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Quantum Gravity problem:

identify microscopic d.o.f. of guantum spacetime and their fundamental dynamics

various approaches: group field theory, loop quantum gravity

derive effective (QG-inspired) models for (quantum) cosmology:

explain features of

early Universe, obtain testable QG predictions

various models: loop quantum cosmology, ....

task is daunting (compare with analogue problem in condensed matter theory)
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Group field theories

Quantum field theories over group manifold G (or corresponding Lie algebra) Q GX d — C

relevant classical phase space for “GFT quanta”: (T* G ) Xd ( gx G ) xd

example: d=4

can reduce to subspaces in specific models depending on conditions on the field

d is dimension of “spacetime-to-be”

90(91792793794) — @(B17B27B3,B4) — C

can be defined for any (Lie) group and dimension d, any signature, .....

very general framework; interest rests on specific models/use
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classical action: kinetic (quadratic) term + (higher order) interaction (convolution of GFT fields)
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“combinatorial non-locality” /
in pairing of field arguments

simplest example (case d=4): simplicial setting

combinatorics of field arguments in interaction: gluing of 5 tetrahedra across common
triangles, to form 4-simplex (“building block of spacetime”)
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Group field theories

Feynman perturbative expansion around trivial vacuum
ANT

Z — /DQOD¢ et ®) Ar
21“: sym(I')

Feynman diagrams (obtained by convoluting propagators with interaction kernels) =
= stranded diagrams dual to cellular complexes of arbitrary topology

(simplicial case: simplicial complexes obtained by gluing d-simplices in arbitrary ways)

Feynman amplitudes (model-dependent): 1

= > Lo
equivalently: o T g T k

spin foam models (sum-over-histories of
spin networks)
Reisenberger,Rovelli, ’00 p j J

. lattice path integrals k
(with group+Lie algebra variables)
A. Baratin, DO, ‘11

all current spin foam models have GFT formulaton™~—___  , _~
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appropriate conditions on GFT fields or GFT dynamics (and choice of data) turn GFT Feynman amplitudes
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GFT models of 4d gravity:

based on classical (Plebanski) formulation of GR as BF theory + (simplicity) constraints

start from GFT formulation of 4d BF theory
+ impose simplicity constraints (geometricity of simplicial structures)

(Barbieri, Baez, Barrett, Crane, Reisenberger, Perez, De Pietri, Engle, Pereira, Freidel, Krasnov, Rovelli, Livine, Speziale, Baratin, DO, ...... )

“geometricity operator” = simplicity constraints + gauge invariance:

Goop=CpSPpd=8°bCpdp =T

concrete, well-defined GFT (spin foam) model(s) for 4d QG dynamics - nice discrete geometry, lots of results .....

decompose GFT field in SU(2) data +
geometricity conditions

all current spin foam models have a GFT formulation ¢

GFT dynamics to LQG quantum states
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GFTs, loop guantum gravity, spin foam models

second quantized version of Loop Quantum Gravity

but dynamics not derived from canonical quantization of GR DO, 1310.7786 [gr-qc]
DO, J. Ryan, J. Thuerigen, ‘14

(LQG spin network states ~ many-particles states, “particle” ~ spin network vertex)

QFT methods (i.e. GFT reformulation of LQG and spin foam models) useful to address physics of large
numbers of LQG d.o.f.s, i.e. many and refined graphs (continuum limit)

(superpositions of “many-vertices” states, refinement as creation of new vertices, etc)

1. making sense of quantum dynamics and LQG partition function (correlations)
2. understanding LQG phase structure

3. extracting effective continuum dynamics



1st message

we have a solid candidate formalism for a theory of quantum gravity (a QFT for the “atoms of quantum space”)

grounded in LQG (and discrete gravity, tensor models)

rigorous mathematics, clear pre-geometric meaning

promising fundamental dynamical models

lots of results ........
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The problem of the continuum limit in QG

new (non-geometric, non-spatio-temporal) physical degrees of freedom (“building blocks”) for space-time

\

new direction to explore: number of fundamental degrees of freedom

main point:

physics of few d.o.f.s is different from physics of (very) many d.o.f.s

(quantum) continuum, geometric space-time should be recovered in the regime of large number N of
non-spatio-temporal d.o.f.s

GFTs are a formulation of LQG/spin foams that is most suited to tackle this problem, thanks to QFT tools
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continuum approximation very different (conceptually and technically) from classical approximation

few QG d.?.fl._s c oo full Quantum Gravity
N-direction (e.g. sm:e QG spinnets) ‘
(collective behaviour of many interacting degrees of freedom):

continuum approximation

h-direction: classical approximation

\ h

“well-understood” in spin foam models

no reason they expect that they commute! N

few QG d.o.f.s in classical approx. General Relativity
(e.g. discrete/lattice gravity) (continuum spacetime)




Problem of the continuum in QG: role of

alC

Renormalization Group is crucial tool (mathematical, conceptual, physical)

renormalization is not about “curing or hiding divergences”, but
taking into account the physics of more and more d.o.f.s



Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool (mathematical, conceptual, physical)

renormalization is not about “curing or hiding divergences”, but
taking into account the physics of more and more d.o.f.s

for our QG models (LQG/spin foams), do not expect to have a unique continuum limit



Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool (mathematical, conceptual, physical)

renormalization is not about “curing or hiding divergences”, but
taking into account the physics of more and more d.o.f.s

for our QG models (LQG/spin foams), do not expect to have a unique continuum limit



Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool (mathematical, conceptual, physical)

renormalization is not about “curing or hiding divergences”, but
taking into account the physics of more and more d.o.f.s

for our QG models (LQG/spin foams), do not expect to have a unique continuum limit

collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases,
separated by phase transitions



Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool (mathematical, conceptual, physical)

renormalization is not about “curing or hiding divergences”, but
taking into account the physics of more and more d.o.f.s

for our QG models (LQG/spin foams), do not expect to have a unique continuum limit

collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases,
separated by phase transitions



Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool (mathematical, conceptual, physical)

renormalization is not about “curing or hiding divergences”, but
taking into account the physics of more and more d.o.f.s

for our QG models (LQG/spin foams), do not expect to have a unique continuum limit

collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases,
separated by phase transitions

for a non-spatio-temporal QG system (e.g. LQG in GFT formulation),



Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool (mathematical, conceptual, physical)

renormalization is not about “curing or hiding divergences”, but
taking into account the physics of more and more d.o.f.s

for our QG models (LQG/spin foams), do not expect to have a unique continuum limit

collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases,
separated by phase transitions

for a non-spatio-temporal QG system (e.g. LQG in GFT formulation),
which of the macroscopic phases is described by a smooth geometry with matter fields?



Problem of the continuum in QG: role of RG

Renormalization Group is crucial tool (mathematical, conceptual, physical)

renormalization is not about “curing or hiding divergences”, but
taking into account the physics of more and more d.o.f.s

for our QG models (LQG/spin foams), do not expect to have a unique continuum limit

collective behaviour of (interacting) fundamental d.o.f.s should lead to different macroscopic phases,
separated by phase transitions

for a non-spatio-temporal QG system (e.g. LQG in GFT formulation),
which of the macroscopic phases is described by a smooth geometry with matter fields?

in specific GFT case:

- fundamental formulation of QG = QFT, defined perturbatively around “no-space” (degenerate) vacuum

need to prove consistency of the theory: perturbative GFT renormalizability

ned to understand effective dynamics at different “GFT scales”:
RG flow of effective actions & phase structure & phase transitions
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starting from degenerate phase, continuum geometric physics in new phase
new phase can be “condensate” phase of QG “atoms of space”
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idea of “geometrogenesis” in LQG/GFT :
starting from degenerate phase, continuum geometric physics in new phase
new phase can be “condensate” phase of QG “atoms of space”

in canonical LQG context: in covariant SF/GFT context: also in tensor models
T. Koslowski, 0709.3465 [gr-qc] DO, 0710.3276 [gr-qc] V. Rivasseau, ‘13
need to prove, in the full quantum dynamics, a phase transition to non-degenerate (e.g. condensate) phase

some experience and results in tensor models and GFTs

V. Bonzom, R. Gurau, A. Riello, V. Rivasseau, ’11;
A. Baratin, S. Carrozza, DO, J. Ryan, M. Smerlak, ‘13

first possible interpretation:
other phases and phase transition -not- physical, just formal: theory makes sense only in geometric phase
this is point of view in CDT (J. Ambjorn, R. Loll, ...) , but see J. Mielczarek, ‘14

second possible interpretation:
other phases are physical; phase transitions are physical; we live in the geometric phase

if geometric phase transition is physical, which physics does it describe?

natural hypothesis: very early Universe - big bang as QG phase transition
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GFT is QG analogue of QFT for atoms in condensed matter system

continuum spacetime (with GR-like dynamics) emerges from collective behaviour of large numbers of GFT
building blocks (e.g. spin nets, simplices), possibly only in one phase of microscopic system

continuum spacetime as a peculiar qguantum fluid

more specific hypothesis: continuum spacetime is GFT condensate
GR-like dynamics from GFT condensate hydrodynamics

simple candidates for physical (geometric) vacuum: GFT condensates

what is their definition? do they have a continuum geometric interpretation?
what is their effective quantum dynamics? does it relate to GR?

DO, L. Sindoni, ’10; S. Gielen, DO, L. Sindoni, 1303.3576 [gr-qgc], 1311.1238 [gr-qc];
S. Gielen, ’14; G. Calcagni, ’14; L. Sindoni, ’14; S. Gielen, DO, ‘14
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canonical LQG:

purely kinematical, inequivalent representations (phases) of quantum algebra of observables

AL vacuum ‘())AL

AL{(0|FEg|0)ar, = 0 VS
oarFg <<1 darAg >>1

KS vacuum 0) ks

ks{0|Es|0)ks = Eg VS
OxsFEqg <<1 O0ggAg>>1

DG vacuum

(or BF vacuum) ‘O> DG

pc(0|F(A)|0)pg = 0
SpaA <<1 épaFg>>1

totally degenerate geometry (emptiest state)
connection highly fluctuating

diffeo invariant

J. Lewandowski, A. Okolow, H. Sahimannm T. Thiemann’06

C. Fleischack, ‘06

non-degenerate geometry (triad condensate)
connection highly fluctuating
diffeo covariant

T. Koslowski, H. Sahlmann, 1109.4688 [gr-qc]

non-degenerate flat connection
metric highly fluctuating

diffeo covariant

simplicial context

B. Dittrich, M. Geiller, 1401.6441 [gr-qc]
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canonical LQG:
purely kinematical, inequivalent representations (phases) of quantum algebra of observables

AL vacuum

DG vacuum
(or BF vacuum)

KS vacuum

\

GFT condensate

phase transitions




Continuum Phases & phase transitions in LQG

spin foam models (without GFT framework)

rewrite them as lattice gauge theory path integrals
- define (background independent) coarse graining procedure

look for flow of effective actions and fixed points

technically (numerically) very challenging

many results, mainly in simplified models (simpler algebraic data, dimensionally reduced models)

work by:

B. Bahr, B. Dittrich, F. Eckert, F. Hellmann, W. Kaminski, M. Martin-Benito, S. Steinhaus, .... - '09-‘15



Renormalization of GFTs: where are we”?

. power counting and radiative corrections in GFT models
(cut-off of fields in representation space)

. topological simplicial GFT models (BF theory):
. partial power counting and scaling theorems - large-N scaling
L. Freidel, R. Gurau, DO, '09; J. Magnen et al., '09; J. Ben Geloun, J. Magnen, V. Rivasseau, ‘10 ; R. Gurau, ’'11; S. Carrozza, DO, ’'11,’12

. radiative corrections of 2-point function: need for Laplacian kinetic term

J. Ben Geloun. V. Bonzom. ‘11

. super-renormalizability in abelian case (3d, with Laplacian)
J. Ben Geloun, ‘13

. 4d gravity models

. super-renormalizability of some versions of BC model
A. Perez, C. Rovelli, ’00, ‘01

. radiative corrections of 2-point function in EPRL-FK model

T. Kraiewski. J. Maanen. V. Rivasseau. A. Tanasa. P. Vitale. ’10: A. Riello. ‘13



Renormalization of GFTs: where are we”?

- systematic renormalisation group analysis of tensorial GFT models:
requires subtle analysis of combinatorics of diagrams (dual to cellular complexes)



Renormalization of GFTs: where are we”?

- systematic renormalisation group analysis of tensorial GFT models:
requires subtle analysis of combinatorics of diagrams (dual to cellular complexes)

many results: perturbative renormalizability (around free theory) and renormalisation group flow

J. Ben Geloun, D. Ousmane-Samary, V. Rivasseau, S. Carrozza, DO, E. Livine, F. Vignes-Tourneret, A. Tanasa, M. Raasakka, .....



Renormalization of G

-1s: where are we”?

- systematic renormalisation group analysis of tensorial GFT models:

requires subtle analysis of combinatorics of diagrams (dual to cellular complexes)

many results: perturbative renormalizability (around free theory) and renormalisation group flow

J. Ben Geloun, D. Ousmane-Samary, V. Rivasseau, S. Carrozza, DO, E. Livine, F. Vignes-Tourneret, A. Tanasa, M. Raasakka, .....

- several renormalizable abelian TGFT models (different groups and dimension, with/without gauge invariance)

J. Ben Geloun, V. Rivasseau, '11; J. Ben Geloun, D. Ousmane-Samary, ‘11 S. Carrozza, DO, V. Rivasseau, ‘12

- first renormalizable non-abelian TGFT model in 3d with gauge invariance (3d BF + laplacian)

S. Carrozza, DO, V. Rivasseau, ‘13

- proof of asymptotic freedom for abelian TGFT models without gauge invariance

J. Ben Geloun, D. Ousmane-Samary, '11; J. Ben Geloun, 12

- study of asymptotic freedom/safety for non-abelian TGFT models with gauge invariance

S. Carrozza, ‘14



Renormalization of G

-1s: where are we”?

- systematic renormalisation group analysis of tensorial GFT models:

requires subtle analysis of combinatorics of diagrams (dual to cellular complexes)

many results: perturbative renormalizability (around free theory) and renormalisation group flow

J. Ben Geloun, D. Ousmane-Samary, V. Rivasseau, S. Carrozza, DO, E. Livine, F. Vignes-Tourneret, A. Tanasa, M. Raasakka, .....

- several renormalizable abelian TGFT models (different groups and dimension, with/without gauge invariance)

J. Ben Geloun, V. Rivasseau, '11; J. Ben Geloun, D. Ousmane-Samary, ‘11 S. Carrozza, DO, V. Rivasseau, ‘12

- first renormalizable non-abelian TGFT model in 3d with gauge invariance (3d BF + laplacian)

S. Carrozza, DO, V. Rivasseau, ‘13

- proof of asymptotic freedom for abelian TGFT models without gauge invariance

J. Ben Geloun, D. Ousmane-Samary, '11; J. Ben Geloun, 12

- study of asymptotic freedom/safety for non-abelian TGFT models with gauge invariance

« Functional Renormalization Group for TGFTs

S. Carrozza, ‘14

D. Benedetti, J. Ben Geloun, DO, ’14; J. Ben Geloun, R.Matrtini, DO, ‘15
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D. Benedetti, J. Ben Geloun, DO, ‘14
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D. Benedetti, J. Ben Geloun, DO, ‘14
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large-N regime (“formal UV”):

asymptotic freedom
(Gaussian fixed point with two relev. directions)

| | | | |
0.006 0.008




Renormalization group flow of GFTs from FRG

D. Benedetti, J. Ben Geloun, DO, ‘14

anexample:  ©(g1,92,93) = ) @pipapse?? eP2R2e?% e R g =€ e U1) 0, €[-m7) p €L

P1,P2,P3

1
%Trz(so K ) + %Trg(cf) + gine ASn(p) = §T1‘(¢ Ry - ¢)
A / 3
= (Tra (") + Sym(1 — 2 3)) Ru({pi}; {B}) = 8y Znv (N _ %;M) OV - ! ;pi)
Z @123(% sz')%zs
pi N 7
Z 90%23
pieN

E Y123 L1723 P172/3" P12/3/

pi,p;EN



Renormalization group flow of GFTs from FRG

D. Benedetti, J. Ben Geloun, DO, ‘14
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small-N regime (“formal IR”):

two IR fixed points:
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2Nnd message

problem of the continuum in QG (GFT,LQG): crucial to connect to macrophysics, difficult and open

we are addressing it

RG is crucial tool, different strategies, many results (renormalizable models, RG flows,...)

QG phase transition (condensation?) could be physical

cosmological interpretation: realization of “Emergent Spacetime” and of “Universe as a Condensate” ideas



Quant

UM spaceti
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lcult path -

oM microstructure to cosmology

Quantum Gravity problem:

identify microscopic d.o.f. of guantum spacetime and their fundamental dynamics

derive effective (QG-inspired) models for fundamental (quantum) cosmology:
explain features of early Universe, obtain testable QG predictions

various models: loop quantum cosmology, ....

task is daunting (imagine analogue problem in condensed matter theory)



(Quantum) Cosmology from GFT

S. Gielen, DO, L. Sindoni, PRL, arXiv:1303.3576 [gr-qc]; JHEP, arXiv:1311.1238 [gr-qc]

problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

problem 2:
extract from fundamental theory an effective macroscopic dynamics for such states
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extract from fundamental theory an effective macroscopic dynamics for such states

following procedures of standard BEC

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs
IS
non-linear and non-local extension of quantum cosmology equation for collective wave function
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90(917 g2, 9s, 94) N 90(31, Bs, Bs, B4) — C describes geometric tetrahedron
e BAP = ¢ JkeAeE (closure + simplicity constraints)
& e generic N-particle GFT state (N geometric tetrahedra):
many results in LQG, |Bf(m) H 95 Bl(m)a sy B4(m))‘0>

simplicial geometry _

 from B’s of each GFT quantum, 1
construct: gij = 8tr(BlBgB3)

kl _— mn N ~

interpretation: spatial metric coefficients (and conjugate variables) “sampled” at N points

BI(m) 7 Gij (Tm) <> ai(Tm) gr(m) <7 Kj (Tm) <> Pa, (Tm)

° classical criterion for homogeneity (for GFT data): Gij(m) = 9ij(k)y VEk,m=1,..., N

i.e. all GFT quanta are labelled by the same (gauge invariant) data
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(Gross-Pitaevskii approximation) S. Gielen, DO, L. Sindoni, '13; DO, D. Pranzetti, J. Ryan, L. Sindoni, ‘15
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. data for homogeneous anisotropic geometries

. truly non-perturbative quantum states (infinite QG dofs, superposition of graphs)
. support perturbations at any sampling scale N

. 2nd quantized coherent states ¢(g;r)|o) = o(gr) |o)

. can be studied using BEC techniques
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non-linear and non-local extension of quantum cosmology-like equation for “collective wave function”

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

similar equations obtained in non-linear extension of LQC (Bojowald et al. ’12)

toy examples of effective dynamics have been studied (S. Gielen, DO, L. Sindoni °*13; S. Gielen, ’14; G. Calcagni ‘14; S. Gielen,
DO, ‘14) , with approximate Friedmann eq emerging in isotropic case

effective cosmological dynamics from full-blown 4d gravity models? under way (DO, L. Sindoni, E. Wilson-Ewing, ‘15)
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key new element in 2nd quantised framework: number operator N

crucial in identifying macroscopic (cosmological) variables + enters effective cosmological dynamics
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Cosmological variables and LQC lattice refinement
from GFT condensate cosmology

S. Gielen, DO, arXiv:1407.8167 [gr-qc]

key new element in 2nd quantised framework: number operator N

crucial in identifying macroscopic (cosmological) variables + enters effective cosmological dynamics

[Qaéz] = —ikT'q, [Ez,éj] — _ikeY, Bk

g=+/1-7[g]21—-i7-®lg], |7[g]| <1

microscopic (single vertex, 1st quantized) variables:

macroscopic (2nd quantized) variables:

o . d 7; ) L )
by, = 1K / (dg) w*(gf)&w (exp (75 t) g1) | IT[g,] = / (dg)* ®[ga] &' (g9r)P(g1)

total (non-commutative) flux “total holonomy”

satisfying: [b’é;, ﬁ[ga]] X N

entering effective (semiclassical) cosmological equations via expectation values: < 52 > < ﬁ[ga] >
macroscopic geometric conjugate variables are instead: (ﬁ[ga]av°) - <ﬁ[9a] > / <N>

“average holonomy”
one extensive, other intensive B — < bt >
a
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Cosmological variables and LQC lattice refinement
from GFT condensate cosmology

S. Gielen, DO, arXiv:1407.8167 [gr-qc]

natural definition of “cosmological flux variable: f} — ik /(dg)4 @T(W[gj])%gb(ﬁ[gj])

commutative limit of “total flux” B
T | . L. (I (D]
natural definition of “cosmological connection”: Uw = ——=— arcsin N

(I

[l encodes choice of coordinate system in defining the cosmological connection
can be chosen as in “improved” LQC: u = N—1/3

intrinsic dependence of cosmological holonomies on N = average number of microscopic building blocks

GFT condensate counterpart of the “lattice refinement” in LQC

two immediate (generic) consequences:
1) GFT condensate cosmology gives quantum corrections to cosmological equations akin to LQC ones

2) effective cosmological equations will carry a dependence on <N> (purely quantum observable) when
expressed in terms of cosmological variables

exact relation between <N> and cosmological variables depends on quantum state
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GFT condensates are interesting candidates for physical, geometric vacua of QG theory

derivation of (quantum) cosmological equations from GFT quantum dynamics very general

it rests on:
. continuum homogeneous quantum space (at microscopic scales) ~ GFT condensate
. good encoding of discrete geometry in GFT states
. 2nd quantized GFT formalism

non-linear quantum cosmology-like equations emerging as hydrodynamics for GFT condensate

( derivation of (quantum) cosmology from fundamental QG formalism! )

exact form of equations depends on specific model considered
now: derive effective cosmological dynamics from most promising GFT (spin foam) models

non-linear quantum cosmology is QG analogue of Gross-Pitaevskii hydrodynamics for BECs

consistent with “geometrogenesis” hypothesis and general “macro-from-micro” scenario
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new, due to embedding into full theory:

other source of LQC phenomenology (Bojowald et al.): deformation of diffeomorphism algebra & signature change



GFT condensate cosmology: phenomenology”

“standard” directions

(but calculations to be done): phenomenology as in LQC, here derived from fundamental theory

basis for most LQC phenomenology: modified Friedmann equation (d)2 — (87G p/3) (1 P )

plus quantum corrections a Perit

- in GFT condensate cosmology, modified gravity equations at effective level basically inevitable

modifications from several ingredients (in addition to involved microscopic dynamics):

“expected from LQC”: . holonomy corrections
inverse triad corrections
« non-commutativity of fluxes

- new QG observable N: number of “QG atoms of space”
non-linear terms in effective cosmological equations
hydrodynamic character of cosmological dynamics

new, due to embedding into full theory:

other source of LQC phenomenology (Bojowald et al.): deformation of diffeomorphism algebra & signature change

. diffeos in GFT also expected to be deformed: A. Baratin, F. Girelli, DO, ‘11
- simplicial diffeos realised as global quantum group symmetry in topological models
. expect more surprises at effective cosmological level
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Big Bounce?

given effective cosmological equations for GFT condensates,

' |
it can be derived via the same type of calculations done in LQC .... (Big Bounce from the full theory!)

.... provided the GFT hydrodynamics approximation (and other assumptions) does not break down in that regime

if it does break, one has to go back to the full GFT theory, and improve the
construction (ansatz for vacuum, approximation of SD equations, ....)
and then try again

novelty: it can be done!

exactly as one would do in a BEC....
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“standard” directions effective dynamics of cosmological perturbations
(but conceptual and technical issues to be solved, first) from first principles, i.e. from full QG formalism

needed for computation of CMB spectrum
needed for tests of fate of Lorentz invariance

several strategies:

“cheap” (similar to Agullo, Ashtekar, Nelson):
1. define modified FRW metric from expectation values for cosmological variables derived from GFT
use it inside standard effective QFT for fields

“ambitious”:
1. develop statistical aspects of GFT condensate hydrodynamics, in terms of “homogeneous patches” (S. Gielen, '15)
2. derive effective dynamics for GFT fluctuations above condensate from full theory
3. recast it in standard spacetime-based QFT form using information from background GFT condensate
(difficulty is: the formalism naturally gives it in diffeo-invariant variables, spacetime-free form)

expect deformation of standard QFT:

+ holonomization of the connection and non-commutativity of triad variables, both entering definition of basic
variables for perturbations (momenta, positions)

derivation of effective dynamics of perturbations around mean field in topological GFT:

non-commutative scalar field theory on non-commutative flat space
W. Fairbairn, E. Livine, '07; F. Girelli, E. Livine, DO, ‘09
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. “cosmological dissipation”?
effective cosmological counterpart of interaction between QG atoms forming GFT condensate and GFT fluctuations over it
S. Liberati, L. Maccione, ‘13

. cosmological signature of “depletion factor”?
assumption of all QG atoms being in condensate state is irrealistic: new observable: depletion factor

what is its effective cosmological significance?
F. Girelli, S. Liberati, L. Sindoni, ‘09

. direct cosmological signatures of geometrogenesis phase transition?
C. Contaldi, J. Magueijo, L. Smolin, ‘06

a new avenue for analogue gravity: analogue GFT condensate quantum cosmology in real BECs?

need to simulate mini-superspace, not spacetime
BEC hydrodynamics needs to reproduce GFT “classical” equations”, not GR equations
no problem with lack of diffeo invariance or relativistic symmetry in the lab



Foundational issues: the universe as a (quantum) fluid

. GFT condensates encoded in “collective wave function” identical to Quantum Cosmology one
. corresponding dynamical equation is non-linear and non-local (on mini-superspace)

. cosmological dynamics is hydrodynamics of fundamental GFT (analogue of GP equation for BEC)
. still, fundamental dynamics is (more or less) standard quantum mechanics for QG d.o.f.s

(although big interpretational issues (e.g. concerning probabilities, unitarity, etc) remain)

calls for new interpretation of “quantum cosmology” (see also Bojowald, ’15):

. quantum cosmology is not quantum at all; rather, “cosmological hydrodynamics”

no probability for “the whole universe”, no “Hilbert space of states of the Universe”
e can still use expectation values (average quantities) but in “hydrodynamics” (realistic/statistical) sense
e no problem of “collapse of cosmological wave function” or spontaneous collapse due to non-linearites?

related work by Pearle, Sudarsky, Perez, Peter, Martin, ...



4th message

a new promising direction to extract effective cosmological dynamics
(and associated phenomenology)

directly from full QG theory!



Thank you for your attention!



