

g3

3 g
3

1

3

g
2

2

g3

2

g
2

1

2

GFT Hilbert space = Fock space of open spin network vertices - contains any LQG state (all spin networks)

any LQG observable has a 2nd quantised, GFT counterpart

choice of LQG dynamics (Hamiltonian constraint operator) translates into choice of GFT action

DO, J. Ryan, J. Thuerigen, ‘14



GFTs, loop quantum gravity, spin foam models

(LQG spin network states ~ many-particles states, “particle” ~ spin network vertex)

second quantized version of Loop Quantum Gravity 

but dynamics not derived from canonical quantization of GR DO, 1310.7786 [gr-qc]

GFT Hilbert space = Fock space of open spin network vertices - contains any LQG state (all spin networks)

any LQG observable has a 2nd quantised, GFT counterpart

choice of LQG dynamics (Hamiltonian constraint operator) translates into choice of GFT action

DO, J. Ryan, J. Thuerigen, ‘14



GFTs, loop quantum gravity, spin foam models

(LQG spin network states ~ many-particles states, “particle” ~ spin network vertex)

second quantized version of Loop Quantum Gravity 

but dynamics not derived from canonical quantization of GR DO, 1310.7786 [gr-qc]

DO, J. Ryan, J. Thuerigen, ‘14



GFTs, loop quantum gravity, spin foam models

(LQG spin network states ~ many-particles states, “particle” ~ spin network vertex)

second quantized version of Loop Quantum Gravity 

but dynamics not derived from canonical quantization of GR DO, 1310.7786 [gr-qc]

QFT methods (i.e. GFT reformulation of LQG and spin foam models) useful to address physics of large 
numbers of LQG d.o.f.s, i.e. many and refined graphs (continuum limit)

1. making sense of quantum dynamics and LQG partition function (correlations)


2. understanding LQG phase structure


3. extracting effective continuum dynamics

(superpositions of “many-vertices” states, refinement as creation of new vertices, etc) 

DO, J. Ryan, J. Thuerigen, ‘14



1st message

we have a solid candidate formalism for a theory of quantum gravity (a QFT for the “atoms of quantum space”) 

grounded in LQG (and discrete gravity, tensor models)

rigorous mathematics, clear pre-geometric meaning 

promising fundamental dynamical models 

lots of results ……..



Quantum spacetime:  
the difficult path from microstructure to cosmology

Quantum Gravity problem: 

identify microscopic d.o.f. of quantum spacetime and their fundamental dynamics

derive effective (QG-inspired) models for fundamental (quantum) cosmology:

explain features of early Universe, obtain testable QG predictions

various models: loop quantum cosmology, ....

task is daunting (imagine analogue problem in condensed matter theory)



The problem of the continuum limit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom (“building blocks”) for space-time



The problem of the continuum limit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom (“building blocks”) for space-time

new direction to explore: number of fundamental degrees of freedom



The problem of the continuum limit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom (“building blocks”) for space-time

new direction to explore: number of fundamental degrees of freedom

main point:

physics of few d.o.f.s is different from physics of (very) many d.o.f.s 



The problem of the continuum limit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom (“building blocks”) for space-time

new direction to explore: number of fundamental degrees of freedom

(quantum) continuum, geometric space-time should be recovered in the regime of large number N of 
non-spatio-temporal d.o.f.s

main point:

physics of few d.o.f.s is different from physics of (very) many d.o.f.s 



The problem of the continuum limit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom (“building blocks”) for space-time

new direction to explore: number of fundamental degrees of freedom

(quantum) continuum, geometric space-time should be recovered in the regime of large number N of 
non-spatio-temporal d.o.f.s

main point:

physics of few d.o.f.s is different from physics of (very) many d.o.f.s 

GFTs are a formulation of LQG/spin foams that is most suited to tackle this problem, thanks to QFT tools
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continuum approximation very different (conceptually and technically) from classical approximation

few QG d.o.f.s in classical approx.!
(e.g. discrete/lattice gravity)

General Relativity!
(continuum spacetime)

full Quantum Gravity

N

h

few QG d.o.f.s!
(e.g. simple LQG spinnets)N-direction 

(collective behaviour of many interacting degrees of freedom): 
continuum approximation

h-direction: classical approximation

no reason they expect that they commute!

“well-understood” in spin foam models
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Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool (mathematical, conceptual, physical)

renormalization is not about “curing or hiding divergences”, but
taking into account the physics of more and more d.o.f.s 

• in specific GFT case: 
• fundamental formulation of QG  = QFT, defined perturbatively around “no-space” (degenerate) vacuum 

• need to prove consistency of the theory: perturbative GFT renormalizability

• ned to understand effective dynamics at different “GFT scales”: 
RG flow of effective actions & phase structure & phase transitions

•  for our QG models (LQG/spin foams), do not expect to have a unique continuum limit   

collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases, 
separated by phase transitions

• for a non-spatio-temporal QG system (e.g. LQG in GFT formulation),
which of the macroscopic phases is described by a smooth geometry with matter fields?
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idea of “geometrogenesis” in LQG/GFT :  

starting from degenerate phase, continuum geometric physics in new phase
new phase can be “condensate” phase of QG “atoms of space”

in canonical LQG context:    

T. Koslowski, 0709.3465 [gr-qc] 

in covariant SF/GFT context:

DO, 0710.3276 [gr-qc]
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Geometrogenesis in LQG/GFT
idea of “geometrogenesis” in LQG/GFT :  

starting from degenerate phase, continuum geometric physics in new phase
new phase can be “condensate” phase of QG “atoms of space”

in canonical LQG context:    

T. Koslowski, 0709.3465 [gr-qc] 

in covariant SF/GFT context:

DO, 0710.3276 [gr-qc]

also in tensor models
V. Rivasseau, ‘13

need to prove, in the full quantum dynamics, a phase transition to non-degenerate (e.g. condensate) phase
some experience and results in tensor models and GFTs

V. Bonzom, R. Gurau, A. Riello, V. Rivasseau, ’11;

 A. Baratin, S. Carrozza, DO, J. Ryan, M. Smerlak, ‘13

second possible interpretation:
other phases are physical; phase transitions are physical; we live in the geometric phase

if geometric phase transition is physical, which physics does it describe?

first possible interpretation: 
other phases and phase transition -not- physical, just formal: theory makes sense only in geometric phase

this is point of view in CDT (J. Ambjorn, R. Loll, …) , but see J. Mielczarek, ‘14 

natural hypothesis: very early Universe - big bang as QG phase transition
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• GFT is QG analogue of QFT for atoms in condensed matter system

• continuum spacetime (with GR-like dynamics) emerges from collective behaviour of large numbers of GFT 
building blocks (e.g. spin nets, simplices), possibly only in one phase of microscopic system 

• continuum spacetime as a peculiar quantum fluid

• more specific hypothesis: continuum spacetime is GFT condensate
• GR-like dynamics from GFT condensate hydrodynamics

simple candidates for physical (geometric) vacuum: GFT condensates

DO, L. Sindoni, ’10; S. Gielen, DO, L. Sindoni,  1303.3576 [gr-qc], 1311.1238 [gr-qc]; 

S. Gielen, ’14; G. Calcagni, ’14; L. Sindoni, ’14; S. Gielen, DO, ‘14

what is their definition? do they have a continuum geometric interpretation? 
what is their effective quantum dynamics? does it relate to GR?

Geometrogenesis in LQG/GFT
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Continuum Phases & phase transitions in LQG
canonical LQG: 

purely kinematical, inequivalent representations (phases) of quantum algebra of observables

AL vacuum

KS vacuum |0iKS

KSh0|ES |0iKS = ES 8S
�KSES << 1 �KSAS >> 1

non-degenerate geometry (triad condensate)

connection highly fluctuating


diffeo covariant

T. Koslowski, H. Sahlmann, 1109.4688 [gr-qc]

|0iAL

ALh0|ES |0iAL = 0 8S
�ALES << 1 �ALAS >> 1

totally degenerate geometry (emptiest state)

connection highly fluctuating


diffeo invariant
J. Lewandowski, A. Okolow, H. Sahlmannm T. Thiemann’06


C. Fleischack, ‘06

DG vacuum 

(or BF vacuum) |0iDG

DGh0|F (A)|0iDG = 0

�DGA << 1 �DGES >> 1
B. Dittrich, M. Geiller, 1401.6441 [gr-qc]

non-degenerate flat connection

metric highly fluctuating


diffeo covariant

simplicial context
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Continuum Phases & phase transitions in LQG
canonical LQG: 

purely kinematical, inequivalent representations (phases) of quantum algebra of observables

AL vacuum

KS vacuum

DG vacuum 

(or BF vacuum)

?

?

GFT condensate

phase transitions



Continuum Phases & phase transitions in LQG
spin foam models (without GFT framework)

• rewrite them as lattice gauge theory path integrals

• define (background independent) coarse graining procedure

• look for flow of effective actions and fixed points

technically (numerically) very challenging

many results, mainly in simplified models (simpler algebraic data, dimensionally reduced models)

work by:

B. Bahr, B. Dittrich, F. Eckert, F. Hellmann, W. Kaminski, M. Martin-Benito, S. Steinhaus, …. - ’09-‘15



Renormalization of GFTs: where are we?

L. Freidel, R. Gurau, DO, ’09; J. Magnen et al., ’09; J. Ben Geloun, J. Magnen, V. Rivasseau, ‘10 ; R. Gurau, ’11; S. Carrozza, DO, ’11,’12

• power counting and radiative corrections in GFT models
(cut-off of fields in representation space)

• topological simplicial GFT models (BF theory):

• partial power counting and scaling theorems - large-N scaling

• radiative corrections of 2-point function: need for Laplacian kinetic term

• super-renormalizability in abelian case (3d, with Laplacian)

• 4d gravity models

• super-renormalizability of some versions of BC model

• radiative corrections of 2-point function in EPRL-FK model

J. Ben Geloun, V. Bonzom, ‘11

J. Ben Geloun, ‘13

T. Krajewski, J. Magnen, V. Rivasseau, A. Tanasa, P. Vitale, ’10; A. Riello, ‘13 

A. Perez, C. Rovelli, ’00, ‘01
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many results:    perturbative renormalizability (around free theory) and renormalisation group flow

• Functional Renormalization Group for TGFTs
D. Benedetti, J. Ben Geloun, DO, ’14; J. Ben Geloun, R.Martini, DO, ‘15

S. Carrozza, DO, V. Rivasseau, ‘12

• proof of asymptotic freedom for abelian TGFT models without  gauge invariance
J. Ben Geloun, D. Ousmane-Samary, ’11; J. Ben Geloun, ‘12
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an example: '(g1, g2, g3) =
X

p1,p2,p3

'p1p2p3e
ip1✓1 eip2✓2eip3✓3 2 R gi = ei✓i 2 U(1) ✓i 2 [�⇡,⇡) pi 2 Z

[m2] + d+ 2[�] = ↵ [m2] = [K] =
[K]=1

= 1 , m2 = Nm̃2 , [m̃2] = 0 .

[gb;n] + [Trb] + n[�] = ↵

[gb;n] = ↵� [Trb]� n
↵� d� [K]

2
=

↵(2� n)� 2[Trb] + n(d+ [K])
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]N2�↵ . (3)

We use the renormalized dimensionless coupling

mN = ZNµN = ZNNµ̄N , �N = Z2

NN
2�↵�̄N , (4) eq:dimcoup

3 Wetterich equation for tensor models

sect:WE

3.1 FRGE formalism for tensor models

sect:frge

The field in the present theory is a rank d real tensor �p1,p2,...,pd , pi 2 N. We will denote
the same object, when it is more convenient, either as �pi or as �12...d.

Our study focuses on the model which is defined by the bare action as

S =
Z

2
Tr

2

(� ·K · �) + m

2
Tr

2

(�2) + Sint ,

Tr
2

(� ·K · �) =
X

pi

�pi (
1

d

d
X

i=1

pi)�pi ,

Tr
2

(�2) =
X

pi

�2

pi , Sint =
X

b2B

�bTrb(�
nb) , (5)

where b is an element of B the set of d-colored bubbles, nb is the number of vertices of
the bubble as discussed in Section

sect:tensmodelsect:tensmodel

2 (not yet there). We introduce, for each such term, a
coupling constant as well a mass coupling m and a wave function renormalization Z.

Properties of S: Invariance under tensor product transformation O(N)⇥d of the field.
We introduce a cut-o↵ N in the tensor modes and a regulator term as

�SN(�) =
1

2
Tr(� ·RN · �)

Tr(� ·RN · �) :=
X

pi,p0i

�pi RN({pi}; {p0i})�p0i

3

Tr
2

(�2) =
X

pi

�2

123

, Tr
4;1

(�4) =
X

pi,p0i

�
123

�
1

0
23

�
1

0
2

0
3

0 �
12

0
3

0 ,

Sint =
�

4

⇣

Tr
4;1

(�4) + Sym(1 ! 2 ! 3)
⌘

=
�

4
Tr

4

(�4) , (16)

where we denote �p01,p
0
2,p

0
3
= �

1

0
2

0
3

0 . Each of the Tr
4;1

(�4) is represented by a 3-colored
bubble graph as given in Figure XXX. However, as shown in (

eq:3dactioneq:3daction

16) we use a single coupling
� for the 3 possible interactions.

The properties of S have been already listed. Let us concentrate on the regulator
�SN(�) which is determined by the kernel

RN({pi}; {p0i}) = �pi,p0i
ZN

⇣

N � 1

3

3

X

i=1

pi

⌘

⇥(N � 1

3

3

X

i=1

pi) . (17)

Note that implicitly we could introduce a second redundant ⇥ function

RN({pi}; {p0i}) = �pi,p0i
ZN

⇣

N � 1

3

3

X

i=1

pi

⌘

⇥(N � 1

3

3

X

i=1

pi)⇥(N � 1

3

3

X

i=1

p0i) . (18)

simply because ⇥2(n) = ⇥(n), for n 2 N. Such a notation will be also useful in the
following.

4.2 First anzatz

subsect:1anz

For example, let us assume that the e↵ective action takes the same form as S:

�N(') =
ZN

2
Tr

2

(' ·K · ') + mN

2
Tr

2

('2) + Sint

S 0int =
�N

4

⇣

Tr
4;1

('4) + Sym(1 ! 2 ! 3)
⌘

Tr
2

(' ·K · ') =
X

pi2N

'
123

(1
3

X

i

pi)'123

Tr
2

('2) =
X

pi2N

'2

123

Tr
4;1

('4) =
X

pi,p0i2N

'
123

'
1

0
23

'
1

0
2

0
3

0 '
12

0
3

0 (19)

We use the following cut-o↵ed field '
123

'
123

= '0

123

⇥N�
P

p , ⇥N�
P

p := ⇥(N � 1

3

3

X

i=1

pi) . (20)

6

Tr
2

(�2) =
X

pi

�2

123

, Tr
4;1

(�4) =
X

pi,p0i

�
123

�
1

0
23

�
1

0
2

0
3

0 �
12

0
3

0 ,

Sint =
�

4

⇣

Tr
4;1

(�4) + Sym(1 ! 2 ! 3)
⌘

=
�

4
Tr

4

(�4) , (16)

where we denote �p01,p
0
2,p

0
3
= �

1

0
2

0
3

0 . Each of the Tr
4;1

(�4) is represented by a 3-colored
bubble graph as given in Figure XXX. However, as shown in (

eq:3dactioneq:3daction

16) we use a single coupling
� for the 3 possible interactions.

The properties of S have been already listed. Let us concentrate on the regulator
�SN(�) which is determined by the kernel

RN({pi}; {p0i}) = �pi,p0i
ZN

⇣

N � 1

3

3

X

i=1

pi

⌘

⇥(N � 1

3

3

X

i=1

pi) . (17)

Note that implicitly we could introduce a second redundant ⇥ function

RN({pi}; {p0i}) = �pi,p0i
ZN

⇣

N � 1

3

3

X

i=1

pi

⌘

⇥(N � 1

3

3

X

i=1

pi)⇥(N � 1

3

3

X

i=1

p0i) . (18)

simply because ⇥2(n) = ⇥(n), for n 2 N. Such a notation will be also useful in the
following.

4.2 First anzatz

subsect:1anz

For example, let us assume that the e↵ective action takes the same form as S:

�N(') =
ZN

2
Tr

2

(' ·K · ') + mN

2
Tr

2

('2) + Sint

S 0int =
�N

4

⇣

Tr
4;1

('4) + Sym(1 ! 2 ! 3)
⌘

Tr
2

(' ·K · ') =
X

pi2N

'
123

(1
3

X

i

pi)'123

Tr
2

('2) =
X

pi2N

'2

123

Tr
4;1

('4) =
X

pi,p0i2N

'
123

'
1

0
23

'
1

0
2

0
3

0 '
12

0
3

0 (19)

We use the following cut-o↵ed field '
123

'
123

= '0

123

⇥N�
P

p , ⇥N�
P

p := ⇥(N � 1

3

3

X

i=1

pi) . (20)

6



Renormalization group flow of GFTs from FRG

flow equations:

non-autonomous system (due to external scale a = size of grow manifold)
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corresponding to [mN ] = 1 and [�N ] = 0 as expected.
• Non-Gaussian FP1 {� ! 0.01677, µ ! �0.7926}
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One negative eigenvalue in this sector, hence one relevant direction.

4.5 N-dependent beta functions and scaling of the couplings

From below (
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33), the anomalous dimension is defined by the following equation
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where we have rescaled � ! Z2

N� and we have used the non-rescaled-with-N mass of (
eq:dimcoupeq:dimcoup

4).
From below eq.[[37]] we obtain the equaltion for the mass beta function:
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and from eq.[[51]] we obtain the one for the quartic interaction coupling
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(74)
Rescaling the couplings with N usually renders the flow equations an autonomous

system (no explicit dependence on N), but this turns out to be impossible in the present
case, du to the polynomials in N that appear in the beta functions. What we can do is
to choose a scaling such that the system is autonomous in the large-N limit. However,
the same scaling will not lead to an autonomous system in the small-N limit. Therefore
either we have to stick to the non-rescaled coupling, or we have to study the two limits
separately.

Let’s check first the large-N limit. We have

⌘ =N� � �N

(1 + µN/N)2

h

� 18

2
� 27

6
⌘
i

, (75)

@tµN =N� �µN⌘ �
�N N

(1 + µN/N)2

h27

2
+

9

2
⌘
i

, (76)

@t�N =N� �18

3
�2

N

⌘

(1 + µN/N)3
+ 9�2

N

(⌘ + 1)

(1 + µN/N)3
� 2⌘�N . (77)

The only consistent rescaling is the one we already know, µN = Nµ̄N and �N = �̄N , and
we recover the beta functions we knew.

Now small N . For N ! 0 we have
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The only consistent rescaling is now µN = Nµ̄N and �N = N2�̃N , with which we have
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Besides the Gaussian fixed point, the last two equations admit also a fixed point at {µ̄⇤ =
�1

2

, �̃⇤ = 1

72

}. Note that �̄⇤ = N2�̃⇤, hence for N ! 0 this fixed point corresponds to
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We use the renormalized dimensionless coupling
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3 Wetterich equation for tensor models

sect:WE

3.1 FRGE formalism for tensor models

sect:frge

The field in the present theory is a rank d real tensor �p1,p2,...,pd , pi 2 N. We will denote
the same object, when it is more convenient, either as �pi or as �12...d.

Our study focuses on the model which is defined by the bare action as
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where b is an element of B the set of d-colored bubbles, nb is the number of vertices of
the bubble as discussed in Section

sect:tensmodelsect:tensmodel

2 (not yet there). We introduce, for each such term, a
coupling constant as well a mass coupling m and a wave function renormalization Z.

Properties of S: Invariance under tensor product transformation O(N)⇥d of the field.
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(�4) is represented by a 3-colored
bubble graph as given in Figure XXX. However, as shown in (
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16) we use a single coupling
� for the 3 possible interactions.

The properties of S have been already listed. Let us concentrate on the regulator
�SN(�) which is determined by the kernel
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Note that implicitly we could introduce a second redundant ⇥ function

RN({pi}; {p0i}) = �pi,p0i
ZN

⇣

N � 1

3

3

X

i=1

pi

⌘

⇥(N � 1

3

3

X

i=1

pi)⇥(N � 1

3

3

X

i=1

p0i) . (18)

simply because ⇥2(n) = ⇥(n), for n 2 N. Such a notation will be also useful in the
following.
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For example, let us assume that the e↵ective action takes the same form as S:

�N(') =
ZN

2
Tr

2

(' ·K · ') + mN

2
Tr

2

('2) + Sint

S 0int =
�N

4

⇣

Tr
4;1

('4) + Sym(1 ! 2 ! 3)
⌘

Tr
2

(' ·K · ') =
X

pi2N

'
123

(1
3

X

i

pi)'123

Tr
2

('2) =
X

pi2N

'2

123

Tr
4;1

('4) =
X

pi,p0i2N

'
123

'
1

0
23

'
1

0
2

0
3

0 '
12

0
3

0 (19)

We use the following cut-o↵ed field '
123

'
123

= '0

123

⇥N�
P

p , ⇥N�
P

p := ⇥(N � 1

3

3

X

i=1

pi) . (20)

6

Tr
2

(�2) =
X

pi

�2

123

, Tr
4;1

(�4) =
X

pi,p0i

�
123

�
1

0
23

�
1

0
2

0
3

0 �
12

0
3

0 ,

Sint =
�

4

⇣

Tr
4;1

(�4) + Sym(1 ! 2 ! 3)
⌘

=
�

4
Tr

4

(�4) , (16)

where we denote �p01,p
0
2,p

0
3
= �

1

0
2

0
3

0 . Each of the Tr
4;1

(�4) is represented by a 3-colored
bubble graph as given in Figure XXX. However, as shown in (

eq:3dactioneq:3daction

16) we use a single coupling
� for the 3 possible interactions.

The properties of S have been already listed. Let us concentrate on the regulator
�SN(�) which is determined by the kernel

RN({pi}; {p0i}) = �pi,p0i
ZN

⇣

N � 1

3

3

X

i=1

pi

⌘

⇥(N � 1

3

3

X

i=1

pi) . (17)

Note that implicitly we could introduce a second redundant ⇥ function

RN({pi}; {p0i}) = �pi,p0i
ZN

⇣

N � 1

3

3

X

i=1

pi

⌘

⇥(N � 1

3

3

X

i=1

pi)⇥(N � 1

3

3

X

i=1

p0i) . (18)

simply because ⇥2(n) = ⇥(n), for n 2 N. Such a notation will be also useful in the
following.

4.2 First anzatz

subsect:1anz

For example, let us assume that the e↵ective action takes the same form as S:

�N(') =
ZN

2
Tr

2

(' ·K · ') + mN

2
Tr

2

('2) + Sint

S 0int =
�N

4

⇣

Tr
4;1

('4) + Sym(1 ! 2 ! 3)
⌘

Tr
2

(' ·K · ') =
X

pi2N

'
123

(1
3

X

i

pi)'123

Tr
2

('2) =
X

pi2N

'2

123

Tr
4;1

('4) =
X

pi,p0i2N

'
123

'
1

0
23

'
1

0
2

0
3

0 '
12

0
3

0 (19)

We use the following cut-o↵ed field '
123

'
123

= '0

123

⇥N�
P

p , ⇥N�
P

p := ⇥(N � 1

3

3

X

i=1

pi) . (20)

6



Renormalization group flow of GFTs from FRG
D. Benedetti, J. Ben Geloun, DO, ‘14

an example: '(g1, g2, g3) =
X

p1,p2,p3

'p1p2p3e
ip1✓1 eip2✓2eip3✓3 2 R gi = ei✓i 2 U(1) ✓i 2 [�⇡,⇡) pi 2 Z

[m2] + d+ 2[�] = ↵ [m2] = [K] =
[K]=1

= 1 , m2 = Nm̃2 , [m̃2] = 0 .

[gb;n] + [Trb] + n[�] = ↵

[gb;n] = ↵� [Trb]� n
↵� d� [K]

2
=

↵(2� n)� 2[Trb] + n(d+ [K])

2

[g
2

] = [m2] =d=3;[K]=1;[Tr]=3

2↵� 2[3]� 2(↵� 3� 1)

2
= 1 ok

[g
4

] =d=3;[K]=1;[Tr]=6

=
↵(2� 4)� 2[6] + 4(3 + 1)

2
=

�2↵ + 4

2
= 2� ↵

[g
4

] = [g̃
4

]N2�↵ . (3)

We use the renormalized dimensionless coupling

mN = ZNµN = ZNNµ̄N , �N = Z2

NN
2�↵�̄N , (4) eq:dimcoup

3 Wetterich equation for tensor models

sect:WE

3.1 FRGE formalism for tensor models

sect:frge

The field in the present theory is a rank d real tensor �p1,p2,...,pd , pi 2 N. We will denote
the same object, when it is more convenient, either as �pi or as �12...d.

Our study focuses on the model which is defined by the bare action as

S =
Z

2
Tr

2

(� ·K · �) + m

2
Tr

2

(�2) + Sint ,

Tr
2

(� ·K · �) =
X

pi

�pi (
1

d

d
X

i=1

pi)�pi ,

Tr
2

(�2) =
X

pi

�2

pi , Sint =
X

b2B

�bTrb(�
nb) , (5)

where b is an element of B the set of d-colored bubbles, nb is the number of vertices of
the bubble as discussed in Section

sect:tensmodelsect:tensmodel

2 (not yet there). We introduce, for each such term, a
coupling constant as well a mass coupling m and a wave function renormalization Z.

Properties of S: Invariance under tensor product transformation O(N)⇥d of the field.
We introduce a cut-o↵ N in the tensor modes and a regulator term as

�SN(�) =
1

2
Tr(� ·RN · �)

Tr(� ·RN · �) :=
X

pi,p0i

�pi RN({pi}; {p0i})�p0i

3

Tr
2

(�2) =
X

pi

�2

123

, Tr
4;1

(�4) =
X

pi,p0i

�
123

�
1

0
23

�
1

0
2

0
3

0 �
12

0
3

0 ,

Sint =
�

4

⇣

Tr
4;1

(�4) + Sym(1 ! 2 ! 3)
⌘

=
�

4
Tr

4

(�4) , (16)

where we denote �p01,p
0
2,p

0
3
= �

1

0
2

0
3

0 . Each of the Tr
4;1

(�4) is represented by a 3-colored
bubble graph as given in Figure XXX. However, as shown in (

eq:3dactioneq:3daction

16) we use a single coupling
� for the 3 possible interactions.

The properties of S have been already listed. Let us concentrate on the regulator
�SN(�) which is determined by the kernel

RN({pi}; {p0i}) = �pi,p0i
ZN

⇣

N � 1

3

3

X

i=1

pi

⌘

⇥(N � 1

3

3

X

i=1

pi) . (17)

Note that implicitly we could introduce a second redundant ⇥ function

RN({pi}; {p0i}) = �pi,p0i
ZN

⇣

N � 1

3

3

X

i=1

pi

⌘

⇥(N � 1

3

3

X

i=1

pi)⇥(N � 1

3

3

X

i=1

p0i) . (18)

simply because ⇥2(n) = ⇥(n), for n 2 N. Such a notation will be also useful in the
following.

4.2 First anzatz

subsect:1anz

For example, let us assume that the e↵ective action takes the same form as S:

�N(') =
ZN

2
Tr

2

(' ·K · ') + mN

2
Tr

2

('2) + Sint

S 0int =
�N

4

⇣

Tr
4;1

('4) + Sym(1 ! 2 ! 3)
⌘

Tr
2

(' ·K · ') =
X

pi2N

'
123

(1
3

X

i

pi)'123

Tr
2

('2) =
X

pi2N

'2

123

Tr
4;1

('4) =
X

pi,p0i2N

'
123

'
1

0
23

'
1

0
2

0
3

0 '
12

0
3

0 (19)

We use the following cut-o↵ed field '
123

'
123

= '0

123

⇥N�
P

p , ⇥N�
P

p := ⇥(N � 1

3

3

X

i=1

pi) . (20)

6

Tr
2

(�2) =
X

pi

�2

123

, Tr
4;1

(�4) =
X

pi,p0i

�
123

�
1

0
23

�
1

0
2

0
3

0 �
12

0
3

0 ,

Sint =
�

4

⇣

Tr
4;1

(�4) + Sym(1 ! 2 ! 3)
⌘

=
�

4
Tr

4

(�4) , (16)

where we denote �p01,p
0
2,p

0
3
= �

1

0
2

0
3

0 . Each of the Tr
4;1

(�4) is represented by a 3-colored
bubble graph as given in Figure XXX. However, as shown in (

eq:3dactioneq:3daction

16) we use a single coupling
� for the 3 possible interactions.

The properties of S have been already listed. Let us concentrate on the regulator
�SN(�) which is determined by the kernel

RN({pi}; {p0i}) = �pi,p0i
ZN

⇣

N � 1

3

3

X

i=1

pi

⌘

⇥(N � 1

3

3

X

i=1

pi) . (17)

Note that implicitly we could introduce a second redundant ⇥ function

RN({pi}; {p0i}) = �pi,p0i
ZN

⇣

N � 1

3

3

X

i=1

pi

⌘

⇥(N � 1

3

3

X

i=1

pi)⇥(N � 1

3

3

X

i=1

p0i) . (18)

simply because ⇥2(n) = ⇥(n), for n 2 N. Such a notation will be also useful in the
following.

4.2 First anzatz

subsect:1anz

For example, let us assume that the e↵ective action takes the same form as S:

�N(') =
ZN

2
Tr

2

(' ·K · ') + mN

2
Tr

2

('2) + Sint

S 0int =
�N

4

⇣

Tr
4;1

('4) + Sym(1 ! 2 ! 3)
⌘

Tr
2

(' ·K · ') =
X

pi2N

'
123

(1
3

X

i

pi)'123

Tr
2

('2) =
X

pi2N

'2

123

Tr
4;1

('4) =
X

pi,p0i2N

'
123

'
1

0
23

'
1

0
2

0
3

0 '
12

0
3

0 (19)

We use the following cut-o↵ed field '
123

'
123

= '0

123

⇥N�
P

p , ⇥N�
P

p := ⇥(N � 1

3

3

X

i=1

pi) . (20)

6



Renormalization group flow of GFTs from FRG

large-N regime (“formal UV”):

0.000 0.002 0.004 0.006 0.008
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

l

m

asymptotic freedom 
(Gaussian fixed point with two relev. directions)

D. Benedetti, J. Ben Geloun, DO, ‘14
an example: '(g1, g2, g3) =

X

p1,p2,p3

'p1p2p3e
ip1✓1 eip2✓2eip3✓3 2 R gi = ei✓i 2 U(1) ✓i 2 [�⇡,⇡) pi 2 Z

[m2] + d+ 2[�] = ↵ [m2] = [K] =
[K]=1

= 1 , m2 = Nm̃2 , [m̃2] = 0 .

[gb;n] + [Trb] + n[�] = ↵

[gb;n] = ↵� [Trb]� n
↵� d� [K]

2
=

↵(2� n)� 2[Trb] + n(d+ [K])

2

[g
2

] = [m2] =d=3;[K]=1;[Tr]=3

2↵� 2[3]� 2(↵� 3� 1)

2
= 1 ok

[g
4

] =d=3;[K]=1;[Tr]=6

=
↵(2� 4)� 2[6] + 4(3 + 1)

2
=

�2↵ + 4

2
= 2� ↵

[g
4

] = [g̃
4

]N2�↵ . (3)

We use the renormalized dimensionless coupling

mN = ZNµN = ZNNµ̄N , �N = Z2

NN
2�↵�̄N , (4) eq:dimcoup

3 Wetterich equation for tensor models
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3.1 FRGE formalism for tensor models
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We use the renormalized dimensionless coupling

mN = ZNµN = ZNNµ̄N , �N = Z2

NN
2�↵�̄N , (4) eq:dimcoup

3 Wetterich equation for tensor models

sect:WE

3.1 FRGE formalism for tensor models

sect:frge
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where b is an element of B the set of d-colored bubbles, nb is the number of vertices of
the bubble as discussed in Section

sect:tensmodelsect:tensmodel

2 (not yet there). We introduce, for each such term, a
coupling constant as well a mass coupling m and a wave function renormalization Z.
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2nd message

problem of the continuum in QG (GFT,LQG): crucial to connect to macrophysics, difficult and open

we are addressing it

RG is crucial tool, different strategies, many results (renormalizable models, RG flows,…)

QG phase transition (condensation?) could be physical 

cosmological interpretation: realization of “Emergent Spacetime” and of “Universe as a Condensate” ideas



Quantum spacetime:  
the difficult path from microstructure to cosmology

Quantum Gravity problem: 

identify microscopic d.o.f. of quantum spacetime and their fundamental dynamics

derive effective (QG-inspired) models for fundamental (quantum) cosmology:

explain features of early Universe, obtain testable QG predictions

various models: loop quantum cosmology, ....

task is daunting (imagine analogue problem in condensed matter theory)



(Quantum) Cosmology from GFT

problem 1: 

identify quantum states in fundamental theory with continuum spacetime interpretation

problem 2:

extract from fundamental theory an effective macroscopic dynamics for such states 

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]
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extract from fundamental theory an effective macroscopic dynamics for such states 

Quantum GFT condensates are continuum (homogeneous) (quantum) spaces

following procedures of standard BEC

described by single collective wave function 

(depending on homogeneous anisotropic geometric data)

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs 

is


non-linear and non-local extension of quantum cosmology equation for collective wave function

similar equations obtained in non-linear extension of LQC (Bojowald et al. ’12)

similar constructions in LQG (Alesci, Cianfrani) and LQC (Bojowald, Wilson-Ewing, .....)
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GFT states and approximate continuum geometries

e3

e1

e2

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

describes geometric tetrahedron


(closure + simplicity constraints)

GFT states and approximate continuum geometries
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.

PACS numbers: 98.80.Qc, 04.60.Pp, 03.75.Nt

One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�
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• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)
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⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =
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4⌃
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egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i
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By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
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⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =
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d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(
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I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:
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I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i
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By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
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(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
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as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
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is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
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the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌥

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ⌦ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0�, (7)

where |0� is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su⇥-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):e3

e1

e2

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
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those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌥

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ⌦ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0�, (7)

where |0� is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su⇥-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):e3

e1

e2

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

describes geometric tetrahedron
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those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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The description of macroscopic spacetime geometries as quantum states in non-perturbative ap-
proaches to quantum gravity has been notoriously di�cult. Here we identify a class of coherent
states in the group field theory (GFT) approach that can be interpreted as describing mascrocopic
homogeneous spatial geometries. Computing expectation values of the GFT equations of motion on
those states allows us to for the first time extract cosmological dynamics from GFT as a fundamental
theory of quantum geometry: We recover the classical Friedmann equation.

PACS numbers: 98.80.Qc, 04.60.Pp, 03.75.Nt

One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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More concretely, the field ⇤̂ can be expanded in bosonic
annihilation operators: ⇤̂(gI) =

⇧
� ⇤�(gI) â� ; using the

basic operators â†� , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0�. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
⇥I

�
⌥

⇥I

eA ⌦ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(5)

so that ⇤ is really a field on four copies of S3 � SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

⇤(g1, g2, g3, g4) = ⇤(g1h, g2h, g3h, g4h) ⌥h ⇧ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ⇤̃(BI) =
⇤̃(BI)⌥�(

⇧
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0� (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the

2

More concretely, the field ⇤̂ can be expanded in bosonic
annihilation operators: ⇤̂(gI) =

⇧
� ⇤�(gI) â� ; using the

basic operators â†� , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0�. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
⇥I

�
⌥

⇥I

eA ⌦ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(5)

so that ⇤ is really a field on four copies of S3 � SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

⇤(g1, g2, g3, g4) = ⇤(g1h, g2h, g3h, g4h) ⌥h ⇧ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ⇤̃(BI) =
⇤̃(BI)⌥�(

⇧
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0� (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the

interpretation: spatial metric coefficients (and conjugate variables) “sampled” at N points
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌥

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e ⌦ e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0�, (7)

where |0� is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su⇥-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):e3

e1

e2

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   generic N-particle GFT state (N geometric tetrahedra):

•    think of tetrahedra as embedded in symmetric 3-manifold (wrt group H) - 

implies choosing embedding point and 3 reference vectors:
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g
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I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,
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h(m)
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Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1
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as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
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(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)
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One of the major challenges in non-perturbative ap-
proaches to quantum gravity is the identification of quan-
tum states that can be interpreted as macroscopic space-
time geometries, such as Minkowski or de Sitter space-
time. This is because such approaches are built on the
notion of background independence, so that the most
natural notion of vacuum state is one that describes no
spacetime at all. States corresponding to excitations of
quantum geometry with non-zero eigenvalues for geomet-
ric observables such as lengths or areas can be built from
this vacuum state; macroscopic geometries are usually
thought of as corresponding to states with a very large
number of such excitations – for instance, “weave states”
in loop quantum gravity [1]. Such states typically excite
(at least locally) only a finite number degrees of freedom,
and using them for extracting predictions from the theory
necessarily involves some truncation of the dynamics.

In this Letter, after identifying a criterion for discrete
geometries (associated, in a precise sense, to a finite num-
ber N of degrees of freedom) to be compatible with spa-
tial homogeneity, we propose a class of quantum states
describing macroscopic homogeneous geometries in the
group field theory (GFT) approach to quantum gravity
[2]. These are coherent states which are superpositions
of N -particle states such that the criterion for spatial
homogeneity is satisfied at each N ; they are spatially
homogeneous to arbitrary accuracy, and hence describe
a spatially homogeneous universe. They correspond to
condensation of many GFT quanta into the same geo-
metric configuration, which is the natural description of
spatial homogeneity in this context. We see that the
appearance of macroscopic geometries can be essentially
captured by a process similar to Bose–Einstein conden-
sation of appropriate basic quanta.

We then use the equation of motion of a given GFT to
extract the dynamics of such states. While the resulting
equation is non-linear, we will be able to split it into two
parts, one of which gives a linear equation on the pro-
file function on the condensate. In a WKB regime, this
linear equation reduces to the Hamilton-Jacobi equation

describing the classical dynamics of a homogeneous uni-
verse; in the case of an isotropic geometry we recover the
usual Friedmann equation for a wide class of GFT mod-
els. This general procedure elucidates a possible path to
get e�ective equations for the resulting emergent geom-
etry in such pregeometric scenarios. The nonlinear part
of the equation, instead, takes into account the interac-
tions between the di�erent quanta and its interpretation
in terms of standard quantum cosmology is not yet clear.
Our work bears certain similarities to the recent work

[3] where the relation to Bose-Einstein condensation was
also emphasized. Our starting point, however, is not the
quantization of classical cosmological perturbation the-
ory; we start with an existing proposal for a theory of
quantum gravity and derive the classical dynamics by
considering certain states in a semiclassical approxima-
tion. This lends weight to claims that such theories cor-
respond to general relativity in a semiclassical regime.
Group field theory. — Group field theories (GFTs), a

higher-dimensional generalization of matrix models, can
be defined as quantum (or statistical) field theories on
group manifolds via a path integral, whose action is de-
signed so that the Feynman expansion can be put in cor-
respondence with the dynamics of spin foam models for
quantum gravity.
Here we focus on four dimensions and the technically

simpler case of Riemannian signature gravity. In this
setting GFTs can be defined in terms of a (complex) field
� on SO(4)4, satisfying the gauge invariance

�(g1, g2, g3, g4) = �(hg1, hg2, hg3, hg4), ⇤h ⇥ SO(4). (1)

Each Feynman graph can be viewed as a discrete space-
time built out of fundamental tetrahedra whose geometry
is specified by four parallel transports gI of the gravita-
tional connection along links dual to its faces, or in the
dual picture by four bivectors BI associated to the faces:

BAB
⇥I(m)

�
�

⇥I(m)

eA ⌅ eB , (2)

where e is a co-tetrad field encoding the metric geometry.

2

In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(

⇧
I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (5)

By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(6)

so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-

ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

�(g1, g2, g3, g4) ⇥⇥ �(x1, x2, x3, x4) xi ⇤ X � G

closure <-> gauge invariance

4�

i=1

Bi = 0

• work with GFT with simplicial geometric interpretation (Riemannian SO(4) case for simplicity)

�(g1, g2, g3, g4)⇥ �(B1, B2, B3, B4)� C describes geometric tetrahedron

2
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⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =
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d4g

4⌃
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egI (BI)⇤(g1, . . . , g4) ,

(3)
where eg(B) is a choice of plane wave on the Lie alge-
bra so(4). Then (1) translates into ⇤̃(BI) = �(
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I BI) ⌅

⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
bivectors to close to form a tetrahedron.

In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [5]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (4)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i
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B
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By an SO(4) transformation the normal n can be gauge-
fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
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so that ⇤ is really a field on four copies of S3 � SU(2).
Homogeneous discrete geometries. — Within this sec-
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state in the GFT Hilbert space, such as

|BI(m)⌦ :=
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ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
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(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components
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is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
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the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by
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In the quantum theory, it is possible to construct the
Fock space associated to the field theory, so that the field
⇤̂ can be expanded in annihilation operators: ⇤̂(gI) =⇧

� ⇤�(gI) â� , where ⇤�(gI) are elements of a basis of
functions satifying (1) and â� are ordinary bosonic annihila-
tion operators. In this picture, an appropriate superposition
of N -particle states in the GFT gives a spin network with
N vertices; see e.g. [4].

A quantum of the GFT field (created by the operator
⇤̂†(gI)) is then interpreted as a tetrahedron with geometry
given by the parallel transports gI ; the property (1) encodes
the invariance of the field under a gauge transformation
acting on the vertex joining the dual links.

One can use a noncommutative Fourier transform to
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⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(3)
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⇤̃(BI); if the Lie algebra elements BI are interpretated
as bivectors obtained by integrating e  e over the faces
of the tetrahedron, this would be the condition on the
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fixed to n = (1, 0, 0, 0); then (4) amounts to restricting
BI to be in a so(3) subalgebra. In the GFT this gauge-
fixed version of (4) can be taken care of by requiring [6]
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ond quantized formalism, we will interpret an N -particle
state in the GFT Hilbert space, such as

|BI(m)⌦ :=
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ˆ̃⇤†(B1(m), . . . , B4(m))|0⌦, (7)

where |0⌦ is the Fock vacuum, as a discrete geometry
of N tetrahedra with bivectors BI(m) associated to the
faces. Assuming that the closure and simplicity con-
straints hold, we can parametrize (7) by the 3N bivectors
{Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N) and assume that
all Bi(m) are of the form (5). On this space of bivectors

solving the closure and simplicity constraints, or alterna-
tively the space of eAi(m), there is an action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding

to a local frame rotation. It is advantageous to reduce
to the gauge-invariant configuration space. For each
tetrahedron this space is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [7]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
edges specified by vi(m), assuming the edges are su�-
ciently small so that we can approximate the tetrad as
constant. Within this approximation, the vectors eAi(m)
are related to physical tetrad vectors by

eAi(m) = eA(xm)(vi(m)) . (12)

For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(vi(m),vj(m)) . (13)

(13) defines a 3-metric at a finite number of points {xm}
which depends on the embedding: In addition to the lo-
cation of the tetrahedra one specifies their orientation by
a choice of vi(m). Changing those vectors corresponds

•   choose embedding vectors to be aligned with left-invariant vector fields of H
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

i.e. all GFT quanta are labelled by the same (gauge invariant) data

•    from B’s of each GFT quantum, 
construct:
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More concretely, the field ⇤̂ can be expanded in bosonic
annihilation operators: ⇤̂(gI) =

⇧
� ⇤�(gI) â� ; using the

basic operators â†� , one can then construct the GFT Fock
space out of the ‘no-space’ Fock vacuum |0�. In this pic-
ture, an appropriate superposition of N -particle states in
the GFT corresponds to a spin network with N vertices;
see e.g. [6].

A GFT Feynman graph is then viewed as a discrete
spacetime history built out of geometric tetrahedra. The
perturbative expansion of the GFT partition function in-
cludes a sum over all such spacetime histories.

One can use a noncommutative Fourier transform to
define the analogous field on the Lie algebra so(4)4:

⇤̃(B1, B2, B3, B4) =

⌥
d4g

4⌃

I=1

egI (BI)⇤(g1, . . . , g4) ,

(1)
where eg(B) is a plane wave on the Lie algebra so(4).
Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
⇥I

�
⌥

⇥I

eA ⌦ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
GFT formalism, used in [8], is to use a partial gauge
fixing to fix the normals n to a constant n0; then (3)
amounts to restricting BI to be in a fixed so(3) subalge-
bra. This version of (3) can be imposed by requiring

⇤(g1, g2, g3, g4) = ⇤(g1h1, g2h2, g3h3, g4h4) ⌥hI ⇧ SO(3) ,
(5)

so that ⇤ is really a field on four copies of S3 � SU(2).
There is a second constraint on the GFT field, corre-

sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

⇤(g1, g2, g3, g4) = ⇤(g1h, g2h, g3h, g4h) ⌥h ⇧ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ⇤̃(BI) =
⇤̃(BI)⌥�(

⇧
I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0� (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the
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Geometrically the ‘momentum’ variables BI are viewed
as bivectors associated to the faces of the tetrahedron:

BAB
⇥I

�
⌥

⇥I

eA ⌦ eB , (2)

where e is a co-tetrad field encoding the metric geometry.
In order to ensure this interpretation, the variables BI

must satisfy simplicity constraints [7]:

�nA ⇧ S3 ⇥ R4 : ⌥I nAB
AB
I = 0 . (3)

Up to possible discrete ambiguities that we will ignore in
the following, the simplicity constraints imply that there
exist vectors eAi ⇧ R4 (for i = 1, 2, 3) such that for all i

BAB
i = ⇥i

jkeAj e
B
k . (4)

One possibility for imposing simplicity constraints in the
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amounts to restricting BI to be in a fixed so(3) subalge-
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sponding to invariance under gauge transformations act-
ing on the vertex joining the dual links. Choosing this as
a right action on all four group elements,

⇤(g1, g2, g3, g4) = ⇤(g1h, g2h, g3h, g4h) ⌥h ⇧ SO(4), (6)

one can define a GFT reproducing the dynamics of the
Barrett-Crane model [9]. This correspondence between
spin foam models and appropriately defined GFTs is
generic, and our analysis is not tied to a specific choice
of model. For concreteness, we will assume (5) and (6).

In Lie algebra variables, (6) translates into ⇤̃(BI) =
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I BI). (6) implements the closure constraint:

the bivectors BI must close to form a tetrahedron.
Homogeneous discrete geometries. — In this second

quantized formalism, we interpret the N -particle state

|BI(m)� :=
N⌃

m=1

ˆ̃⇤†(B1(m), . . . , B4(m))|0� (7)

as a discrete geometry of N tetrahedra with bivectors
BI(m) associated to the faces. Assuming that the closure
and simplicity constraints hold, we can parametrize (7)
by the 3N bivectors {Bi(m)} (i = 1, . . . , 3, m = 1, . . . , N)
and assume that all Bi(m) are of the form (4). On this
space of bivectors solving the closure and simplicity con-
straints, or alternatively the space of eAi(m), there is an

action of SO(4)N ,

Bi(m) ⌃⇤
�
h(m)

⇥�1
Bi(m)h(m) , ei(m) ⌃⇤ ei(m)h(m) .

(8)
This is a gauge symmetry of gravity, corresponding to

a local frame rotation. The gauge-invariant configuration
space for each tetrahedron is six-dimensional and may be
parametrized by the “metric” components

gij(m) = eAi(m) eAj(m) . (9)

Defining the six bilinears B̃ij := BAB
i Bj AB , we can ex-

press the components gij in terms of the bivectors Bi(n):

gij =
1

8 tr(B1B2B3)
⇥i

kl⇥j
mnB̃kmB̃ln , (10)

as can be verified from B̃ij = ⇥ikl⇥jmngkmgln.
In classical relativity, a spatially homogeneous universe

is characterized by a 3-dimensional Lie groupG whose ac-
tion on spatial hypersurfaces leaves the metric invariant,
with the possible choices for G given by the Bianchi clas-
sification (see e.g. [10]). In the discrete context, in order
to give a criterion for the quantities gij(m) to be compat-
ible with spatial homogeneity, we think of the tetrahedra
as embedded into a 3-dimensional topological manifold
M which a Lie group G acts on transitively, so that
M ⌅ G/X where X can be a discrete subgroup of G;
G defines the notion of homogeneity. An embedding of
each tetrahedron is specified by giving the location of one
of the vertices and three tangent vectors specifying the
directions of the three edges emanating from this vertex,

m ⌃⇤
⇤
xm ⇧ M,

⇤
v1(m),v2(m),v3(m)

⌅
⇥ TxmM

⌅
.

(11)
In order to exponentiate the tangent vectors to obtain
the location of the other three vertices, we can use the
Maurer-Cartan connection on G pulled back to M.
We interpret the R4 vectors eAi(m) associated to a tetra-

hedron as physical tetrad vectors integrated along the

interpretation: spatial metric coefficients (and conjugate variables) “sampled” at N points

BI(m) $ gij(xm) $ ai(xm) gI(m) $ Kij(xm) $ pai(xm)
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quantum GFT condensates are continuum (homogeneous) (quantum) spaces

similar constructions in LQG (Alesci, Cianfrani) and LQC (Bojowald, Wilson-Ewing, .....)



Quantum GFT condensates
a simple choice of quantum GFT condensate 

(homogeneous continuum quantum space)

other constructions possible, depending on how much information the condensate 
state has to encode (in a coarse-grained form)

S. Gielen, DO, L. Sindoni, ’13; DO, D. Pranzetti, J. Ryan, L. Sindoni, ‘15

various procedures for estimating validity of chosen ansatz for vacuum state, 
e.g. L. Sindoni, arXiv:1408.3095 [gr-qc]



Quantum GFT condensates
a simple choice of quantum GFT condensate 

(homogeneous continuum quantum space)

single-particle condensate

(Gross-Pitaevskii approximation)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥

�V5

�⇧(gI)

���
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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Quantum GFT condensates
a simple choice of quantum GFT condensate 

(homogeneous continuum quantum space)

single-particle condensate

(Gross-Pitaevskii approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
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�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g
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�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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other constructions possible, depending on how much information the condensate 
state has to encode (in a coarse-grained form)

S. Gielen, DO, L. Sindoni, ’13; DO, D. Pranzetti, J. Ryan, L. Sindoni, ‘15

• data for homogeneous anisotropic geometries  


•   truly non-perturbative  quantum states (infinite QG dofs, superposition of graphs)

• support perturbations at any sampling scale N

• 2nd quantized coherent states


• can be studied using BEC techniques 

⇥̂(gI)|�� = �(gI) |��

various procedures for estimating validity of chosen ansatz for vacuum state, 
e.g. L. Sindoni, arXiv:1408.3095 [gr-qc]



Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
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⇥
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⇥
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�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g
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I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
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�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

•  simplest
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applied to (coherent) GFT condensate state, 
gives equation for “wave function”: 
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from truncation of SD equations for GFT model

basically (up to some approximations), the “classical GFT eqns” 

http://arxiv.org/abs/arXiv:1303.3576


Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function”


QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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gives equation for “wave function”: 
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Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function”


QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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d4g⇥ K̂(gI , g

⇥
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

•  simplest
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similar equations obtained in non-linear extension of LQC (Bojowald et al. ’12)

applied to (coherent) GFT condensate state, 
gives equation for “wave function”: 
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from truncation of SD equations for GFT model

basically (up to some approximations), the “classical GFT eqns” 
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Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function”


QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
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⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
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�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
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leading to the quantum equation of motion
⌅
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�V̂5

�⇧̂(gI)
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Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find
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⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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similar equations obtained in non-linear extension of LQC (Bojowald et al. ’12)

applied to (coherent) GFT condensate state, 
gives equation for “wave function”: 

Z
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�Ṽ
�'(gi)

|'⌘� = 0

from truncation of SD equations for GFT model

basically (up to some approximations), the “classical GFT eqns” 

toy examples of effective dynamics have been studied (S. Gielen, DO, L. Sindoni ’13; S. Gielen, ’14; G. Calcagni ‘14; S. Gielen, 
DO, ‘14) , with approximate Friedmann eq emerging in isotropic case
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Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function”


QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
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�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
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We are then in a scenario similar to the one of [3].
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2

gravitational connection is exactly as in the ‘improved
dynamics’ prescription in LQC [6], as µ ∝ 1

a .
We then implement this scenario dynamically as a

modified ensemble of GFT states, in which an additional
term is added to the Hamiltonian. This new term enters
the effective cosmological dynamics of the condensates,
and in the semiclassical approximation produces an ef-
fective cosmological constant. As usual, on dimensional
grounds one might expect this cosmological constant to
be of Planckian density, thus posing the ‘cosmological
constant problem’. However, upon closer inspection we
find that it enters with an extra factor 1

N . With the nat-
ural assumption of N ≫ 1 for condensate states of rele-
vance for cosmology, this implies that the magnitude of
the effective cosmological constant is naturally very small
in Planck units. We compare with the famous prediction
of Sorkin [7] which also suggested that the observed cos-
mological constant is very small because the total number
of degrees of freedom of geometry is very large but finite.

Observables in second quantization. — We illustrate
the basic general issue. In the quantum mechanics of a
single non-relativistic particle, the canonically conjugate
observables are position x̂i and momentum p̂j ,

[x̂i, p̂j ] = i! δij 1 , (1)

where 1 is the identity operator. When passing to many-
particle physics, these single-particle operators extend to
operators on the Fock space: in terms of the field op-
erator φ̂(x⃗) =

∑
k φk(x⃗)âk and its Hermitian conjugate

φ̂†(x⃗) =
∑

k φ
∗
k(x⃗)â

†
k (where âk and â†k are fundamental

annihilation and creation operators), we obtain

X̂i =

∫
d3x xi φ̂

†(x⃗)φ̂(x⃗) , (2)

P̂i = −i!

∫
d3x φ̂†(x⃗)

∂

∂xi
φ̂(x⃗) , (3)

N̂ =

∫
d3x φ̂†(x⃗)φ̂(x⃗) , (4)

with fundamental commutation relations

[X̂i, P̂j ] = i! δij N̂ . (5)

Two immediate observations are: a) the second quantized
operators X̂i and P̂j are no longer canonically conjugate,
as their commutator involves the particle number opera-
tor N̂ , and b) while the P̂j have an interpretation as total

momentum of the system, the X̂i define a ‘total position’
whose physical meaning is unclear. The two issues are
related: out of two canonically conjugate quantities, one
is typically extensive and one is intensive in the parti-
cle number. One-body operators in second quantization,
involving sums of combinations of a single creation and
annihilation operator, are always extensive quantities.

At fixed particle number N , one could define a center-
of-mass position operator x̂c.o.m.

i := 1
N X̂i, but such an

operator is not readily available on the Fock space: the

operator N̂−1 is not naturally defined, as N̂ contains zero
in its spectrum, and there is no expression for it in terms
of fundamental field operators. One can instead define an
‘average center-of-mass position’ as an expectation value
for any given state,

xc.o.m.
i = ⟨X̂i⟩/⟨N̂⟩ , (6)

which is now an intensive quantity.
The same discussion goes through for gravity. In the

classical continuum theory a natural choice of canonically
conjugate variables are infintesimal areas and a connec-
tion. In the ADM formalism [8], these are the spatial
metric and the extrinsic curvature (which is part of the
conncetion); in Ashtekar variables [9] they are the gravi-
tational SU(2) connection Aa

i and the ‘inverse triad’ Ej
b

which defines an (oriented) infinitesimal area element,

{Aa
i (x), E

j
b (y)} = (8πγG)δab δ

j
i δ

3(x, y) (7)

with Barbero–Immirzi parameter γ and Newton’s con-
stant G. In the construction of the quantum theory in
LQG [4], these continuum fields are discretized by inte-
gration over links (for the connection) or surfaces (for the
inverse triad). One obtains the holonomy-flux algebra

{g,Bi} = −(8πγG)τ ig , {Bi, Bj} = −(8πγG) ϵijkB
k

(8)
for the phase space variables associated to a fundamental
link, g (the parallel transport of A along the link) and Bi

(the flux of E through an elementary surface dual to the
link). Here τ i denote a basis of su(2) which we can choose
as τ i = i

2
σi. In the Fock space picture of 4d GFT, four

copies of g and Bi become the basic phase space variables
parametrizing single-particle states; for each copy, the
corresponding single-particle operators satisfy

[ĝ, B̂i] = −iκτ iĝ , [B̂i, B̂j ] = −iκ ϵijkB̂
k , (9)

where κ := 8πγhG has dimensions of area. Their ex-
tension to operators on the whole Fock space is a ‘total
group element’ Ĝ, which can be defined in terms of an ap-
propriate coordinate system on the group manifold, and
a total flux b̂i. We define coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (10)

The ‘total group coordinate’ operators

Π̂[ga] =

∫
(dg)4 π⃗[ga] ϕ̂

†(gI)ϕ̂(gI) (11)

and flux operators, represented as right-invariant vector
fields on SU(2)

b̂ia = iκ

∫
(dg)4 ϕ̂†(gI)

d

dt
ϕ̂
(
exp

(
τ ia t
)
gI
) ∣∣∣

t=0
, (12)
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be of Planckian density, thus posing the ‘cosmological
constant problem’. However, upon closer inspection we
find that it enters with an extra factor 1

N . With the nat-
ural assumption of N ≫ 1 for condensate states of rele-
vance for cosmology, this implies that the magnitude of
the effective cosmological constant is naturally very small
in Planck units. We compare with the famous prediction
of Sorkin [7] which also suggested that the observed cos-
mological constant is very small because the total number
of degrees of freedom of geometry is very large but finite.

Observables in second quantization. — We illustrate
the basic general issue. In the quantum mechanics of a
single non-relativistic particle, the canonically conjugate
observables are position x̂i and momentum p̂j ,

[x̂i, p̂j ] = i! δij 1 , (1)

where 1 is the identity operator. When passing to many-
particle physics, these single-particle operators extend to
operators on the Fock space: in terms of the field op-
erator φ̂(x⃗) =

∑
k φk(x⃗)âk and its Hermitian conjugate

φ̂†(x⃗) =
∑

k φ
∗
k(x⃗)â

†
k (where âk and â†k are fundamental

annihilation and creation operators), we obtain

X̂i =

∫
d3x xi φ̂

†(x⃗)φ̂(x⃗) , (2)

P̂i = −i!

∫
d3x φ̂†(x⃗)

∂

∂xi
φ̂(x⃗) , (3)

N̂ =

∫
d3x φ̂†(x⃗)φ̂(x⃗) , (4)

with fundamental commutation relations

[X̂i, P̂j ] = i! δij N̂ . (5)

Two immediate observations are: a) the second quantized
operators X̂i and P̂j are no longer canonically conjugate,
as their commutator involves the particle number opera-
tor N̂ , and b) while the P̂j have an interpretation as total

momentum of the system, the X̂i define a ‘total position’
whose physical meaning is unclear. The two issues are
related: out of two canonically conjugate quantities, one
is typically extensive and one is intensive in the parti-
cle number. One-body operators in second quantization,
involving sums of combinations of a single creation and
annihilation operator, are always extensive quantities.

At fixed particle number N , one could define a center-
of-mass position operator x̂c.o.m.

i := 1
N X̂i, but such an

operator is not readily available on the Fock space: the

operator N̂−1 is not naturally defined, as N̂ contains zero
in its spectrum, and there is no expression for it in terms
of fundamental field operators. One can instead define an
‘average center-of-mass position’ as an expectation value
for any given state,

xc.o.m.
i = ⟨X̂i⟩/⟨N̂⟩ , (6)

which is now an intensive quantity.
The same discussion goes through for gravity. In the

classical continuum theory a natural choice of canonically
conjugate variables are infintesimal areas and a connec-
tion. In the ADM formalism [8], these are the spatial
metric and the extrinsic curvature (which is part of the
conncetion); in Ashtekar variables [9] they are the gravi-
tational SU(2) connection Aa

i and the ‘inverse triad’ Ej
b

which defines an (oriented) infinitesimal area element,

{Aa
i (x), E

j
b (y)} = (8πγG)δab δ

j
i δ

3(x, y) (7)

with Barbero–Immirzi parameter γ and Newton’s con-
stant G. In the construction of the quantum theory in
LQG [4], these continuum fields are discretized by inte-
gration over links (for the connection) or surfaces (for the
inverse triad). One obtains the holonomy-flux algebra

{g,Bi} = −(8πγG)τ ig , {Bi, Bj} = −(8πγG) ϵijkB
k

(8)
for the phase space variables associated to a fundamental
link, g (the parallel transport of A along the link) and Bi

(the flux of E through an elementary surface dual to the
link). Here τ i denote a basis of su(2) which we can choose
as τ i = i

2
σi. In the Fock space picture of 4d GFT, four

copies of g and Bi become the basic phase space variables
parametrizing single-particle states; for each copy, the
corresponding single-particle operators satisfy

[ĝ, B̂i] = −iκτ iĝ , [B̂i, B̂j ] = −iκ ϵijkB̂
k , (9)

where κ := 8πγhG has dimensions of area. Their ex-
tension to operators on the whole Fock space is a ‘total
group element’ Ĝ, which can be defined in terms of an ap-
propriate coordinate system on the group manifold, and
a total flux b̂i. We define coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (10)

The ‘total group coordinate’ operators

Π̂[ga] =

∫
(dg)4 π⃗[ga] ϕ̂

†(gI)ϕ̂(gI) (11)

and flux operators, represented as right-invariant vector
fields on SU(2)

b̂ia = iκ

∫
(dg)4 ϕ̂†(gI)

d

dt
ϕ̂
(
exp

(
τ ia t
)
gI
) ∣∣∣

t=0
, (12)
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gravitational connection is exactly as in the ‘improved
dynamics’ prescription in LQC [6], as µ ∝ 1

a .
We then implement this scenario dynamically as a

modified ensemble of GFT states, in which an additional
term is added to the Hamiltonian. This new term enters
the effective cosmological dynamics of the condensates,
and in the semiclassical approximation produces an ef-
fective cosmological constant. As usual, on dimensional
grounds one might expect this cosmological constant to
be of Planckian density, thus posing the ‘cosmological
constant problem’. However, upon closer inspection we
find that it enters with an extra factor 1

N . With the nat-
ural assumption of N ≫ 1 for condensate states of rele-
vance for cosmology, this implies that the magnitude of
the effective cosmological constant is naturally very small
in Planck units. We compare with the famous prediction
of Sorkin [7] which also suggested that the observed cos-
mological constant is very small because the total number
of degrees of freedom of geometry is very large but finite.

Observables in second quantization. — We illustrate
the basic general issue. In the quantum mechanics of a
single non-relativistic particle, the canonically conjugate
observables are position x̂i and momentum p̂j ,

[x̂i, p̂j ] = i! δij 1 , (1)

where 1 is the identity operator. When passing to many-
particle physics, these single-particle operators extend to
operators on the Fock space: in terms of the field op-
erator φ̂(x⃗) =

∑
k φk(x⃗)âk and its Hermitian conjugate

φ̂†(x⃗) =
∑

k φ
∗
k(x⃗)â

†
k (where âk and â†k are fundamental

annihilation and creation operators), we obtain

X̂i =

∫
d3x xi φ̂

†(x⃗)φ̂(x⃗) , (2)

P̂i = −i!

∫
d3x φ̂†(x⃗)

∂

∂xi
φ̂(x⃗) , (3)

N̂ =

∫
d3x φ̂†(x⃗)φ̂(x⃗) , (4)

with fundamental commutation relations

[X̂i, P̂j ] = i! δij N̂ . (5)

Two immediate observations are: a) the second quantized
operators X̂i and P̂j are no longer canonically conjugate,
as their commutator involves the particle number opera-
tor N̂ , and b) while the P̂j have an interpretation as total

momentum of the system, the X̂i define a ‘total position’
whose physical meaning is unclear. The two issues are
related: out of two canonically conjugate quantities, one
is typically extensive and one is intensive in the parti-
cle number. One-body operators in second quantization,
involving sums of combinations of a single creation and
annihilation operator, are always extensive quantities.

At fixed particle number N , one could define a center-
of-mass position operator x̂c.o.m.

i := 1
N X̂i, but such an

operator is not readily available on the Fock space: the

operator N̂−1 is not naturally defined, as N̂ contains zero
in its spectrum, and there is no expression for it in terms
of fundamental field operators. One can instead define an
‘average center-of-mass position’ as an expectation value
for any given state,

xc.o.m.
i = ⟨X̂i⟩/⟨N̂⟩ , (6)

which is now an intensive quantity.
The same discussion goes through for gravity. In the

classical continuum theory a natural choice of canonically
conjugate variables are infintesimal areas and a connec-
tion. In the ADM formalism [8], these are the spatial
metric and the extrinsic curvature (which is part of the
conncetion); in Ashtekar variables [9] they are the gravi-
tational SU(2) connection Aa

i and the ‘inverse triad’ Ej
b

which defines an (oriented) infinitesimal area element,

{Aa
i (x), E

j
b (y)} = (8πγG)δab δ

j
i δ

3(x, y) (7)

with Barbero–Immirzi parameter γ and Newton’s con-
stant G. In the construction of the quantum theory in
LQG [4], these continuum fields are discretized by inte-
gration over links (for the connection) or surfaces (for the
inverse triad). One obtains the holonomy-flux algebra

{g,Bi} = −(8πγG)τ ig , {Bi, Bj} = −(8πγG) ϵijkB
k

(8)
for the phase space variables associated to a fundamental
link, g (the parallel transport of A along the link) and Bi

(the flux of E through an elementary surface dual to the
link). Here τ i denote a basis of su(2) which we can choose
as τ i = i

2
σi. In the Fock space picture of 4d GFT, four

copies of g and Bi become the basic phase space variables
parametrizing single-particle states; for each copy, the
corresponding single-particle operators satisfy

[ĝ, B̂i] = −iκτ iĝ , [B̂i, B̂j ] = −iκ ϵijkB̂
k , (9)

where κ := 8πγhG has dimensions of area. Their ex-
tension to operators on the whole Fock space is a ‘total
group element’ Ĝ, which can be defined in terms of an ap-
propriate coordinate system on the group manifold, and
a total flux b̂i. We define coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (10)

The ‘total group coordinate’ operators

Π̂[ga] =

∫
(dg)4 π⃗[ga] ϕ̂

†(gI)ϕ̂(gI) (11)

and flux operators, represented as right-invariant vector
fields on SU(2)

b̂ia = iκ

∫
(dg)4 ϕ̂†(gI)

d

dt
ϕ̂
(
exp

(
τ ia t
)
gI
) ∣∣∣

t=0
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gravitational connection is exactly as in the ‘improved
dynamics’ prescription in LQC [6], as µ ∝ 1

a .
We then implement this scenario dynamically as a

modified ensemble of GFT states, in which an additional
term is added to the Hamiltonian. This new term enters
the effective cosmological dynamics of the condensates,
and in the semiclassical approximation produces an ef-
fective cosmological constant. As usual, on dimensional
grounds one might expect this cosmological constant to
be of Planckian density, thus posing the ‘cosmological
constant problem’. However, upon closer inspection we
find that it enters with an extra factor 1

N . With the nat-
ural assumption of N ≫ 1 for condensate states of rele-
vance for cosmology, this implies that the magnitude of
the effective cosmological constant is naturally very small
in Planck units. We compare with the famous prediction
of Sorkin [7] which also suggested that the observed cos-
mological constant is very small because the total number
of degrees of freedom of geometry is very large but finite.

Observables in second quantization. — We illustrate
the basic general issue. In the quantum mechanics of a
single non-relativistic particle, the canonically conjugate
observables are position x̂i and momentum p̂j ,

[x̂i, p̂j ] = i! δij 1 , (1)

where 1 is the identity operator. When passing to many-
particle physics, these single-particle operators extend to
operators on the Fock space: in terms of the field op-
erator φ̂(x⃗) =

∑
k φk(x⃗)âk and its Hermitian conjugate

φ̂†(x⃗) =
∑

k φ
∗
k(x⃗)â

†
k (where âk and â†k are fundamental

annihilation and creation operators), we obtain

X̂i =

∫
d3x xi φ̂

†(x⃗)φ̂(x⃗) , (2)

P̂i = −i!

∫
d3x φ̂†(x⃗)

∂

∂xi
φ̂(x⃗) , (3)

N̂ =

∫
d3x φ̂†(x⃗)φ̂(x⃗) , (4)

with fundamental commutation relations

[X̂i, P̂j ] = i! δij N̂ . (5)

Two immediate observations are: a) the second quantized
operators X̂i and P̂j are no longer canonically conjugate,
as their commutator involves the particle number opera-
tor N̂ , and b) while the P̂j have an interpretation as total

momentum of the system, the X̂i define a ‘total position’
whose physical meaning is unclear. The two issues are
related: out of two canonically conjugate quantities, one
is typically extensive and one is intensive in the parti-
cle number. One-body operators in second quantization,
involving sums of combinations of a single creation and
annihilation operator, are always extensive quantities.

At fixed particle number N , one could define a center-
of-mass position operator x̂c.o.m.

i := 1
N X̂i, but such an

operator is not readily available on the Fock space: the

operator N̂−1 is not naturally defined, as N̂ contains zero
in its spectrum, and there is no expression for it in terms
of fundamental field operators. One can instead define an
‘average center-of-mass position’ as an expectation value
for any given state,

xc.o.m.
i = ⟨X̂i⟩/⟨N̂⟩ , (6)

which is now an intensive quantity.
The same discussion goes through for gravity. In the

classical continuum theory a natural choice of canonically
conjugate variables are infintesimal areas and a connec-
tion. In the ADM formalism [8], these are the spatial
metric and the extrinsic curvature (which is part of the
conncetion); in Ashtekar variables [9] they are the gravi-
tational SU(2) connection Aa

i and the ‘inverse triad’ Ej
b

which defines an (oriented) infinitesimal area element,

{Aa
i (x), E

j
b (y)} = (8πγG)δab δ

j
i δ

3(x, y) (7)

with Barbero–Immirzi parameter γ and Newton’s con-
stant G. In the construction of the quantum theory in
LQG [4], these continuum fields are discretized by inte-
gration over links (for the connection) or surfaces (for the
inverse triad). One obtains the holonomy-flux algebra

{g,Bi} = −(8πγG)τ ig , {Bi, Bj} = −(8πγG) ϵijkB
k

(8)
for the phase space variables associated to a fundamental
link, g (the parallel transport of A along the link) and Bi

(the flux of E through an elementary surface dual to the
link). Here τ i denote a basis of su(2) which we can choose
as τ i = i

2
σi. In the Fock space picture of 4d GFT, four

copies of g and Bi become the basic phase space variables
parametrizing single-particle states; for each copy, the
corresponding single-particle operators satisfy

[ĝ, B̂i] = −iκτ iĝ , [B̂i, B̂j ] = −iκ ϵijkB̂
k , (9)

where κ := 8πγhG has dimensions of area. Their ex-
tension to operators on the whole Fock space is a ‘total
group element’ Ĝ, which can be defined in terms of an ap-
propriate coordinate system on the group manifold, and
a total flux b̂i. We define coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (10)

The ‘total group coordinate’ operators

Π̂[ga] =

∫
(dg)4 π⃗[ga] ϕ̂

†(gI)ϕ̂(gI) (11)

and flux operators, represented as right-invariant vector
fields on SU(2)

b̂ia = iκ

∫
(dg)4 ϕ̂†(gI)

d

dt
ϕ̂
(
exp

(
τ ia t
)
gI
) ∣∣∣

t=0
, (12)

2

gravitational connection is exactly as in the ‘improved
dynamics’ prescription in LQC [6], as µ ∝ 1

a .
We then implement this scenario dynamically as a

modified ensemble of GFT states, in which an additional
term is added to the Hamiltonian. This new term enters
the effective cosmological dynamics of the condensates,
and in the semiclassical approximation produces an ef-
fective cosmological constant. As usual, on dimensional
grounds one might expect this cosmological constant to
be of Planckian density, thus posing the ‘cosmological
constant problem’. However, upon closer inspection we
find that it enters with an extra factor 1

N . With the nat-
ural assumption of N ≫ 1 for condensate states of rele-
vance for cosmology, this implies that the magnitude of
the effective cosmological constant is naturally very small
in Planck units. We compare with the famous prediction
of Sorkin [7] which also suggested that the observed cos-
mological constant is very small because the total number
of degrees of freedom of geometry is very large but finite.

Observables in second quantization. — We illustrate
the basic general issue. In the quantum mechanics of a
single non-relativistic particle, the canonically conjugate
observables are position x̂i and momentum p̂j ,

[x̂i, p̂j ] = i! δij 1 , (1)

where 1 is the identity operator. When passing to many-
particle physics, these single-particle operators extend to
operators on the Fock space: in terms of the field op-
erator φ̂(x⃗) =

∑
k φk(x⃗)âk and its Hermitian conjugate

φ̂†(x⃗) =
∑

k φ
∗
k(x⃗)â

†
k (where âk and â†k are fundamental

annihilation and creation operators), we obtain

X̂i =

∫
d3x xi φ̂

†(x⃗)φ̂(x⃗) , (2)

P̂i = −i!

∫
d3x φ̂†(x⃗)

∂

∂xi
φ̂(x⃗) , (3)

N̂ =

∫
d3x φ̂†(x⃗)φ̂(x⃗) , (4)

with fundamental commutation relations

[X̂i, P̂j ] = i! δij N̂ . (5)

Two immediate observations are: a) the second quantized
operators X̂i and P̂j are no longer canonically conjugate,
as their commutator involves the particle number opera-
tor N̂ , and b) while the P̂j have an interpretation as total

momentum of the system, the X̂i define a ‘total position’
whose physical meaning is unclear. The two issues are
related: out of two canonically conjugate quantities, one
is typically extensive and one is intensive in the parti-
cle number. One-body operators in second quantization,
involving sums of combinations of a single creation and
annihilation operator, are always extensive quantities.

At fixed particle number N , one could define a center-
of-mass position operator x̂c.o.m.

i := 1
N X̂i, but such an

operator is not readily available on the Fock space: the

operator N̂−1 is not naturally defined, as N̂ contains zero
in its spectrum, and there is no expression for it in terms
of fundamental field operators. One can instead define an
‘average center-of-mass position’ as an expectation value
for any given state,

xc.o.m.
i = ⟨X̂i⟩/⟨N̂⟩ , (6)

which is now an intensive quantity.
The same discussion goes through for gravity. In the

classical continuum theory a natural choice of canonically
conjugate variables are infintesimal areas and a connec-
tion. In the ADM formalism [8], these are the spatial
metric and the extrinsic curvature (which is part of the
conncetion); in Ashtekar variables [9] they are the gravi-
tational SU(2) connection Aa

i and the ‘inverse triad’ Ej
b

which defines an (oriented) infinitesimal area element,

{Aa
i (x), E

j
b (y)} = (8πγG)δab δ

j
i δ

3(x, y) (7)

with Barbero–Immirzi parameter γ and Newton’s con-
stant G. In the construction of the quantum theory in
LQG [4], these continuum fields are discretized by inte-
gration over links (for the connection) or surfaces (for the
inverse triad). One obtains the holonomy-flux algebra

{g,Bi} = −(8πγG)τ ig , {Bi, Bj} = −(8πγG) ϵijkB
k

(8)
for the phase space variables associated to a fundamental
link, g (the parallel transport of A along the link) and Bi

(the flux of E through an elementary surface dual to the
link). Here τ i denote a basis of su(2) which we can choose
as τ i = i

2
σi. In the Fock space picture of 4d GFT, four

copies of g and Bi become the basic phase space variables
parametrizing single-particle states; for each copy, the
corresponding single-particle operators satisfy

[ĝ, B̂i] = −iκτ iĝ , [B̂i, B̂j ] = −iκ ϵijkB̂
k , (9)

where κ := 8πγhG has dimensions of area. Their ex-
tension to operators on the whole Fock space is a ‘total
group element’ Ĝ, which can be defined in terms of an ap-
propriate coordinate system on the group manifold, and
a total flux b̂i. We define coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (10)

The ‘total group coordinate’ operators

Π̂[ga] =

∫
(dg)4 π⃗[ga] ϕ̂

†(gI)ϕ̂(gI) (11)

and flux operators, represented as right-invariant vector
fields on SU(2)

b̂ia = iκ

∫
(dg)4 ϕ̂†(gI)

d

dt
ϕ̂
(
exp

(
τ ia t
)
gI
) ∣∣∣

t=0
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from GFT condensate cosmology
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gravitational connection is exactly as in the ‘improved
dynamics’ prescription in LQC [6], as µ ∝ 1

a .
We then implement this scenario dynamically as a

modified ensemble of GFT states, in which an additional
term is added to the Hamiltonian. This new term enters
the effective cosmological dynamics of the condensates,
and in the semiclassical approximation produces an ef-
fective cosmological constant. As usual, on dimensional
grounds one might expect this cosmological constant to
be of Planckian density, thus posing the ‘cosmological
constant problem’. However, upon closer inspection we
find that it enters with an extra factor 1

N . With the nat-
ural assumption of N ≫ 1 for condensate states of rele-
vance for cosmology, this implies that the magnitude of
the effective cosmological constant is naturally very small
in Planck units. We compare with the famous prediction
of Sorkin [7] which also suggested that the observed cos-
mological constant is very small because the total number
of degrees of freedom of geometry is very large but finite.

Observables in second quantization. — We illustrate
the basic general issue. In the quantum mechanics of a
single non-relativistic particle, the canonically conjugate
observables are position x̂i and momentum p̂j ,

[x̂i, p̂j ] = i! δij 1 , (1)

where 1 is the identity operator. When passing to many-
particle physics, these single-particle operators extend to
operators on the Fock space: in terms of the field op-
erator φ̂(x⃗) =

∑
k φk(x⃗)âk and its Hermitian conjugate

φ̂†(x⃗) =
∑

k φ
∗
k(x⃗)â

†
k (where âk and â†k are fundamental

annihilation and creation operators), we obtain

X̂i =

∫
d3x xi φ̂

†(x⃗)φ̂(x⃗) , (2)

P̂i = −i!

∫
d3x φ̂†(x⃗)

∂

∂xi
φ̂(x⃗) , (3)

N̂ =

∫
d3x φ̂†(x⃗)φ̂(x⃗) , (4)

with fundamental commutation relations

[X̂i, P̂j ] = i! δij N̂ . (5)

Two immediate observations are: a) the second quantized
operators X̂i and P̂j are no longer canonically conjugate,
as their commutator involves the particle number opera-
tor N̂ , and b) while the P̂j have an interpretation as total

momentum of the system, the X̂i define a ‘total position’
whose physical meaning is unclear. The two issues are
related: out of two canonically conjugate quantities, one
is typically extensive and one is intensive in the parti-
cle number. One-body operators in second quantization,
involving sums of combinations of a single creation and
annihilation operator, are always extensive quantities.

At fixed particle number N , one could define a center-
of-mass position operator x̂c.o.m.

i := 1
N X̂i, but such an

operator is not readily available on the Fock space: the

operator N̂−1 is not naturally defined, as N̂ contains zero
in its spectrum, and there is no expression for it in terms
of fundamental field operators. One can instead define an
‘average center-of-mass position’ as an expectation value
for any given state,

xc.o.m.
i = ⟨X̂i⟩/⟨N̂⟩ , (6)

which is now an intensive quantity.
The same discussion goes through for gravity. In the

classical continuum theory a natural choice of canonically
conjugate variables are infintesimal areas and a connec-
tion. In the ADM formalism [8], these are the spatial
metric and the extrinsic curvature (which is part of the
conncetion); in Ashtekar variables [9] they are the gravi-
tational SU(2) connection Aa

i and the ‘inverse triad’ Ej
b

which defines an (oriented) infinitesimal area element,

{Aa
i (x), E

j
b (y)} = (8πγG)δab δ

j
i δ

3(x, y) (7)

with Barbero–Immirzi parameter γ and Newton’s con-
stant G. In the construction of the quantum theory in
LQG [4], these continuum fields are discretized by inte-
gration over links (for the connection) or surfaces (for the
inverse triad). One obtains the holonomy-flux algebra

{g,Bi} = −(8πγG)τ ig , {Bi, Bj} = −(8πγG) ϵijkB
k

(8)
for the phase space variables associated to a fundamental
link, g (the parallel transport of A along the link) and Bi

(the flux of E through an elementary surface dual to the
link). Here τ i denote a basis of su(2) which we can choose
as τ i = i

2
σi. In the Fock space picture of 4d GFT, four

copies of g and Bi become the basic phase space variables
parametrizing single-particle states; for each copy, the
corresponding single-particle operators satisfy

[ĝ, B̂i] = −iκτ iĝ , [B̂i, B̂j ] = −iκ ϵijkB̂
k , (9)

where κ := 8πγhG has dimensions of area. Their ex-
tension to operators on the whole Fock space is a ‘total
group element’ Ĝ, which can be defined in terms of an ap-
propriate coordinate system on the group manifold, and
a total flux b̂i. We define coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (10)

The ‘total group coordinate’ operators

Π̂[ga] =

∫
(dg)4 π⃗[ga] ϕ̂

†(gI)ϕ̂(gI) (11)

and flux operators, represented as right-invariant vector
fields on SU(2)

b̂ia = iκ

∫
(dg)4 ϕ̂†(gI)

d

dt
ϕ̂
(
exp

(
τ ia t
)
gI
) ∣∣∣

t=0
, (12)

2

gravitational connection is exactly as in the ‘improved
dynamics’ prescription in LQC [6], as µ ∝ 1

a .
We then implement this scenario dynamically as a

modified ensemble of GFT states, in which an additional
term is added to the Hamiltonian. This new term enters
the effective cosmological dynamics of the condensates,
and in the semiclassical approximation produces an ef-
fective cosmological constant. As usual, on dimensional
grounds one might expect this cosmological constant to
be of Planckian density, thus posing the ‘cosmological
constant problem’. However, upon closer inspection we
find that it enters with an extra factor 1

N . With the nat-
ural assumption of N ≫ 1 for condensate states of rele-
vance for cosmology, this implies that the magnitude of
the effective cosmological constant is naturally very small
in Planck units. We compare with the famous prediction
of Sorkin [7] which also suggested that the observed cos-
mological constant is very small because the total number
of degrees of freedom of geometry is very large but finite.

Observables in second quantization. — We illustrate
the basic general issue. In the quantum mechanics of a
single non-relativistic particle, the canonically conjugate
observables are position x̂i and momentum p̂j ,

[x̂i, p̂j ] = i! δij 1 , (1)

where 1 is the identity operator. When passing to many-
particle physics, these single-particle operators extend to
operators on the Fock space: in terms of the field op-
erator φ̂(x⃗) =

∑
k φk(x⃗)âk and its Hermitian conjugate

φ̂†(x⃗) =
∑

k φ
∗
k(x⃗)â

†
k (where âk and â†k are fundamental

annihilation and creation operators), we obtain

X̂i =

∫
d3x xi φ̂

†(x⃗)φ̂(x⃗) , (2)

P̂i = −i!

∫
d3x φ̂†(x⃗)

∂

∂xi
φ̂(x⃗) , (3)

N̂ =

∫
d3x φ̂†(x⃗)φ̂(x⃗) , (4)

with fundamental commutation relations

[X̂i, P̂j ] = i! δij N̂ . (5)

Two immediate observations are: a) the second quantized
operators X̂i and P̂j are no longer canonically conjugate,
as their commutator involves the particle number opera-
tor N̂ , and b) while the P̂j have an interpretation as total

momentum of the system, the X̂i define a ‘total position’
whose physical meaning is unclear. The two issues are
related: out of two canonically conjugate quantities, one
is typically extensive and one is intensive in the parti-
cle number. One-body operators in second quantization,
involving sums of combinations of a single creation and
annihilation operator, are always extensive quantities.

At fixed particle number N , one could define a center-
of-mass position operator x̂c.o.m.

i := 1
N X̂i, but such an

operator is not readily available on the Fock space: the

operator N̂−1 is not naturally defined, as N̂ contains zero
in its spectrum, and there is no expression for it in terms
of fundamental field operators. One can instead define an
‘average center-of-mass position’ as an expectation value
for any given state,

xc.o.m.
i = ⟨X̂i⟩/⟨N̂⟩ , (6)

which is now an intensive quantity.
The same discussion goes through for gravity. In the

classical continuum theory a natural choice of canonically
conjugate variables are infintesimal areas and a connec-
tion. In the ADM formalism [8], these are the spatial
metric and the extrinsic curvature (which is part of the
conncetion); in Ashtekar variables [9] they are the gravi-
tational SU(2) connection Aa

i and the ‘inverse triad’ Ej
b

which defines an (oriented) infinitesimal area element,

{Aa
i (x), E

j
b (y)} = (8πγG)δab δ

j
i δ

3(x, y) (7)

with Barbero–Immirzi parameter γ and Newton’s con-
stant G. In the construction of the quantum theory in
LQG [4], these continuum fields are discretized by inte-
gration over links (for the connection) or surfaces (for the
inverse triad). One obtains the holonomy-flux algebra

{g,Bi} = −(8πγG)τ ig , {Bi, Bj} = −(8πγG) ϵijkB
k

(8)
for the phase space variables associated to a fundamental
link, g (the parallel transport of A along the link) and Bi

(the flux of E through an elementary surface dual to the
link). Here τ i denote a basis of su(2) which we can choose
as τ i = i

2
σi. In the Fock space picture of 4d GFT, four

copies of g and Bi become the basic phase space variables
parametrizing single-particle states; for each copy, the
corresponding single-particle operators satisfy

[ĝ, B̂i] = −iκτ iĝ , [B̂i, B̂j ] = −iκ ϵijkB̂
k , (9)

where κ := 8πγhG has dimensions of area. Their ex-
tension to operators on the whole Fock space is a ‘total
group element’ Ĝ, which can be defined in terms of an ap-
propriate coordinate system on the group manifold, and
a total flux b̂i. We define coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (10)
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We then implement this scenario dynamically as a

modified ensemble of GFT states, in which an additional
term is added to the Hamiltonian. This new term enters
the effective cosmological dynamics of the condensates,
and in the semiclassical approximation produces an ef-
fective cosmological constant. As usual, on dimensional
grounds one might expect this cosmological constant to
be of Planckian density, thus posing the ‘cosmological
constant problem’. However, upon closer inspection we
find that it enters with an extra factor 1

N . With the nat-
ural assumption of N ≫ 1 for condensate states of rele-
vance for cosmology, this implies that the magnitude of
the effective cosmological constant is naturally very small
in Planck units. We compare with the famous prediction
of Sorkin [7] which also suggested that the observed cos-
mological constant is very small because the total number
of degrees of freedom of geometry is very large but finite.

Observables in second quantization. — We illustrate
the basic general issue. In the quantum mechanics of a
single non-relativistic particle, the canonically conjugate
observables are position x̂i and momentum p̂j ,

[x̂i, p̂j ] = i! δij 1 , (1)

where 1 is the identity operator. When passing to many-
particle physics, these single-particle operators extend to
operators on the Fock space: in terms of the field op-
erator φ̂(x⃗) =

∑
k φk(x⃗)âk and its Hermitian conjugate

φ̂†(x⃗) =
∑
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∗
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P̂i = −i!
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∫
d3x φ̂†(x⃗)φ̂(x⃗) , (4)

with fundamental commutation relations

[X̂i, P̂j ] = i! δij N̂ . (5)

Two immediate observations are: a) the second quantized
operators X̂i and P̂j are no longer canonically conjugate,
as their commutator involves the particle number opera-
tor N̂ , and b) while the P̂j have an interpretation as total

momentum of the system, the X̂i define a ‘total position’
whose physical meaning is unclear. The two issues are
related: out of two canonically conjugate quantities, one
is typically extensive and one is intensive in the parti-
cle number. One-body operators in second quantization,
involving sums of combinations of a single creation and
annihilation operator, are always extensive quantities.

At fixed particle number N , one could define a center-
of-mass position operator x̂c.o.m.

i := 1
N X̂i, but such an

operator is not readily available on the Fock space: the

operator N̂−1 is not naturally defined, as N̂ contains zero
in its spectrum, and there is no expression for it in terms
of fundamental field operators. One can instead define an
‘average center-of-mass position’ as an expectation value
for any given state,

xc.o.m.
i = ⟨X̂i⟩/⟨N̂⟩ , (6)

which is now an intensive quantity.
The same discussion goes through for gravity. In the

classical continuum theory a natural choice of canonically
conjugate variables are infintesimal areas and a connec-
tion. In the ADM formalism [8], these are the spatial
metric and the extrinsic curvature (which is part of the
conncetion); in Ashtekar variables [9] they are the gravi-
tational SU(2) connection Aa

i and the ‘inverse triad’ Ej
b

which defines an (oriented) infinitesimal area element,

{Aa
i (x), E

j
b (y)} = (8πγG)δab δ
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i δ

3(x, y) (7)

with Barbero–Immirzi parameter γ and Newton’s con-
stant G. In the construction of the quantum theory in
LQG [4], these continuum fields are discretized by inte-
gration over links (for the connection) or surfaces (for the
inverse triad). One obtains the holonomy-flux algebra

{g,Bi} = −(8πγG)τ ig , {Bi, Bj} = −(8πγG) ϵijkB
k

(8)
for the phase space variables associated to a fundamental
link, g (the parallel transport of A along the link) and Bi

(the flux of E through an elementary surface dual to the
link). Here τ i denote a basis of su(2) which we can choose
as τ i = i

2
σi. In the Fock space picture of 4d GFT, four

copies of g and Bi become the basic phase space variables
parametrizing single-particle states; for each copy, the
corresponding single-particle operators satisfy

[ĝ, B̂i] = −iκτ iĝ , [B̂i, B̂j ] = −iκ ϵijkB̂
k , (9)

where κ := 8πγhG has dimensions of area. Their ex-
tension to operators on the whole Fock space is a ‘total
group element’ Ĝ, which can be defined in terms of an ap-
propriate coordinate system on the group manifold, and
a total flux b̂i. We define coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (10)

The ‘total group coordinate’ operators

Π̂[ga] =

∫
(dg)4 π⃗[ga] ϕ̂

†(gI)ϕ̂(gI) (11)

and flux operators, represented as right-invariant vector
fields on SU(2)
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∫
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(
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gravitational connection is exactly as in the ‘improved
dynamics’ prescription in LQC [6], as µ ∝ 1

a .
We then implement this scenario dynamically as a

modified ensemble of GFT states, in which an additional
term is added to the Hamiltonian. This new term enters
the effective cosmological dynamics of the condensates,
and in the semiclassical approximation produces an ef-
fective cosmological constant. As usual, on dimensional
grounds one might expect this cosmological constant to
be of Planckian density, thus posing the ‘cosmological
constant problem’. However, upon closer inspection we
find that it enters with an extra factor 1

N . With the nat-
ural assumption of N ≫ 1 for condensate states of rele-
vance for cosmology, this implies that the magnitude of
the effective cosmological constant is naturally very small
in Planck units. We compare with the famous prediction
of Sorkin [7] which also suggested that the observed cos-
mological constant is very small because the total number
of degrees of freedom of geometry is very large but finite.

Observables in second quantization. — We illustrate
the basic general issue. In the quantum mechanics of a
single non-relativistic particle, the canonically conjugate
observables are position x̂i and momentum p̂j ,

[x̂i, p̂j ] = i! δij 1 , (1)

where 1 is the identity operator. When passing to many-
particle physics, these single-particle operators extend to
operators on the Fock space: in terms of the field op-
erator φ̂(x⃗) =

∑
k φk(x⃗)âk and its Hermitian conjugate

φ̂†(x⃗) =
∑

k φ
∗
k(x⃗)â

†
k (where âk and â†k are fundamental

annihilation and creation operators), we obtain

X̂i =

∫
d3x xi φ̂

†(x⃗)φ̂(x⃗) , (2)

P̂i = −i!

∫
d3x φ̂†(x⃗)

∂

∂xi
φ̂(x⃗) , (3)

N̂ =

∫
d3x φ̂†(x⃗)φ̂(x⃗) , (4)

with fundamental commutation relations

[X̂i, P̂j ] = i! δij N̂ . (5)

Two immediate observations are: a) the second quantized
operators X̂i and P̂j are no longer canonically conjugate,
as their commutator involves the particle number opera-
tor N̂ , and b) while the P̂j have an interpretation as total

momentum of the system, the X̂i define a ‘total position’
whose physical meaning is unclear. The two issues are
related: out of two canonically conjugate quantities, one
is typically extensive and one is intensive in the parti-
cle number. One-body operators in second quantization,
involving sums of combinations of a single creation and
annihilation operator, are always extensive quantities.

At fixed particle number N , one could define a center-
of-mass position operator x̂c.o.m.

i := 1
N X̂i, but such an

operator is not readily available on the Fock space: the

operator N̂−1 is not naturally defined, as N̂ contains zero
in its spectrum, and there is no expression for it in terms
of fundamental field operators. One can instead define an
‘average center-of-mass position’ as an expectation value
for any given state,

xc.o.m.
i = ⟨X̂i⟩/⟨N̂⟩ , (6)

which is now an intensive quantity.
The same discussion goes through for gravity. In the

classical continuum theory a natural choice of canonically
conjugate variables are infintesimal areas and a connec-
tion. In the ADM formalism [8], these are the spatial
metric and the extrinsic curvature (which is part of the
conncetion); in Ashtekar variables [9] they are the gravi-
tational SU(2) connection Aa

i and the ‘inverse triad’ Ej
b

which defines an (oriented) infinitesimal area element,

{Aa
i (x), E

j
b (y)} = (8πγG)δab δ

j
i δ

3(x, y) (7)

with Barbero–Immirzi parameter γ and Newton’s con-
stant G. In the construction of the quantum theory in
LQG [4], these continuum fields are discretized by inte-
gration over links (for the connection) or surfaces (for the
inverse triad). One obtains the holonomy-flux algebra

{g,Bi} = −(8πγG)τ ig , {Bi, Bj} = −(8πγG) ϵijkB
k

(8)
for the phase space variables associated to a fundamental
link, g (the parallel transport of A along the link) and Bi

(the flux of E through an elementary surface dual to the
link). Here τ i denote a basis of su(2) which we can choose
as τ i = i

2
σi. In the Fock space picture of 4d GFT, four

copies of g and Bi become the basic phase space variables
parametrizing single-particle states; for each copy, the
corresponding single-particle operators satisfy

[ĝ, B̂i] = −iκτ iĝ , [B̂i, B̂j ] = −iκ ϵijkB̂
k , (9)

where κ := 8πγhG has dimensions of area. Their ex-
tension to operators on the whole Fock space is a ‘total
group element’ Ĝ, which can be defined in terms of an ap-
propriate coordinate system on the group manifold, and
a total flux b̂i. We define coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (10)

The ‘total group coordinate’ operators

Π̂[ga] =

∫
(dg)4 π⃗[ga] ϕ̂

†(gI)ϕ̂(gI) (11)

and flux operators, represented as right-invariant vector
fields on SU(2)

b̂ia = iκ

∫
(dg)4 ϕ̂†(gI)

d

dt
ϕ̂
(
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gravitational connection is exactly as in the ‘improved
dynamics’ prescription in LQC [6], as µ ∝ 1
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We then implement this scenario dynamically as a

modified ensemble of GFT states, in which an additional
term is added to the Hamiltonian. This new term enters
the effective cosmological dynamics of the condensates,
and in the semiclassical approximation produces an ef-
fective cosmological constant. As usual, on dimensional
grounds one might expect this cosmological constant to
be of Planckian density, thus posing the ‘cosmological
constant problem’. However, upon closer inspection we
find that it enters with an extra factor 1

N . With the nat-
ural assumption of N ≫ 1 for condensate states of rele-
vance for cosmology, this implies that the magnitude of
the effective cosmological constant is naturally very small
in Planck units. We compare with the famous prediction
of Sorkin [7] which also suggested that the observed cos-
mological constant is very small because the total number
of degrees of freedom of geometry is very large but finite.

Observables in second quantization. — We illustrate
the basic general issue. In the quantum mechanics of a
single non-relativistic particle, the canonically conjugate
observables are position x̂i and momentum p̂j ,

[x̂i, p̂j ] = i! δij 1 , (1)

where 1 is the identity operator. When passing to many-
particle physics, these single-particle operators extend to
operators on the Fock space: in terms of the field op-
erator φ̂(x⃗) =

∑
k φk(x⃗)âk and its Hermitian conjugate

φ̂†(x⃗) =
∑

k φ
∗
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†
k (where âk and â†k are fundamental

annihilation and creation operators), we obtain

X̂i =

∫
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P̂i = −i!

∫
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N̂ =

∫
d3x φ̂†(x⃗)φ̂(x⃗) , (4)

with fundamental commutation relations

[X̂i, P̂j ] = i! δij N̂ . (5)

Two immediate observations are: a) the second quantized
operators X̂i and P̂j are no longer canonically conjugate,
as their commutator involves the particle number opera-
tor N̂ , and b) while the P̂j have an interpretation as total

momentum of the system, the X̂i define a ‘total position’
whose physical meaning is unclear. The two issues are
related: out of two canonically conjugate quantities, one
is typically extensive and one is intensive in the parti-
cle number. One-body operators in second quantization,
involving sums of combinations of a single creation and
annihilation operator, are always extensive quantities.

At fixed particle number N , one could define a center-
of-mass position operator x̂c.o.m.

i := 1
N X̂i, but such an

operator is not readily available on the Fock space: the

operator N̂−1 is not naturally defined, as N̂ contains zero
in its spectrum, and there is no expression for it in terms
of fundamental field operators. One can instead define an
‘average center-of-mass position’ as an expectation value
for any given state,

xc.o.m.
i = ⟨X̂i⟩/⟨N̂⟩ , (6)

which is now an intensive quantity.
The same discussion goes through for gravity. In the

classical continuum theory a natural choice of canonically
conjugate variables are infintesimal areas and a connec-
tion. In the ADM formalism [8], these are the spatial
metric and the extrinsic curvature (which is part of the
conncetion); in Ashtekar variables [9] they are the gravi-
tational SU(2) connection Aa

i and the ‘inverse triad’ Ej
b

which defines an (oriented) infinitesimal area element,

{Aa
i (x), E
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b (y)} = (8πγG)δab δ
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3(x, y) (7)

with Barbero–Immirzi parameter γ and Newton’s con-
stant G. In the construction of the quantum theory in
LQG [4], these continuum fields are discretized by inte-
gration over links (for the connection) or surfaces (for the
inverse triad). One obtains the holonomy-flux algebra

{g,Bi} = −(8πγG)τ ig , {Bi, Bj} = −(8πγG) ϵijkB
k

(8)
for the phase space variables associated to a fundamental
link, g (the parallel transport of A along the link) and Bi

(the flux of E through an elementary surface dual to the
link). Here τ i denote a basis of su(2) which we can choose
as τ i = i
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σi. In the Fock space picture of 4d GFT, four

copies of g and Bi become the basic phase space variables
parametrizing single-particle states; for each copy, the
corresponding single-particle operators satisfy

[ĝ, B̂i] = −iκτ iĝ , [B̂i, B̂j ] = −iκ ϵijkB̂
k , (9)

where κ := 8πγhG has dimensions of area. Their ex-
tension to operators on the whole Fock space is a ‘total
group element’ Ĝ, which can be defined in terms of an ap-
propriate coordinate system on the group manifold, and
a total flux b̂i. We define coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (10)
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gravitational connection is exactly as in the ‘improved
dynamics’ prescription in LQC [6], as µ ∝ 1
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We then implement this scenario dynamically as a

modified ensemble of GFT states, in which an additional
term is added to the Hamiltonian. This new term enters
the effective cosmological dynamics of the condensates,
and in the semiclassical approximation produces an ef-
fective cosmological constant. As usual, on dimensional
grounds one might expect this cosmological constant to
be of Planckian density, thus posing the ‘cosmological
constant problem’. However, upon closer inspection we
find that it enters with an extra factor 1

N . With the nat-
ural assumption of N ≫ 1 for condensate states of rele-
vance for cosmology, this implies that the magnitude of
the effective cosmological constant is naturally very small
in Planck units. We compare with the famous prediction
of Sorkin [7] which also suggested that the observed cos-
mological constant is very small because the total number
of degrees of freedom of geometry is very large but finite.

Observables in second quantization. — We illustrate
the basic general issue. In the quantum mechanics of a
single non-relativistic particle, the canonically conjugate
observables are position x̂i and momentum p̂j ,

[x̂i, p̂j ] = i! δij 1 , (1)

where 1 is the identity operator. When passing to many-
particle physics, these single-particle operators extend to
operators on the Fock space: in terms of the field op-
erator φ̂(x⃗) =

∑
k φk(x⃗)âk and its Hermitian conjugate

φ̂†(x⃗) =
∑
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∗
k(x⃗)â
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∫
d3x φ̂†(x⃗)φ̂(x⃗) , (4)

with fundamental commutation relations

[X̂i, P̂j ] = i! δij N̂ . (5)

Two immediate observations are: a) the second quantized
operators X̂i and P̂j are no longer canonically conjugate,
as their commutator involves the particle number opera-
tor N̂ , and b) while the P̂j have an interpretation as total

momentum of the system, the X̂i define a ‘total position’
whose physical meaning is unclear. The two issues are
related: out of two canonically conjugate quantities, one
is typically extensive and one is intensive in the parti-
cle number. One-body operators in second quantization,
involving sums of combinations of a single creation and
annihilation operator, are always extensive quantities.

At fixed particle number N , one could define a center-
of-mass position operator x̂c.o.m.

i := 1
N X̂i, but such an

operator is not readily available on the Fock space: the

operator N̂−1 is not naturally defined, as N̂ contains zero
in its spectrum, and there is no expression for it in terms
of fundamental field operators. One can instead define an
‘average center-of-mass position’ as an expectation value
for any given state,

xc.o.m.
i = ⟨X̂i⟩/⟨N̂⟩ , (6)

which is now an intensive quantity.
The same discussion goes through for gravity. In the

classical continuum theory a natural choice of canonically
conjugate variables are infintesimal areas and a connec-
tion. In the ADM formalism [8], these are the spatial
metric and the extrinsic curvature (which is part of the
conncetion); in Ashtekar variables [9] they are the gravi-
tational SU(2) connection Aa

i and the ‘inverse triad’ Ej
b

which defines an (oriented) infinitesimal area element,

{Aa
i (x), E

j
b (y)} = (8πγG)δab δ

j
i δ

3(x, y) (7)

with Barbero–Immirzi parameter γ and Newton’s con-
stant G. In the construction of the quantum theory in
LQG [4], these continuum fields are discretized by inte-
gration over links (for the connection) or surfaces (for the
inverse triad). One obtains the holonomy-flux algebra

{g,Bi} = −(8πγG)τ ig , {Bi, Bj} = −(8πγG) ϵijkB
k

(8)
for the phase space variables associated to a fundamental
link, g (the parallel transport of A along the link) and Bi

(the flux of E through an elementary surface dual to the
link). Here τ i denote a basis of su(2) which we can choose
as τ i = i

2
σi. In the Fock space picture of 4d GFT, four

copies of g and Bi become the basic phase space variables
parametrizing single-particle states; for each copy, the
corresponding single-particle operators satisfy

[ĝ, B̂i] = −iκτ iĝ , [B̂i, B̂j ] = −iκ ϵijkB̂
k , (9)

where κ := 8πγhG has dimensions of area. Their ex-
tension to operators on the whole Fock space is a ‘total
group element’ Ĝ, which can be defined in terms of an ap-
propriate coordinate system on the group manifold, and
a total flux b̂i. We define coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (10)

The ‘total group coordinate’ operators

Π̂[ga] =

∫
(dg)4 π⃗[ga] ϕ̂

†(gI)ϕ̂(gI) (11)

and flux operators, represented as right-invariant vector
fields on SU(2)

b̂ia = iκ

∫
(dg)4 ϕ̂†(gI)

d

dt
ϕ̂
(
exp

(
τ ia t
)
gI
) ∣∣∣

t=0
, (12)

satisfying:


bbia ,

[~⇧[ga]

�
/ bN
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are then well-defined on the Fock space. Just as in the
particle example, one of them – the flux – defines a quan-
tity that is naturally extensive, as the total area is the
sum of elementary areas, while the other one – the ‘total
group element’ – carries no obvious interpretation. We
emphasize that there is no operator on the whole Fock
space that defines an ‘elementary’ group element g asso-
ciated to an individual building block of geometry, just
as there is no operator in many-body quantum mechan-
ics that gives the position of any particular particle of
an N -particle state. This follows directly from quantum-
mechanical indistinguishability. The extension of a sin-
gle group element operator to the Fock space is (11). As
before, we can try to define ‘average group coordinates’
through the matrix elements of Π̂[ga],

(Π⃗[ga]
av.) = ⟨Π̂[ga]⟩/⟨N̂⟩ . (13)

These ‘averaged group coordinates’ satisfy |Π⃗| ≤ 1.
The total areas b̂I and the averaged group coordinates

1
N Π̂I (where I = 1, . . . , 4 labels the four canonical pairs
(g,B)) are the quantities analogous to total momentum
and (approximate) center-of-mass position, characteriz-
ing the condensate. We can define an ‘effective connec-
tion’ from 1

N ⟨Π̂I⟩, noting that the parallel transport over
a path of coordinate length µ in x-direction, with approx-
imately constant connection, is

P exp

∫
ω ≈ exp(µωx) = cos(µ|ωx|)1+

ωx

|ωx|
sin(µ|ωx|)

(14)
with ωx ∈ su(2). The averaged group coordinates can
be interpreted as giving the parallel transport of a (con-
stant) connection

ω = iσ⃗ · ω⃗ , µ ω⃗ := −
⟨Π⃗⟩

|⟨Π⃗⟩|
arcsin

|⟨Π⃗⟩|

N
, (15)

which depends on the expectation values of both the
number operator and the ‘total group coordinates’.

Fixing µ amounts to defining a coordinate system in
which the connection ω is given. In the previous inter-
pretation in Ref. [2], µ was taken to be the coordinate
length of a ‘fundamental link’ associated to an elemen-
tary degree of freedom of geometry, and taken as con-
stant. However, as N appears explicitly in Eq. (15), it
appears unnatural to assume that µ should be indepen-
dent of N . There is no coordinate system in which ‘fun-
damental links’ can be defined as of fixed length if there
are no fundamental links in the theory.

A more natural coordinate system is one in which the
condensate as a whole is extended over a region of fixed
coordinate length (in LQC this corresponds to given co-
ordinate volume of the fiducal cell). Each quantum of
geometry then occupies an average coordinate volume
proportional to 1/N , and the coordinate length associ-
ated to these quanta is µ ∝ N−1/3. Adopting such a

coordinate system provides the link between effective cos-
mological equations arising from GFT condensates and
the formalism of loop quantum cosmology.

Interpretation of effective cosmological equations. —
In Ref. [2] it was demonstrated how the dynamics of
condensate states in group field theory can be reduced,
within certain approximations, to effective quantum cos-
mology equations. These arise from Schwinger–Dyson
equations of the GFT which take the general form

〈
δO[ϕ, ϕ̄]

δϕ̄(gI)
−O[ϕ, ϕ̄]

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
= 0 (16)

for any functional O of the GFT field ϕ and its complex
conjugate. Eq. (16) holds in the vacuum state, as can be
(formally) shown from the path integral, and requiring
Eq. (16) for certain choices of O encodes the requirement
for a GFT condensate state to give a good approxima-
tion to a new, non-perturbative vacuum. In Ref. [2] we
rewrote Eq. (16) in terms of a ‘condensate wavefunction’
used in the definition of the state; here we want to inter-
pret Eq. (16) directly as a relation of expectation values
of certain second quantized operators.

For O = ϕ̄(gI), Eq. (16) becomes, integrating over gI ,

〈∫
(dg)4 ϕ̄(gI)

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
=

〈∫
(dg)4

δϕ̄(gI)

δϕ̄(gI)

〉
. (17)

Passing to the operator formalism requires a choice of
operator ordering. Using normal ordering, the delta dis-
tribution on the right-hand side disappears and we obtain

〈∫
(dg)4 ϕ̂†(gI)

δŜ[ϕ̂, ϕ̂†]

δϕ̂†(gI)

〉
= 0 (18)

where the left-hand side is understood as normal ordered.
Splitting the action as S = Sk + V where Sk is by defini-
tion linear in both ϕ and ϕ̄,

Sk[ϕ, ϕ̄] =

∫
(dg)4(dg′)4 ϕ̄(gI)K(gI , g

′
I)ϕ(g

′
I) , (19)

Eq. (18) can be written as

〈
Ŝk

〉
+

〈∫
(dg)4 ϕ̂†(gI)

δV̂[ϕ̂, ϕ̂†]

δϕ̂†(gI)

〉
= 0 . (20)

Eq. (20) is one necessary condition to be satisfied by any
state that defines a vacuum of the theory. We are now
interested in situation in which only the first contribu-
tion to (20) is non-vanishing. One such situation was
discussed in Ref. [2], where the state is a ‘dipole’ con-
densate whose correlation functions vanish for any odd
number of fields, and the potential V only contains odd
powers of the fields. More generally, one could consider
a weak-coupling limit of the theory in which the interac-
tions may be neglected. We then have the condition that

Bi
a = h bbia ione extensive, other intensive 

“average holonomy”
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many-atom states can be constructed by repeated ac-
tions of ϕ̂†(gI) on |∅⟩. Such states correspond to spin
networks, with the basic quanta being their vertices, and
can equivalently be interpreted as triangulations labeled
by the same algebraic data. The interpretation of such
states in terms of a continuum metric may require an
embedding into a given manifold. See Refs. [2, 3, 5] for
details of the GFT states and their geometric interpreta-
tion, the relation to LQG, and the GFT dynamics.

On the GFT Fock space, the single-atom operators
(ĝ, B̂i) extend to a ‘total group element’ Ĝ, defined in
terms of an appropriate coordinate system on SU(2), and
a total flux b̂i. We choose coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (7)

The ‘total group coordinate’ operators

Π̂[gI ] =

∫
(dg)4 π⃗[gI ] ϕ̂

†(gJ )ϕ̂(gJ) (8)

and total flux operators, represented as right-invariant
vector fields on SU(2)

b̂iI = iκ

∫
(dg)4 ϕ̂†(gJ)

d

dt
ϕ̂
(
exp

(
τ iI t

)
gJ

) ∣∣∣
t=0

, (9)

are then well-defined on the Fock space. This total flux
is non-commutative (cf. Eq. (6)), as is the corresponding
microscopic variable. We interpret its commutative limit

f̂ i
I = iκ

∫
(dg)4 ϕ̂†(π[gJ ])

∂

∂πI
i

ϕ̂(π[gJ ]) (10)

to be the macroscopic flux variable of direct cosmological
interpretation.

As in the previous example, the flux defines a natu-
rally extensive quantity, while the ‘total group element’
carries no obvious interpretation. We can however define
‘average group coordinates’ through matrix elements,

Π̂[gI ]
av. = ⟨Π̂[gI ]⟩/⟨N̂⟩ . (11)

These ‘averaged group coordinates’ satisfy |Π̂av.| ≤ 1.
The total fluxes b̂I and the averaged group coordinates

Π̂av.
I = 1

⟨N̂⟩
Π̂I are analogous to total momentum and

center-of-mass position, and characterize the condensate.
In particular, the averaged holonomies are the only quan-
tities that can be interpreted consistently as macroscopic
holonomies. Now we investigate their dependence on the
atomic number N in more detail. Noting that the par-
allel transport over a path of coordinate length µ in j-
direction, with approximately constant connection, is

P exp

∫
ω ≈ cos(µ|ωj |)1+

ωj

|ωj |
sin(µ|ωj |) (12)

with ωj ∈ su(2), the averaged group coordinates can thus
be interpreted as the parallel transport of a connection

ω = iσ⃗ · ω⃗ , µ ω⃗ := −
⟨Π⃗⟩

|⟨Π⃗⟩|
arcsin

|⟨Π⃗⟩|

N
, (13)

which depends on both the atomic number and the ‘total
group coordinates’. Eq. (13) can be seen as a change of
variables from (Π⃗, N) to (ω⃗, N).

Fixing µ amounts to defining a coordinate system in
which ω is given. In Ref. [2], µ was taken to be the co-
ordinate length of a ‘fundamental link’ associated to an
elementary quantum of geometry, and taken as constant.
However, as N appears explicitly in Eq. (13), it appears
unnatural to assume that µ should be independent of N .
A more natural coordinate system is one in which the
condensate as a whole is extended over a region of fixed
coordinate length. Each quantum of geometry then occu-
pies an average coordinate volume proportional to 1/N ,
and the coordinate length associated to these quanta is
µ ∝ N−1/3. Adopting such a coordinate system (in itself
of no physical content) is convenient for linking the ef-
fective cosmological equations arising from GFT conden-
sates and the formalism of loop quantum cosmology. The
so defined collective variables correspond to the macro-
scopic, cosmological variables for the GFT condensate.

Interpretation of effective cosmological equations. —
In Ref. [2] it was shown that the dynamics of condensate
states in GFT can be reduced, within certain approxima-
tions, to effective quantum cosmology equations. These
arise from Schwinger–Dyson equations of the GFT, which
take the general form

〈
δO[ϕ, ϕ̄]

δϕ̄(gI)
−O[ϕ, ϕ̄]

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
= 0 (14)

for any functional O of the GFT field ϕ and its com-
plex conjugate, with fundamental dynamics defined by
an action S. Eq. (14) holds in the vacuum state, for all
O. Requiring Eq. (14) for certain choices of O encodes
the requirement for a GFT condensate state to give a
good approximation to a non-perturbative vacuum (see
Ref. [12] for further analysis of the nature of this approx-
imation). The key result of Ref. [2], at the dynamical
level, was that Eq. (14), for simple choices of O and for
an approximate vacuum state given by a GFT conden-
sate state such as

|σ⟩ ∝ exp (σ̂) |0⟩ , σ̂ :=

∫
(dg)4 σ(gI)ϕ̂

†(gI) , (15)

gives a quantum cosmology-like equation for the cos-
mological ‘wavefunction’ σ (similar to those obtained in
Ref. [13]). Here we want to interpret Eq. (14) directly
in terms of expectation values of second quantized oper-
ators corresponding to the kinetic and interaction terms
of the fundamental GFT action, computed again for con-
densate states that have a cosmological interpretation.

For O = ϕ̄(gI), Eq. (14) becomes, integrating over gI ,

〈∫
(dg)4 ϕ̄(gI)

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
=

〈∫
(dg)4

δϕ̄(gI)

δϕ̄(gI)

〉
. (16)

Passing to the operator formalism and choosing normal

commutative limit of “total flux” B
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are then well-defined on the Fock space. Just as in the
particle example, one of them – the flux – defines a quan-
tity that is naturally extensive, as the total area is the
sum of elementary areas, while the other one – the ‘total
group element’ – carries no obvious interpretation. We
emphasize that there is no operator on the whole Fock
space that defines an ‘elementary’ group element g asso-
ciated to an individual building block of geometry, just
as there is no operator in many-body quantum mechan-
ics that gives the position of any particular particle of
an N -particle state. This follows directly from quantum-
mechanical indistinguishability. The extension of a sin-
gle group element operator to the Fock space is (11). As
before, we can try to define ‘average group coordinates’
through the matrix elements of Π̂[ga],

(Π⃗[ga]
av.) = ⟨Π̂[ga]⟩/⟨N̂⟩ . (13)

These ‘averaged group coordinates’ satisfy |Π⃗| ≤ 1.
The total areas b̂I and the averaged group coordinates

1
N Π̂I (where I = 1, . . . , 4 labels the four canonical pairs
(g,B)) are the quantities analogous to total momentum
and (approximate) center-of-mass position, characteriz-
ing the condensate. We can define an ‘effective connec-
tion’ from 1

N ⟨Π̂I⟩, noting that the parallel transport over
a path of coordinate length µ in x-direction, with approx-
imately constant connection, is

P exp

∫
ω ≈ exp(µωx) = cos(µ|ωx|)1+

ωx

|ωx|
sin(µ|ωx|)

(14)
with ωx ∈ su(2). The averaged group coordinates can
be interpreted as giving the parallel transport of a (con-
stant) connection

ω = iσ⃗ · ω⃗ , µ ω⃗ := −
⟨Π⃗⟩

|⟨Π⃗⟩|
arcsin

|⟨Π⃗⟩|

N
, (15)

which depends on the expectation values of both the
number operator and the ‘total group coordinates’.

Fixing µ amounts to defining a coordinate system in
which the connection ω is given. In the previous inter-
pretation in Ref. [2], µ was taken to be the coordinate
length of a ‘fundamental link’ associated to an elemen-
tary degree of freedom of geometry, and taken as con-
stant. However, as N appears explicitly in Eq. (15), it
appears unnatural to assume that µ should be indepen-
dent of N . There is no coordinate system in which ‘fun-
damental links’ can be defined as of fixed length if there
are no fundamental links in the theory.

A more natural coordinate system is one in which the
condensate as a whole is extended over a region of fixed
coordinate length (in LQC this corresponds to given co-
ordinate volume of the fiducal cell). Each quantum of
geometry then occupies an average coordinate volume
proportional to 1/N , and the coordinate length associ-
ated to these quanta is µ ∝ N−1/3. Adopting such a

coordinate system provides the link between effective cos-
mological equations arising from GFT condensates and
the formalism of loop quantum cosmology.

Interpretation of effective cosmological equations. —
In Ref. [2] it was demonstrated how the dynamics of
condensate states in group field theory can be reduced,
within certain approximations, to effective quantum cos-
mology equations. These arise from Schwinger–Dyson
equations of the GFT which take the general form

〈
δO[ϕ, ϕ̄]

δϕ̄(gI)
−O[ϕ, ϕ̄]

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
= 0 (16)

for any functional O of the GFT field ϕ and its complex
conjugate. Eq. (16) holds in the vacuum state, as can be
(formally) shown from the path integral, and requiring
Eq. (16) for certain choices of O encodes the requirement
for a GFT condensate state to give a good approxima-
tion to a new, non-perturbative vacuum. In Ref. [2] we
rewrote Eq. (16) in terms of a ‘condensate wavefunction’
used in the definition of the state; here we want to inter-
pret Eq. (16) directly as a relation of expectation values
of certain second quantized operators.

For O = ϕ̄(gI), Eq. (16) becomes, integrating over gI ,

〈∫
(dg)4 ϕ̄(gI)

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
=

〈∫
(dg)4

δϕ̄(gI)

δϕ̄(gI)

〉
. (17)

Passing to the operator formalism requires a choice of
operator ordering. Using normal ordering, the delta dis-
tribution on the right-hand side disappears and we obtain

〈∫
(dg)4 ϕ̂†(gI)

δŜ[ϕ̂, ϕ̂†]

δϕ̂†(gI)

〉
= 0 (18)

where the left-hand side is understood as normal ordered.
Splitting the action as S = Sk + V where Sk is by defini-
tion linear in both ϕ and ϕ̄,

Sk[ϕ, ϕ̄] =

∫
(dg)4(dg′)4 ϕ̄(gI)K(gI , g

′
I)ϕ(g

′
I) , (19)

Eq. (18) can be written as

〈
Ŝk

〉
+

〈∫
(dg)4 ϕ̂†(gI)

δV̂[ϕ̂, ϕ̂†]

δϕ̂†(gI)

〉
= 0 . (20)

Eq. (20) is one necessary condition to be satisfied by any
state that defines a vacuum of the theory. We are now
interested in situation in which only the first contribu-
tion to (20) is non-vanishing. One such situation was
discussed in Ref. [2], where the state is a ‘dipole’ con-
densate whose correlation functions vanish for any odd
number of fields, and the potential V only contains odd
powers of the fields. More generally, one could consider
a weak-coupling limit of the theory in which the interac-
tions may be neglected. We then have the condition that
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many-atom states can be constructed by repeated ac-
tions of ϕ̂†(gI) on |∅⟩. Such states correspond to spin
networks, with the basic quanta being their vertices, and
can equivalently be interpreted as triangulations labeled
by the same algebraic data. The interpretation of such
states in terms of a continuum metric may require an
embedding into a given manifold. See Refs. [2, 3, 5] for
details of the GFT states and their geometric interpreta-
tion, the relation to LQG, and the GFT dynamics.

On the GFT Fock space, the single-atom operators
(ĝ, B̂i) extend to a ‘total group element’ Ĝ, defined in
terms of an appropriate coordinate system on SU(2), and
a total flux b̂i. We choose coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (7)

The ‘total group coordinate’ operators

Π̂[gI ] =

∫
(dg)4 π⃗[gI ] ϕ̂

†(gJ )ϕ̂(gJ) (8)

and total flux operators, represented as right-invariant
vector fields on SU(2)

b̂iI = iκ

∫
(dg)4 ϕ̂†(gJ)

d

dt
ϕ̂
(
exp

(
τ iI t

)
gJ

) ∣∣∣
t=0

, (9)

are then well-defined on the Fock space. This total flux
is non-commutative (cf. Eq. (6)), as is the corresponding
microscopic variable. We interpret its commutative limit

f̂ i
I = iκ

∫
(dg)4 ϕ̂†(π[gJ ])

∂

∂πI
i

ϕ̂(π[gJ ]) (10)

to be the macroscopic flux variable of direct cosmological
interpretation.

As in the previous example, the flux defines a natu-
rally extensive quantity, while the ‘total group element’
carries no obvious interpretation. We can however define
‘average group coordinates’ through matrix elements,

Π̂[gI ]
av. = ⟨Π̂[gI ]⟩/⟨N̂⟩ . (11)

These ‘averaged group coordinates’ satisfy |Π̂av.| ≤ 1.
The total fluxes b̂I and the averaged group coordinates

Π̂av.
I = 1

⟨N̂⟩
Π̂I are analogous to total momentum and

center-of-mass position, and characterize the condensate.
In particular, the averaged holonomies are the only quan-
tities that can be interpreted consistently as macroscopic
holonomies. Now we investigate their dependence on the
atomic number N in more detail. Noting that the par-
allel transport over a path of coordinate length µ in j-
direction, with approximately constant connection, is

P exp

∫
ω ≈ cos(µ|ωj |)1+

ωj

|ωj |
sin(µ|ωj |) (12)

with ωj ∈ su(2), the averaged group coordinates can thus
be interpreted as the parallel transport of a connection

ω = iσ⃗ · ω⃗ , µ ω⃗ := −
⟨Π⃗⟩

|⟨Π⃗⟩|
arcsin

|⟨Π⃗⟩|

N
, (13)

which depends on both the atomic number and the ‘total
group coordinates’. Eq. (13) can be seen as a change of
variables from (Π⃗, N) to (ω⃗, N).

Fixing µ amounts to defining a coordinate system in
which ω is given. In Ref. [2], µ was taken to be the co-
ordinate length of a ‘fundamental link’ associated to an
elementary quantum of geometry, and taken as constant.
However, as N appears explicitly in Eq. (13), it appears
unnatural to assume that µ should be independent of N .
A more natural coordinate system is one in which the
condensate as a whole is extended over a region of fixed
coordinate length. Each quantum of geometry then occu-
pies an average coordinate volume proportional to 1/N ,
and the coordinate length associated to these quanta is
µ ∝ N−1/3. Adopting such a coordinate system (in itself
of no physical content) is convenient for linking the ef-
fective cosmological equations arising from GFT conden-
sates and the formalism of loop quantum cosmology. The
so defined collective variables correspond to the macro-
scopic, cosmological variables for the GFT condensate.

Interpretation of effective cosmological equations. —
In Ref. [2] it was shown that the dynamics of condensate
states in GFT can be reduced, within certain approxima-
tions, to effective quantum cosmology equations. These
arise from Schwinger–Dyson equations of the GFT, which
take the general form

〈
δO[ϕ, ϕ̄]

δϕ̄(gI)
−O[ϕ, ϕ̄]

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
= 0 (14)

for any functional O of the GFT field ϕ and its com-
plex conjugate, with fundamental dynamics defined by
an action S. Eq. (14) holds in the vacuum state, for all
O. Requiring Eq. (14) for certain choices of O encodes
the requirement for a GFT condensate state to give a
good approximation to a non-perturbative vacuum (see
Ref. [12] for further analysis of the nature of this approx-
imation). The key result of Ref. [2], at the dynamical
level, was that Eq. (14), for simple choices of O and for
an approximate vacuum state given by a GFT conden-
sate state such as

|σ⟩ ∝ exp (σ̂) |0⟩ , σ̂ :=

∫
(dg)4 σ(gI)ϕ̂

†(gI) , (15)

gives a quantum cosmology-like equation for the cos-
mological ‘wavefunction’ σ (similar to those obtained in
Ref. [13]). Here we want to interpret Eq. (14) directly
in terms of expectation values of second quantized oper-
ators corresponding to the kinetic and interaction terms
of the fundamental GFT action, computed again for con-
densate states that have a cosmological interpretation.

For O = ϕ̄(gI), Eq. (14) becomes, integrating over gI ,

〈∫
(dg)4 ϕ̄(gI)

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
=

〈∫
(dg)4

δϕ̄(gI)

δϕ̄(gI)

〉
. (16)

Passing to the operator formalism and choosing normal

commutative limit of “total flux” B
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are then well-defined on the Fock space. Just as in the
particle example, one of them – the flux – defines a quan-
tity that is naturally extensive, as the total area is the
sum of elementary areas, while the other one – the ‘total
group element’ – carries no obvious interpretation. We
emphasize that there is no operator on the whole Fock
space that defines an ‘elementary’ group element g asso-
ciated to an individual building block of geometry, just
as there is no operator in many-body quantum mechan-
ics that gives the position of any particular particle of
an N -particle state. This follows directly from quantum-
mechanical indistinguishability. The extension of a sin-
gle group element operator to the Fock space is (11). As
before, we can try to define ‘average group coordinates’
through the matrix elements of Π̂[ga],

(Π⃗[ga]
av.) = ⟨Π̂[ga]⟩/⟨N̂⟩ . (13)

These ‘averaged group coordinates’ satisfy |Π⃗| ≤ 1.
The total areas b̂I and the averaged group coordinates

1
N Π̂I (where I = 1, . . . , 4 labels the four canonical pairs
(g,B)) are the quantities analogous to total momentum
and (approximate) center-of-mass position, characteriz-
ing the condensate. We can define an ‘effective connec-
tion’ from 1

N ⟨Π̂I⟩, noting that the parallel transport over
a path of coordinate length µ in x-direction, with approx-
imately constant connection, is

P exp

∫
ω ≈ exp(µωx) = cos(µ|ωx|)1+

ωx

|ωx|
sin(µ|ωx|)

(14)
with ωx ∈ su(2). The averaged group coordinates can
be interpreted as giving the parallel transport of a (con-
stant) connection

ω = iσ⃗ · ω⃗ , µ ω⃗ := −
⟨Π⃗⟩

|⟨Π⃗⟩|
arcsin

|⟨Π⃗⟩|

N
, (15)

which depends on the expectation values of both the
number operator and the ‘total group coordinates’.

Fixing µ amounts to defining a coordinate system in
which the connection ω is given. In the previous inter-
pretation in Ref. [2], µ was taken to be the coordinate
length of a ‘fundamental link’ associated to an elemen-
tary degree of freedom of geometry, and taken as con-
stant. However, as N appears explicitly in Eq. (15), it
appears unnatural to assume that µ should be indepen-
dent of N . There is no coordinate system in which ‘fun-
damental links’ can be defined as of fixed length if there
are no fundamental links in the theory.

A more natural coordinate system is one in which the
condensate as a whole is extended over a region of fixed
coordinate length (in LQC this corresponds to given co-
ordinate volume of the fiducal cell). Each quantum of
geometry then occupies an average coordinate volume
proportional to 1/N , and the coordinate length associ-
ated to these quanta is µ ∝ N−1/3. Adopting such a

coordinate system provides the link between effective cos-
mological equations arising from GFT condensates and
the formalism of loop quantum cosmology.

Interpretation of effective cosmological equations. —
In Ref. [2] it was demonstrated how the dynamics of
condensate states in group field theory can be reduced,
within certain approximations, to effective quantum cos-
mology equations. These arise from Schwinger–Dyson
equations of the GFT which take the general form

〈
δO[ϕ, ϕ̄]

δϕ̄(gI)
−O[ϕ, ϕ̄]

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
= 0 (16)

for any functional O of the GFT field ϕ and its complex
conjugate. Eq. (16) holds in the vacuum state, as can be
(formally) shown from the path integral, and requiring
Eq. (16) for certain choices of O encodes the requirement
for a GFT condensate state to give a good approxima-
tion to a new, non-perturbative vacuum. In Ref. [2] we
rewrote Eq. (16) in terms of a ‘condensate wavefunction’
used in the definition of the state; here we want to inter-
pret Eq. (16) directly as a relation of expectation values
of certain second quantized operators.

For O = ϕ̄(gI), Eq. (16) becomes, integrating over gI ,

〈∫
(dg)4 ϕ̄(gI)

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
=

〈∫
(dg)4

δϕ̄(gI)

δϕ̄(gI)

〉
. (17)

Passing to the operator formalism requires a choice of
operator ordering. Using normal ordering, the delta dis-
tribution on the right-hand side disappears and we obtain

〈∫
(dg)4 ϕ̂†(gI)

δŜ[ϕ̂, ϕ̂†]

δϕ̂†(gI)

〉
= 0 (18)

where the left-hand side is understood as normal ordered.
Splitting the action as S = Sk + V where Sk is by defini-
tion linear in both ϕ and ϕ̄,

Sk[ϕ, ϕ̄] =

∫
(dg)4(dg′)4 ϕ̄(gI)K(gI , g

′
I)ϕ(g

′
I) , (19)

Eq. (18) can be written as

〈
Ŝk

〉
+

〈∫
(dg)4 ϕ̂†(gI)

δV̂[ϕ̂, ϕ̂†]

δϕ̂†(gI)

〉
= 0 . (20)

Eq. (20) is one necessary condition to be satisfied by any
state that defines a vacuum of the theory. We are now
interested in situation in which only the first contribu-
tion to (20) is non-vanishing. One such situation was
discussed in Ref. [2], where the state is a ‘dipole’ con-
densate whose correlation functions vanish for any odd
number of fields, and the potential V only contains odd
powers of the fields. More generally, one could consider
a weak-coupling limit of the theory in which the interac-
tions may be neglected. We then have the condition that
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many-atom states can be constructed by repeated ac-
tions of ϕ̂†(gI) on |∅⟩. Such states correspond to spin
networks, with the basic quanta being their vertices, and
can equivalently be interpreted as triangulations labeled
by the same algebraic data. The interpretation of such
states in terms of a continuum metric may require an
embedding into a given manifold. See Refs. [2, 3, 5] for
details of the GFT states and their geometric interpreta-
tion, the relation to LQG, and the GFT dynamics.

On the GFT Fock space, the single-atom operators
(ĝ, B̂i) extend to a ‘total group element’ Ĝ, defined in
terms of an appropriate coordinate system on SU(2), and
a total flux b̂i. We choose coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (7)

The ‘total group coordinate’ operators

Π̂[gI ] =

∫
(dg)4 π⃗[gI ] ϕ̂

†(gJ )ϕ̂(gJ) (8)

and total flux operators, represented as right-invariant
vector fields on SU(2)

b̂iI = iκ

∫
(dg)4 ϕ̂†(gJ)

d

dt
ϕ̂
(
exp

(
τ iI t

)
gJ

) ∣∣∣
t=0

, (9)

are then well-defined on the Fock space. This total flux
is non-commutative (cf. Eq. (6)), as is the corresponding
microscopic variable. We interpret its commutative limit

f̂ i
I = iκ

∫
(dg)4 ϕ̂†(π[gJ ])

∂

∂πI
i

ϕ̂(π[gJ ]) (10)

to be the macroscopic flux variable of direct cosmological
interpretation.

As in the previous example, the flux defines a natu-
rally extensive quantity, while the ‘total group element’
carries no obvious interpretation. We can however define
‘average group coordinates’ through matrix elements,

Π̂[gI ]
av. = ⟨Π̂[gI ]⟩/⟨N̂⟩ . (11)

These ‘averaged group coordinates’ satisfy |Π̂av.| ≤ 1.
The total fluxes b̂I and the averaged group coordinates

Π̂av.
I = 1

⟨N̂⟩
Π̂I are analogous to total momentum and

center-of-mass position, and characterize the condensate.
In particular, the averaged holonomies are the only quan-
tities that can be interpreted consistently as macroscopic
holonomies. Now we investigate their dependence on the
atomic number N in more detail. Noting that the par-
allel transport over a path of coordinate length µ in j-
direction, with approximately constant connection, is

P exp

∫
ω ≈ cos(µ|ωj |)1+

ωj

|ωj |
sin(µ|ωj |) (12)

with ωj ∈ su(2), the averaged group coordinates can thus
be interpreted as the parallel transport of a connection

ω = iσ⃗ · ω⃗ , µ ω⃗ := −
⟨Π⃗⟩

|⟨Π⃗⟩|
arcsin

|⟨Π⃗⟩|

N
, (13)

which depends on both the atomic number and the ‘total
group coordinates’. Eq. (13) can be seen as a change of
variables from (Π⃗, N) to (ω⃗, N).

Fixing µ amounts to defining a coordinate system in
which ω is given. In Ref. [2], µ was taken to be the co-
ordinate length of a ‘fundamental link’ associated to an
elementary quantum of geometry, and taken as constant.
However, as N appears explicitly in Eq. (13), it appears
unnatural to assume that µ should be independent of N .
A more natural coordinate system is one in which the
condensate as a whole is extended over a region of fixed
coordinate length. Each quantum of geometry then occu-
pies an average coordinate volume proportional to 1/N ,
and the coordinate length associated to these quanta is
µ ∝ N−1/3. Adopting such a coordinate system (in itself
of no physical content) is convenient for linking the ef-
fective cosmological equations arising from GFT conden-
sates and the formalism of loop quantum cosmology. The
so defined collective variables correspond to the macro-
scopic, cosmological variables for the GFT condensate.

Interpretation of effective cosmological equations. —
In Ref. [2] it was shown that the dynamics of condensate
states in GFT can be reduced, within certain approxima-
tions, to effective quantum cosmology equations. These
arise from Schwinger–Dyson equations of the GFT, which
take the general form

〈
δO[ϕ, ϕ̄]

δϕ̄(gI)
−O[ϕ, ϕ̄]

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
= 0 (14)

for any functional O of the GFT field ϕ and its com-
plex conjugate, with fundamental dynamics defined by
an action S. Eq. (14) holds in the vacuum state, for all
O. Requiring Eq. (14) for certain choices of O encodes
the requirement for a GFT condensate state to give a
good approximation to a non-perturbative vacuum (see
Ref. [12] for further analysis of the nature of this approx-
imation). The key result of Ref. [2], at the dynamical
level, was that Eq. (14), for simple choices of O and for
an approximate vacuum state given by a GFT conden-
sate state such as

|σ⟩ ∝ exp (σ̂) |0⟩ , σ̂ :=

∫
(dg)4 σ(gI)ϕ̂

†(gI) , (15)

gives a quantum cosmology-like equation for the cos-
mological ‘wavefunction’ σ (similar to those obtained in
Ref. [13]). Here we want to interpret Eq. (14) directly
in terms of expectation values of second quantized oper-
ators corresponding to the kinetic and interaction terms
of the fundamental GFT action, computed again for con-
densate states that have a cosmological interpretation.

For O = ϕ̄(gI), Eq. (14) becomes, integrating over gI ,

〈∫
(dg)4 ϕ̄(gI)

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
=

〈∫
(dg)4

δϕ̄(gI)

δϕ̄(gI)

〉
. (16)

Passing to the operator formalism and choosing normal

commutative limit of “total flux” B
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are then well-defined on the Fock space. Just as in the
particle example, one of them – the flux – defines a quan-
tity that is naturally extensive, as the total area is the
sum of elementary areas, while the other one – the ‘total
group element’ – carries no obvious interpretation. We
emphasize that there is no operator on the whole Fock
space that defines an ‘elementary’ group element g asso-
ciated to an individual building block of geometry, just
as there is no operator in many-body quantum mechan-
ics that gives the position of any particular particle of
an N -particle state. This follows directly from quantum-
mechanical indistinguishability. The extension of a sin-
gle group element operator to the Fock space is (11). As
before, we can try to define ‘average group coordinates’
through the matrix elements of Π̂[ga],

(Π⃗[ga]
av.) = ⟨Π̂[ga]⟩/⟨N̂⟩ . (13)

These ‘averaged group coordinates’ satisfy |Π⃗| ≤ 1.
The total areas b̂I and the averaged group coordinates

1
N Π̂I (where I = 1, . . . , 4 labels the four canonical pairs
(g,B)) are the quantities analogous to total momentum
and (approximate) center-of-mass position, characteriz-
ing the condensate. We can define an ‘effective connec-
tion’ from 1

N ⟨Π̂I⟩, noting that the parallel transport over
a path of coordinate length µ in x-direction, with approx-
imately constant connection, is

P exp

∫
ω ≈ exp(µωx) = cos(µ|ωx|)1+

ωx

|ωx|
sin(µ|ωx|)

(14)
with ωx ∈ su(2). The averaged group coordinates can
be interpreted as giving the parallel transport of a (con-
stant) connection

ω = iσ⃗ · ω⃗ , µ ω⃗ := −
⟨Π⃗⟩

|⟨Π⃗⟩|
arcsin

|⟨Π⃗⟩|

N
, (15)

which depends on the expectation values of both the
number operator and the ‘total group coordinates’.

Fixing µ amounts to defining a coordinate system in
which the connection ω is given. In the previous inter-
pretation in Ref. [2], µ was taken to be the coordinate
length of a ‘fundamental link’ associated to an elemen-
tary degree of freedom of geometry, and taken as con-
stant. However, as N appears explicitly in Eq. (15), it
appears unnatural to assume that µ should be indepen-
dent of N . There is no coordinate system in which ‘fun-
damental links’ can be defined as of fixed length if there
are no fundamental links in the theory.

A more natural coordinate system is one in which the
condensate as a whole is extended over a region of fixed
coordinate length (in LQC this corresponds to given co-
ordinate volume of the fiducal cell). Each quantum of
geometry then occupies an average coordinate volume
proportional to 1/N , and the coordinate length associ-
ated to these quanta is µ ∝ N−1/3. Adopting such a

coordinate system provides the link between effective cos-
mological equations arising from GFT condensates and
the formalism of loop quantum cosmology.

Interpretation of effective cosmological equations. —
In Ref. [2] it was demonstrated how the dynamics of
condensate states in group field theory can be reduced,
within certain approximations, to effective quantum cos-
mology equations. These arise from Schwinger–Dyson
equations of the GFT which take the general form

〈
δO[ϕ, ϕ̄]

δϕ̄(gI)
−O[ϕ, ϕ̄]

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
= 0 (16)

for any functional O of the GFT field ϕ and its complex
conjugate. Eq. (16) holds in the vacuum state, as can be
(formally) shown from the path integral, and requiring
Eq. (16) for certain choices of O encodes the requirement
for a GFT condensate state to give a good approxima-
tion to a new, non-perturbative vacuum. In Ref. [2] we
rewrote Eq. (16) in terms of a ‘condensate wavefunction’
used in the definition of the state; here we want to inter-
pret Eq. (16) directly as a relation of expectation values
of certain second quantized operators.

For O = ϕ̄(gI), Eq. (16) becomes, integrating over gI ,

〈∫
(dg)4 ϕ̄(gI)

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
=

〈∫
(dg)4

δϕ̄(gI)

δϕ̄(gI)

〉
. (17)

Passing to the operator formalism requires a choice of
operator ordering. Using normal ordering, the delta dis-
tribution on the right-hand side disappears and we obtain

〈∫
(dg)4 ϕ̂†(gI)

δŜ[ϕ̂, ϕ̂†]

δϕ̂†(gI)

〉
= 0 (18)

where the left-hand side is understood as normal ordered.
Splitting the action as S = Sk + V where Sk is by defini-
tion linear in both ϕ and ϕ̄,

Sk[ϕ, ϕ̄] =

∫
(dg)4(dg′)4 ϕ̄(gI)K(gI , g

′
I)ϕ(g

′
I) , (19)

Eq. (18) can be written as

〈
Ŝk

〉
+

〈∫
(dg)4 ϕ̂†(gI)

δV̂[ϕ̂, ϕ̂†]

δϕ̂†(gI)

〉
= 0 . (20)

Eq. (20) is one necessary condition to be satisfied by any
state that defines a vacuum of the theory. We are now
interested in situation in which only the first contribu-
tion to (20) is non-vanishing. One such situation was
discussed in Ref. [2], where the state is a ‘dipole’ con-
densate whose correlation functions vanish for any odd
number of fields, and the potential V only contains odd
powers of the fields. More generally, one could consider
a weak-coupling limit of the theory in which the interac-
tions may be neglected. We then have the condition that
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many-atom states can be constructed by repeated ac-
tions of ϕ̂†(gI) on |∅⟩. Such states correspond to spin
networks, with the basic quanta being their vertices, and
can equivalently be interpreted as triangulations labeled
by the same algebraic data. The interpretation of such
states in terms of a continuum metric may require an
embedding into a given manifold. See Refs. [2, 3, 5] for
details of the GFT states and their geometric interpreta-
tion, the relation to LQG, and the GFT dynamics.

On the GFT Fock space, the single-atom operators
(ĝ, B̂i) extend to a ‘total group element’ Ĝ, defined in
terms of an appropriate coordinate system on SU(2), and
a total flux b̂i. We choose coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (7)

The ‘total group coordinate’ operators

Π̂[gI ] =

∫
(dg)4 π⃗[gI ] ϕ̂

†(gJ )ϕ̂(gJ) (8)

and total flux operators, represented as right-invariant
vector fields on SU(2)

b̂iI = iκ

∫
(dg)4 ϕ̂†(gJ)

d

dt
ϕ̂
(
exp

(
τ iI t

)
gJ

) ∣∣∣
t=0

, (9)

are then well-defined on the Fock space. This total flux
is non-commutative (cf. Eq. (6)), as is the corresponding
microscopic variable. We interpret its commutative limit

f̂ i
I = iκ

∫
(dg)4 ϕ̂†(π[gJ ])

∂

∂πI
i

ϕ̂(π[gJ ]) (10)

to be the macroscopic flux variable of direct cosmological
interpretation.

As in the previous example, the flux defines a natu-
rally extensive quantity, while the ‘total group element’
carries no obvious interpretation. We can however define
‘average group coordinates’ through matrix elements,

Π̂[gI ]
av. = ⟨Π̂[gI ]⟩/⟨N̂⟩ . (11)

These ‘averaged group coordinates’ satisfy |Π̂av.| ≤ 1.
The total fluxes b̂I and the averaged group coordinates

Π̂av.
I = 1

⟨N̂⟩
Π̂I are analogous to total momentum and

center-of-mass position, and characterize the condensate.
In particular, the averaged holonomies are the only quan-
tities that can be interpreted consistently as macroscopic
holonomies. Now we investigate their dependence on the
atomic number N in more detail. Noting that the par-
allel transport over a path of coordinate length µ in j-
direction, with approximately constant connection, is

P exp

∫
ω ≈ cos(µ|ωj |)1+

ωj

|ωj |
sin(µ|ωj |) (12)

with ωj ∈ su(2), the averaged group coordinates can thus
be interpreted as the parallel transport of a connection

ω = iσ⃗ · ω⃗ , µ ω⃗ := −
⟨Π⃗⟩

|⟨Π⃗⟩|
arcsin

|⟨Π⃗⟩|

N
, (13)

which depends on both the atomic number and the ‘total
group coordinates’. Eq. (13) can be seen as a change of
variables from (Π⃗, N) to (ω⃗, N).

Fixing µ amounts to defining a coordinate system in
which ω is given. In Ref. [2], µ was taken to be the co-
ordinate length of a ‘fundamental link’ associated to an
elementary quantum of geometry, and taken as constant.
However, as N appears explicitly in Eq. (13), it appears
unnatural to assume that µ should be independent of N .
A more natural coordinate system is one in which the
condensate as a whole is extended over a region of fixed
coordinate length. Each quantum of geometry then occu-
pies an average coordinate volume proportional to 1/N ,
and the coordinate length associated to these quanta is
µ ∝ N−1/3. Adopting such a coordinate system (in itself
of no physical content) is convenient for linking the ef-
fective cosmological equations arising from GFT conden-
sates and the formalism of loop quantum cosmology. The
so defined collective variables correspond to the macro-
scopic, cosmological variables for the GFT condensate.

Interpretation of effective cosmological equations. —
In Ref. [2] it was shown that the dynamics of condensate
states in GFT can be reduced, within certain approxima-
tions, to effective quantum cosmology equations. These
arise from Schwinger–Dyson equations of the GFT, which
take the general form

〈
δO[ϕ, ϕ̄]

δϕ̄(gI)
−O[ϕ, ϕ̄]

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
= 0 (14)

for any functional O of the GFT field ϕ and its com-
plex conjugate, with fundamental dynamics defined by
an action S. Eq. (14) holds in the vacuum state, for all
O. Requiring Eq. (14) for certain choices of O encodes
the requirement for a GFT condensate state to give a
good approximation to a non-perturbative vacuum (see
Ref. [12] for further analysis of the nature of this approx-
imation). The key result of Ref. [2], at the dynamical
level, was that Eq. (14), for simple choices of O and for
an approximate vacuum state given by a GFT conden-
sate state such as

|σ⟩ ∝ exp (σ̂) |0⟩ , σ̂ :=

∫
(dg)4 σ(gI)ϕ̂

†(gI) , (15)

gives a quantum cosmology-like equation for the cos-
mological ‘wavefunction’ σ (similar to those obtained in
Ref. [13]). Here we want to interpret Eq. (14) directly
in terms of expectation values of second quantized oper-
ators corresponding to the kinetic and interaction terms
of the fundamental GFT action, computed again for con-
densate states that have a cosmological interpretation.

For O = ϕ̄(gI), Eq. (14) becomes, integrating over gI ,

〈∫
(dg)4 ϕ̄(gI)

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
=

〈∫
(dg)4

δϕ̄(gI)

δϕ̄(gI)

〉
. (16)

Passing to the operator formalism and choosing normal

commutative limit of “total flux” B
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are then well-defined on the Fock space. Just as in the
particle example, one of them – the flux – defines a quan-
tity that is naturally extensive, as the total area is the
sum of elementary areas, while the other one – the ‘total
group element’ – carries no obvious interpretation. We
emphasize that there is no operator on the whole Fock
space that defines an ‘elementary’ group element g asso-
ciated to an individual building block of geometry, just
as there is no operator in many-body quantum mechan-
ics that gives the position of any particular particle of
an N -particle state. This follows directly from quantum-
mechanical indistinguishability. The extension of a sin-
gle group element operator to the Fock space is (11). As
before, we can try to define ‘average group coordinates’
through the matrix elements of Π̂[ga],

(Π⃗[ga]
av.) = ⟨Π̂[ga]⟩/⟨N̂⟩ . (13)

These ‘averaged group coordinates’ satisfy |Π⃗| ≤ 1.
The total areas b̂I and the averaged group coordinates

1
N Π̂I (where I = 1, . . . , 4 labels the four canonical pairs
(g,B)) are the quantities analogous to total momentum
and (approximate) center-of-mass position, characteriz-
ing the condensate. We can define an ‘effective connec-
tion’ from 1

N ⟨Π̂I⟩, noting that the parallel transport over
a path of coordinate length µ in x-direction, with approx-
imately constant connection, is

P exp

∫
ω ≈ exp(µωx) = cos(µ|ωx|)1+

ωx

|ωx|
sin(µ|ωx|)

(14)
with ωx ∈ su(2). The averaged group coordinates can
be interpreted as giving the parallel transport of a (con-
stant) connection

ω = iσ⃗ · ω⃗ , µ ω⃗ := −
⟨Π⃗⟩

|⟨Π⃗⟩|
arcsin

|⟨Π⃗⟩|

N
, (15)

which depends on the expectation values of both the
number operator and the ‘total group coordinates’.

Fixing µ amounts to defining a coordinate system in
which the connection ω is given. In the previous inter-
pretation in Ref. [2], µ was taken to be the coordinate
length of a ‘fundamental link’ associated to an elemen-
tary degree of freedom of geometry, and taken as con-
stant. However, as N appears explicitly in Eq. (15), it
appears unnatural to assume that µ should be indepen-
dent of N . There is no coordinate system in which ‘fun-
damental links’ can be defined as of fixed length if there
are no fundamental links in the theory.

A more natural coordinate system is one in which the
condensate as a whole is extended over a region of fixed
coordinate length (in LQC this corresponds to given co-
ordinate volume of the fiducal cell). Each quantum of
geometry then occupies an average coordinate volume
proportional to 1/N , and the coordinate length associ-
ated to these quanta is µ ∝ N−1/3. Adopting such a

coordinate system provides the link between effective cos-
mological equations arising from GFT condensates and
the formalism of loop quantum cosmology.

Interpretation of effective cosmological equations. —
In Ref. [2] it was demonstrated how the dynamics of
condensate states in group field theory can be reduced,
within certain approximations, to effective quantum cos-
mology equations. These arise from Schwinger–Dyson
equations of the GFT which take the general form

〈
δO[ϕ, ϕ̄]

δϕ̄(gI)
−O[ϕ, ϕ̄]

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
= 0 (16)

for any functional O of the GFT field ϕ and its complex
conjugate. Eq. (16) holds in the vacuum state, as can be
(formally) shown from the path integral, and requiring
Eq. (16) for certain choices of O encodes the requirement
for a GFT condensate state to give a good approxima-
tion to a new, non-perturbative vacuum. In Ref. [2] we
rewrote Eq. (16) in terms of a ‘condensate wavefunction’
used in the definition of the state; here we want to inter-
pret Eq. (16) directly as a relation of expectation values
of certain second quantized operators.

For O = ϕ̄(gI), Eq. (16) becomes, integrating over gI ,

〈∫
(dg)4 ϕ̄(gI)

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
=

〈∫
(dg)4

δϕ̄(gI)

δϕ̄(gI)

〉
. (17)

Passing to the operator formalism requires a choice of
operator ordering. Using normal ordering, the delta dis-
tribution on the right-hand side disappears and we obtain

〈∫
(dg)4 ϕ̂†(gI)

δŜ[ϕ̂, ϕ̂†]

δϕ̂†(gI)

〉
= 0 (18)

where the left-hand side is understood as normal ordered.
Splitting the action as S = Sk + V where Sk is by defini-
tion linear in both ϕ and ϕ̄,

Sk[ϕ, ϕ̄] =

∫
(dg)4(dg′)4 ϕ̄(gI)K(gI , g

′
I)ϕ(g

′
I) , (19)

Eq. (18) can be written as

〈
Ŝk

〉
+

〈∫
(dg)4 ϕ̂†(gI)

δV̂[ϕ̂, ϕ̂†]

δϕ̂†(gI)

〉
= 0 . (20)

Eq. (20) is one necessary condition to be satisfied by any
state that defines a vacuum of the theory. We are now
interested in situation in which only the first contribu-
tion to (20) is non-vanishing. One such situation was
discussed in Ref. [2], where the state is a ‘dipole’ con-
densate whose correlation functions vanish for any odd
number of fields, and the potential V only contains odd
powers of the fields. More generally, one could consider
a weak-coupling limit of the theory in which the interac-
tions may be neglected. We then have the condition that
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many-atom states can be constructed by repeated ac-
tions of ϕ̂†(gI) on |∅⟩. Such states correspond to spin
networks, with the basic quanta being their vertices, and
can equivalently be interpreted as triangulations labeled
by the same algebraic data. The interpretation of such
states in terms of a continuum metric may require an
embedding into a given manifold. See Refs. [2, 3, 5] for
details of the GFT states and their geometric interpreta-
tion, the relation to LQG, and the GFT dynamics.

On the GFT Fock space, the single-atom operators
(ĝ, B̂i) extend to a ‘total group element’ Ĝ, defined in
terms of an appropriate coordinate system on SU(2), and
a total flux b̂i. We choose coordinates π⃗ on SU(2) by

g =
√

1− π⃗[g]2 1− iσ⃗ · π⃗[g] , |π⃗[g]| ≤ 1 . (7)

The ‘total group coordinate’ operators

Π̂[gI ] =

∫
(dg)4 π⃗[gI ] ϕ̂

†(gJ )ϕ̂(gJ) (8)

and total flux operators, represented as right-invariant
vector fields on SU(2)

b̂iI = iκ

∫
(dg)4 ϕ̂†(gJ)

d

dt
ϕ̂
(
exp

(
τ iI t

)
gJ

) ∣∣∣
t=0

, (9)

are then well-defined on the Fock space. This total flux
is non-commutative (cf. Eq. (6)), as is the corresponding
microscopic variable. We interpret its commutative limit

f̂ i
I = iκ

∫
(dg)4 ϕ̂†(π[gJ ])

∂

∂πI
i

ϕ̂(π[gJ ]) (10)

to be the macroscopic flux variable of direct cosmological
interpretation.

As in the previous example, the flux defines a natu-
rally extensive quantity, while the ‘total group element’
carries no obvious interpretation. We can however define
‘average group coordinates’ through matrix elements,

Π̂[gI ]
av. = ⟨Π̂[gI ]⟩/⟨N̂⟩ . (11)

These ‘averaged group coordinates’ satisfy |Π̂av.| ≤ 1.
The total fluxes b̂I and the averaged group coordinates

Π̂av.
I = 1

⟨N̂⟩
Π̂I are analogous to total momentum and

center-of-mass position, and characterize the condensate.
In particular, the averaged holonomies are the only quan-
tities that can be interpreted consistently as macroscopic
holonomies. Now we investigate their dependence on the
atomic number N in more detail. Noting that the par-
allel transport over a path of coordinate length µ in j-
direction, with approximately constant connection, is

P exp

∫
ω ≈ cos(µ|ωj |)1+

ωj

|ωj |
sin(µ|ωj |) (12)

with ωj ∈ su(2), the averaged group coordinates can thus
be interpreted as the parallel transport of a connection

ω = iσ⃗ · ω⃗ , µ ω⃗ := −
⟨Π⃗⟩

|⟨Π⃗⟩|
arcsin

|⟨Π⃗⟩|

N
, (13)

which depends on both the atomic number and the ‘total
group coordinates’. Eq. (13) can be seen as a change of
variables from (Π⃗, N) to (ω⃗, N).

Fixing µ amounts to defining a coordinate system in
which ω is given. In Ref. [2], µ was taken to be the co-
ordinate length of a ‘fundamental link’ associated to an
elementary quantum of geometry, and taken as constant.
However, as N appears explicitly in Eq. (13), it appears
unnatural to assume that µ should be independent of N .
A more natural coordinate system is one in which the
condensate as a whole is extended over a region of fixed
coordinate length. Each quantum of geometry then occu-
pies an average coordinate volume proportional to 1/N ,
and the coordinate length associated to these quanta is
µ ∝ N−1/3. Adopting such a coordinate system (in itself
of no physical content) is convenient for linking the ef-
fective cosmological equations arising from GFT conden-
sates and the formalism of loop quantum cosmology. The
so defined collective variables correspond to the macro-
scopic, cosmological variables for the GFT condensate.

Interpretation of effective cosmological equations. —
In Ref. [2] it was shown that the dynamics of condensate
states in GFT can be reduced, within certain approxima-
tions, to effective quantum cosmology equations. These
arise from Schwinger–Dyson equations of the GFT, which
take the general form

〈
δO[ϕ, ϕ̄]

δϕ̄(gI)
−O[ϕ, ϕ̄]

δS[ϕ, ϕ̄]

δϕ̄(gI)

〉
= 0 (14)

for any functional O of the GFT field ϕ and its com-
plex conjugate, with fundamental dynamics defined by
an action S. Eq. (14) holds in the vacuum state, for all
O. Requiring Eq. (14) for certain choices of O encodes
the requirement for a GFT condensate state to give a
good approximation to a non-perturbative vacuum (see
Ref. [12] for further analysis of the nature of this approx-
imation). The key result of Ref. [2], at the dynamical
level, was that Eq. (14), for simple choices of O and for
an approximate vacuum state given by a GFT conden-
sate state such as

|σ⟩ ∝ exp (σ̂) |0⟩ , σ̂ :=

∫
(dg)4 σ(gI)ϕ̂

†(gI) , (15)

gives a quantum cosmology-like equation for the cos-
mological ‘wavefunction’ σ (similar to those obtained in
Ref. [13]). Here we want to interpret Eq. (14) directly
in terms of expectation values of second quantized oper-
ators corresponding to the kinetic and interaction terms
of the fundamental GFT action, computed again for con-
densate states that have a cosmological interpretation.

For O = ϕ̄(gI), Eq. (14) becomes, integrating over gI ,

〈∫
(dg)4 ϕ̄(gI)
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δϕ̄(gI)

〉
=

〈∫
(dg)4
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〉
. (16)

Passing to the operator formalism and choosing normal

commutative limit of “total flux” B

2) effective cosmological equations will carry a dependence on <N> (purely quantum observable) when 
expressed in terms of cosmological variables

exact relation between <N> and cosmological variables depends on quantum state

two immediate (generic) consequences:

1) GFT condensate cosmology gives quantum corrections to cosmological equations akin to LQC ones
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derivation of (quantum) cosmological equations from GFT quantum dynamics very general

it rests on:


• continuum homogeneous quantum space (at microscopic scales) ~ GFT condensate

• good encoding of discrete geometry in GFT states

• 2nd quantized GFT formalism

non-linear quantum cosmology-like equations emerging as hydrodynamics for GFT condensate

exact form of equations depends on specific model considered

now: derive effective cosmological dynamics from most promising GFT (spin foam) models

derivation of (quantum) cosmology from fundamental QG formalism!

non-linear quantum cosmology is QG analogue of Gross-Pitaevskii hydrodynamics for BECs

consistent with “geometrogenesis” hypothesis and general “macro-from-micro” scenario

GFT condensates are interesting candidates for physical, geometric vacua of QG theory
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singularity. Again, in this case while the WDW solution follows classical trajectories into
singularities, the LQC solutions exhibit a big bounce. The LQC dynamics is again faithfully
reproduced by an effective equation. Again, quantum geometry modifies the left hand side of
Einstein’s equations but one can move this correction to the right side through an algebraic
manipulation. Then, one finds that the Friedmann equation (ȧ/a)2 = (8πG ρ/3) is replaced
by (

ȧ

a

)2

= (8πG ρ/3)

(
1 −

ρ

ρcrit

)
. (5.6)

In classical general relativity, the right side, 8πGρ/3, is positive, whence ȧ cannot vanish;
the universe either expands forever from the big bang or contracts into the big crunch. In
the LQC effective equation on the other hand, ȧ vanishes when ρ = ρcrit at which a quantum
bounce occurs: To the past of this event, the universe is contracts while to the future, it
expands. This is possible because the LQC correction ρ/ρcrit naturally comes with a negative
sign. This is non-trivial. In the standard brane world scenario, for example, Friedmann
equation is also receives a ρ/ρcrit correction but it it comes with a positive sign (unless one
artificially makes the brane tension negative) whence the singularity is not resolved.

Even at the onset of the standard inflationary era, the quantum correction ρ/ρcrit is of
the order 10−11 and hence completely negligible. Thus, we are justified in using classical
general relativity during inflation. The quantum bounce occurs at ρ = ρcrit and the critical
density is again given by ρcrit ≈ 0.41ρPl. Furthermore, one can show [48] analytically that
the spectrum of the density operator on the physical Hilbert space admits a finite upper
bound ρsup,

ρsup =

√
3

32π2γ3G2!
. (5.7)

By plugging values of constants in the analytical expression of this bound, one finds ρsup =
ρcrit!9

Inclusion of a cosmological constant is discussed in [35]. If Λ > 0, there are again two
types of classical trajectories but the one which starts out at the big-bang expands to an
infinite volume at a finite value φmax of φ. The energy density ρφ in the scalar field goes to
zero at φmax. (The other trajectory is a ‘time reverse’ of this.) Because the φ ‘evolution’ is
unitary in LQC, it yields a natural extension of the classical solution beyond φmax. States
which are semi-classical in the low ρφ regime again follow an effective trajectory. Since ρφ

remains bounded, it is convenient to draw these trajectories in the ρφ-φ plane (rather than
v-φ plane). They agree with the classical trajectories in the low ρφ regime and analytically
continue the classical trajectories beyond ρφ = 0. If Λ < 0, the classical universe undergoes
a recollapse. This is faithfully reproduced by the LQC evolution. Since both the big-bang
and the big-crunch singularities are resolved, the LQC evolution leads to a cyclic universe
as in the k=1 model. Thus, in all these cases, the principal features of the LQC evolution
are robust, including the value of ρcrit.

9 In this evaluation, one uses the value γ ≈ 0.2375 of the Barbero-Immirzi parameter γ obtained from black

hole entropy calculations. The numerical simulations used to calculate ρcrit use the same value. Because

of the factor γ−3, the value of ρsup, is quite sensitive to that of γ. The fact that ρsup is of the order of ρPl

brings out a pleasing coherence between LQC and the entropy calculation from LQG.
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bounce occurs: To the past of this event, the universe is contracts while to the future, it
expands. This is possible because the LQC correction ρ/ρcrit naturally comes with a negative
sign. This is non-trivial. In the standard brane world scenario, for example, Friedmann
equation is also receives a ρ/ρcrit correction but it it comes with a positive sign (unless one
artificially makes the brane tension negative) whence the singularity is not resolved.

Even at the onset of the standard inflationary era, the quantum correction ρ/ρcrit is of
the order 10−11 and hence completely negligible. Thus, we are justified in using classical
general relativity during inflation. The quantum bounce occurs at ρ = ρcrit and the critical
density is again given by ρcrit ≈ 0.41ρPl. Furthermore, one can show [48] analytically that
the spectrum of the density operator on the physical Hilbert space admits a finite upper
bound ρsup,

ρsup =

√
3

32π2γ3G2!
. (5.7)

By plugging values of constants in the analytical expression of this bound, one finds ρsup =
ρcrit!9

Inclusion of a cosmological constant is discussed in [35]. If Λ > 0, there are again two
types of classical trajectories but the one which starts out at the big-bang expands to an
infinite volume at a finite value φmax of φ. The energy density ρφ in the scalar field goes to
zero at φmax. (The other trajectory is a ‘time reverse’ of this.) Because the φ ‘evolution’ is
unitary in LQC, it yields a natural extension of the classical solution beyond φmax. States
which are semi-classical in the low ρφ regime again follow an effective trajectory. Since ρφ

remains bounded, it is convenient to draw these trajectories in the ρφ-φ plane (rather than
v-φ plane). They agree with the classical trajectories in the low ρφ regime and analytically
continue the classical trajectories beyond ρφ = 0. If Λ < 0, the classical universe undergoes
a recollapse. This is faithfully reproduced by the LQC evolution. Since both the big-bang
and the big-crunch singularities are resolved, the LQC evolution leads to a cyclic universe
as in the k=1 model. Thus, in all these cases, the principal features of the LQC evolution
are robust, including the value of ρcrit.

9 In this evaluation, one uses the value γ ≈ 0.2375 of the Barbero-Immirzi parameter γ obtained from black

hole entropy calculations. The numerical simulations used to calculate ρcrit use the same value. Because

of the factor γ−3, the value of ρsup, is quite sensitive to that of γ. The fact that ρsup is of the order of ρPl

brings out a pleasing coherence between LQC and the entropy calculation from LQG.



GFT condensate cosmology: phenomenology?
“standard” directions 

(but calculations to be done):  phenomenology as in LQC, here derived from fundamental theory

• in GFT condensate cosmology, modified gravity equations at effective level basically inevitable

modifications from several ingredients (in addition to involved microscopic dynamics):

“expected from LQC”: • holonomy corrections
• inverse triad corrections
• non-commutativity of fluxes

basis for most LQC phenomenology: modified Friedmann equation
plus quantum corrections

17

singularity. Again, in this case while the WDW solution follows classical trajectories into
singularities, the LQC solutions exhibit a big bounce. The LQC dynamics is again faithfully
reproduced by an effective equation. Again, quantum geometry modifies the left hand side of
Einstein’s equations but one can move this correction to the right side through an algebraic
manipulation. Then, one finds that the Friedmann equation (ȧ/a)2 = (8πG ρ/3) is replaced
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In classical general relativity, the right side, 8πGρ/3, is positive, whence ȧ cannot vanish;
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expands. This is possible because the LQC correction ρ/ρcrit naturally comes with a negative
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equation is also receives a ρ/ρcrit correction but it it comes with a positive sign (unless one
artificially makes the brane tension negative) whence the singularity is not resolved.

Even at the onset of the standard inflationary era, the quantum correction ρ/ρcrit is of
the order 10−11 and hence completely negligible. Thus, we are justified in using classical
general relativity during inflation. The quantum bounce occurs at ρ = ρcrit and the critical
density is again given by ρcrit ≈ 0.41ρPl. Furthermore, one can show [48] analytically that
the spectrum of the density operator on the physical Hilbert space admits a finite upper
bound ρsup,

ρsup =
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32π2γ3G2!
. (5.7)

By plugging values of constants in the analytical expression of this bound, one finds ρsup =
ρcrit!9

Inclusion of a cosmological constant is discussed in [35]. If Λ > 0, there are again two
types of classical trajectories but the one which starts out at the big-bang expands to an
infinite volume at a finite value φmax of φ. The energy density ρφ in the scalar field goes to
zero at φmax. (The other trajectory is a ‘time reverse’ of this.) Because the φ ‘evolution’ is
unitary in LQC, it yields a natural extension of the classical solution beyond φmax. States
which are semi-classical in the low ρφ regime again follow an effective trajectory. Since ρφ

remains bounded, it is convenient to draw these trajectories in the ρφ-φ plane (rather than
v-φ plane). They agree with the classical trajectories in the low ρφ regime and analytically
continue the classical trajectories beyond ρφ = 0. If Λ < 0, the classical universe undergoes
a recollapse. This is faithfully reproduced by the LQC evolution. Since both the big-bang
and the big-crunch singularities are resolved, the LQC evolution leads to a cyclic universe
as in the k=1 model. Thus, in all these cases, the principal features of the LQC evolution
are robust, including the value of ρcrit.

9 In this evaluation, one uses the value γ ≈ 0.2375 of the Barbero-Immirzi parameter γ obtained from black

hole entropy calculations. The numerical simulations used to calculate ρcrit use the same value. Because

of the factor γ−3, the value of ρsup, is quite sensitive to that of γ. The fact that ρsup is of the order of ρPl

brings out a pleasing coherence between LQC and the entropy calculation from LQG.
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it can be derived via the same type of calculations done in LQC ….

…. provided the GFT hydrodynamics approximation (and other assumptions) does not break down in that regime 

(Big Bounce from the full theory!)

if it does break, one has to go back to the full GFT theory, and improve the 
construction (ansatz for vacuum, approximation of SD equations, ….)

and then try again

exactly as one would do in a BEC….

novelty: it can be done!
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(but conceptual and technical issues to be solved, first)
effective dynamics of cosmological perturbations
from first principles, i.e. from full QG formalism

needed for computation of CMB spectrum
needed for tests of fate of Lorentz invariance

several strategies:

“cheap” (similar to Agullo, Ashtekar, Nelson): 
1.  define modified FRW metric from expectation values for cosmological variables derived from GFT
2. use it inside standard effective QFT for fields

“ambitious”: 
1. develop statistical aspects of GFT condensate hydrodynamics, in terms of “homogeneous patches” (S. Gielen, ’15)
2. derive effective dynamics for GFT fluctuations above condensate from full theory
3. recast it in standard spacetime-based QFT form using information from background GFT condensate

(difficulty is: the formalism naturally gives it in diffeo-invariant variables, spacetime-free form)

expect deformation of standard QFT:

• holonomization of the connection and non-commutativity of triad variables, both entering definition of basic 
variables for perturbations (momenta, positions)

• derivation of effective dynamics of perturbations around mean field in topological GFT: 
non-commutative scalar field theory on non-commutative flat space

W. Fairbairn, E. Livine, ’07; F. Girelli, E. Livine, DO, ‘09
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• direct cosmological signatures of geometrogenesis phase transition?
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a new avenue for analogue gravity: analogue GFT condensate quantum cosmology in real BECs?
need to simulate mini-superspace, not spacetime 

BEC hydrodynamics needs to reproduce GFT “classical” equations”, not GR equations 
no problem with lack of diffeo invariance or relativistic symmetry in the lab



Foundational issues: the universe as a (quantum) fluid

•    GFT condensates encoded in “collective wave function” identical to Quantum Cosmology one


• corresponding dynamical equation is non-linear and non-local (on mini-superspace)


• cosmological dynamics is hydrodynamics of fundamental GFT (analogue of GP equation for BEC)


• still, fundamental dynamics is (more or less) standard quantum mechanics for QG d.o.f.s

(although big interpretational issues (e.g. concerning probabilities, unitarity, etc) remain)


calls for new interpretation of “quantum cosmology” (see also Bojowald, ’15):


• quantum cosmology is not quantum at all; rather, “cosmological hydrodynamics”  

no probability for “the whole universe”, no “Hilbert space of states of the Universe”


• can still use expectation values (average quantities) but in “hydrodynamics” (realistic/statistical) sense

• no problem of “collapse of cosmological wave function” or spontaneous collapse due to non-linearites?

related work by Pearle, Sudarsky, Perez, Peter, Martin, ... 



4th message

a new promising direction to extract effective cosmological dynamics 
(and associated phenomenology)

directly from full QG theory!



Thank you for your attention!


