ON VECTOR ARMA MODELS CONSISTENT WITH A FINITE MATRIX COVARIANCE SEQUENCE Bin Zhu Department of Information Engineering (DEI), University of Padova

VARMA covariance matching problem

A forward unilateral ARMA model for an *m*-dimensional stationary process $\{y(t)\}$

$$\sum_{k=0}^{n} A_k y(t-k) = \sum_{k=0}^{n} B_k w(t-k), \quad t \in \mathbb{Z},$$
(1)

k=0

where $\{A_k, B_k \in \mathbb{R}^{m \times m}\}$ are matrix parameters and $\{w(t)\}$ is an *m*-dimensional white noise with variance $\mathbb{E}[w(t)w(t)^{\top}] = I_m$.

Define two matrix polynomials

$$A(z) := \sum_{k=1}^{n} A_k z^{-k}, \quad B(z) := \sum_{k=1}^{n} B_k z^{-k}.$$

Review of the degree theory

Assume $D \subset \mathbb{R}^n$ is bounded open and $f : \overline{D} \to \mathbb{R}^n$ is smooth (in C^{∞}). Consider the solvability of the equation

f(x) = y.

We call $y \in \mathbb{R}^n$ a regular value of f if either (i) for any $x \in f^{-1}(y)$, det $f'(x) \neq 0$ or (ii) $f^{-1}(y)$ is empty.

Here f'(x) denotes the Jacobian matrix of f evaluated at x. Let y be a regular value of type (i) and $y \notin f(\partial D)$, the degree of f at y is defined as

The spectral density of $\{y(t)\}$

 $\Phi(z) = A(z)^{-1}B(z)B(z^{-1})^{\top}A(z^{-1})^{-\top}.$

Define the set $\mathfrak{S}_{m,n}$ of matrix Schur polynomials

$$M(z) = \sum_{k=0}^{n} M_k z^{-k}, \quad M_k \in \mathbb{R}^{m \times m}$$

such that

• M_0 is lower triangular with positive diagonal elements; • det M(z) = 0 implies $z \in \mathbb{D}$;

$$\int_{-\pi}^{\pi} \operatorname{tr} \left[M(e^{i\theta}) M(e^{i\theta})^* \right] \frac{d\theta}{2\pi} = \operatorname{tr}(\mathbf{M}\mathbf{M}^{\top}) < \mu.$$

where $\mathbf{M} = [M_0, \ldots, M_n] \in \mathbb{R}^{\frac{1}{2}m(m+1)+m^2n}$ and μ is an arbitrarily large positive constant. The set $\mathfrak{S}_{m,n}$ is open and bounded if identified as a subset of the Euclidean space.

Define the set $\mathfrak{P}_{m,n}$ of Hermitian matrix pseudo-polynomials of order n

$$P(z) = \sum_{k=-n}^{n} P_k z^{-k}, \quad P_{-k} = P_k^{\top} \in \mathbb{R}^{m \times m},$$

and the subset that contains positive ones on the unit circle

 $\mathfrak{P}_{m,n}^{+} := \{ P(z) \in \mathfrak{P}_{m,n} : P(z) > 0, \ \forall z \in \mathbb{T} \}.$

 $\deg(f, y, D) := \sum \int \operatorname{sign} \det f'(x),$ f(x) = y

where the sign function

$$\operatorname{sign}(x) = \begin{cases} 1 & \text{if } x > 0\\ -1 & \text{if } x < 0 \end{cases}$$

and not define at 0. For regular values of type (ii), we set $\deg(f, y, D) = 0$.

Moreover, the set of regular values is dense in \mathbb{R}^n by Sard's theorem. When y is not a regular value (also called a *critical value*), the degree can also be defined by means of limit. Further properties of the degree related to our problem:

• If y_1 and y_2 belong to the same component of $\mathbb{R}^n - f(\partial D)$, then $\deg(f, y_1, D) =$ $\deg(f, y_2, D).$

• If $\deg(f, y, D) \neq 0$, there exists $x \in D$ such that f(x) = y.

• Homotopy invariance. If $F : \overline{D} \times [a, b] \to \mathbb{R}^n$ is continuous and if $F(x, t) \neq y$ for $x \in \partial D$ and $t \in [a, b]$, then deg (F_t, y, D) is defined and independent of $t \in [a, b]$. Here F_t is the map of D into \mathbb{R}^n defined by $F_t(x) = F(x, t)$.

Existence of a solution

Given the block Toeplitz matrix $\mathbf{T}_n > 0$, let $\lambda_{\min} > 0$ be its smallest eigenvalue. Define the subset

 $\mathfrak{D}_{m,n}^+ := \{ P(z) \in \mathfrak{P}_{m,n}^+ : \det P_n \neq 0 \text{ and } \operatorname{tr} P_0 < \min\{1, \lambda_{\min}\} \mu \}.$

Problem 1 (VARMA Covariance Matching). Suppose we are given an MA polynomial $B(z) \in \mathfrak{S}_{m,n}$ and n+1 real $m \times m$ matrices C_0, C_1, \ldots, C_n , such that the block-Toeplitz matrix

$$\mathbf{T}_{n} = \begin{bmatrix} C_{0} & C_{1} & C_{2} & \cdots & C_{n} \\ C_{1}^{\top} & C_{0} & C_{1} & \cdots & C_{n-1} \\ C_{2}^{\top} & C_{1}^{\top} & C_{0} & \cdots & C_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{n}^{\top} & C_{n-1}^{\top} & C_{n-2}^{\top} & \cdots & C_{0} \end{bmatrix}, \qquad n \in \mathbb{Z}_{+}$$

is positive definite. Determine the AR polynomial $A(z) \in \mathfrak{S}_{m,n}$ such that the first n+1 covariance matrices of the process $\{y(t)\}$ described by the VARMA model (1) match the sequence $\{C_k\}$.

An equivalent algebraic problem

Given covariance data organized as a block row vector

$$\mathbf{C} = \begin{bmatrix} C_0 \ C_1 \ \dots \ C_n \end{bmatrix}$$

define a map

 $f_{\mathbf{C}}: \mathfrak{S}_{m,n} \to \mathfrak{P}_{m,n}$ $A(z) \mapsto P(z)$ as follows. First compute the polynomial $H(z) := \sum_{k=0}^{n} H_k z^{-k}$ of order n by polynomial multiplication and truncation

Theorem 1. For any fixed $B(z) \in \mathfrak{S}_{m,n}$ such that $P(z) := B(z)B(z^{-1})^{\top}$ belongs to $\mathfrak{D}_{m,n}^+$, there exists a matrix polynomial $A(z) \in \mathfrak{S}_{m,n}$ such that the first n+1 covariance matrices of the VARMA model (1) defined by the coefficients of A(z), B(z) match the given data C_0, \ldots, C_n .

Sketch of the proof. It is sufficient to show that $\deg(f_{\mathbf{C}}, P(z), \mathfrak{S}_{m,n}) \neq 0$ for $P(z) \in \mathfrak{D}_{m,n}^+$. Compute the degree using the homotopy invariance property.

Consider the data $\mathbf{O} = [I_m, 0, \dots, 0]$, and the corresponding map becomes $P(z) = f_{\mathbf{O}}(A(z)) := A(z)A(z^{-1})^{\top},$

and the problem is reduced to the matrix spectral factorization. **Lemma 1.** Define $\Sigma(t) := t\mathbf{C} + (1-t)\mathbf{O}, t \in [0,1], and the corresponding function$ $f_{\Sigma(t)}$ in the same way as $f_{\mathbf{C}}$. Then the function

```
\mathcal{F}: \mathfrak{S}_{m,n} \times [0,1] \to \mathfrak{P}_{m,n}
                                                                  (A(z),t) \mapsto f_{\Sigma(t)}(A(z))
is a smooth homotopy between f_{\mathbf{C}} and f_{\mathbf{O}}.
Lemma 2. For any P(z) \in \mathfrak{D}_{m\,n}^+,
                                                        \left| \deg\left(f_{\mathbf{O}}, P(z), \mathfrak{S}_{m,n}\right) \right| = 1.
In order to conclude that for P(z) \in \mathfrak{D}_{m,n}^+,
                                       \deg\left(f_{\mathbf{C}}, P(z), \mathfrak{S}_{m,n}\right) = \deg\left(f_{\mathbf{O}}, P(z), \mathfrak{S}_{m,n}\right),
we need to ensure that
```

$$H(z) := \left\lceil A(z)(C_0 + 2C_1 z^{-1} + \dots + 2C_n z^{-n}) \right\rceil_{-n}^0,$$

where the operation $\lceil \cdot \rceil_{-n}^{0}$ means retaining only the terms with powers from -n up to 0. Then proceed to define

$$P(z) := \frac{1}{2} [H(z)A(z^{-1})^{\top} + A(z)H(z^{-1})^{\top}].$$

In particular, we have

 $P_0 = \mathbf{A}\mathbf{T}_n \mathbf{A}^{\top}, \ P_n = \frac{1}{2}(H_n + A_n C_0)A_0^{\top}.$

Problem 2. Given $B(z) \in \mathfrak{S}_{m,n}$, let $P(z) = B(z)B(z^{-1})^{\top}$. Find a solution $A(z) \in \mathfrak{S}_{m,n}$ $\mathfrak{S}_{m,n}$ to the system of quadratic equations

 $f_{\mathbf{C}}(A(z)) = P(z).$ (2)**Proposition 1.** A solution (if it exists) to Problem 2 solves Problem 1, and vice versa.

 $f_{\Sigma(t)}(A(z)) \neq P(z)$ for any $A(z) \in \partial \mathfrak{S}_{m,n}$ and $t \in [0,1]$.

References

[1] B. Zhu, On vector ARMA models consistent with a finite matrix covariance sequence, arXiv e-prints, available on: https://arxiv.org/abs/1708.04482.

- [2] J. Ježek, Symmetric matrix polynomial equations, *Kybernetika*, vol. 22, no. 1, pp. 19–30, 1986.
- [3] J. T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach Science Publishers, 1969.

