On Vector ARMA Models Consistent with a Finite Matrix Covariance Sequence

Bin Zhu
Department of Information Engineering (DEI), University of Padova

VARMA covariance matching problem

A forward unilateral ARMA model for an m-dimensional stationary process $\{y(t)\}$

$$
\begin{equation*}
\sum_{k=0}^{n} A_{k} y(t-k)=\sum_{k=0}^{n} B_{k} w(t-k), \quad t \in \mathbb{Z} \tag{1}
\end{equation*}
$$

where $\left\{A_{k}, B_{k} \in \mathbb{R}^{m \times m}\right\}$ are matrix parameters and $\{w(t)\}$ is an m-dimensional white noise with variance $\mathbb{E}\left[w(t) w(t)^{\top}\right]=I_{m}$.

Define two matrix polynomials

$$
A(z):=\sum_{k=0}^{n} A_{k} z^{-k}, \quad B(z):=\sum_{k=0}^{n} B_{k} z^{-k} .
$$

The spectral density of $\{y(t)\}$

$$
\Phi(z)=A(z)^{-1} B(z) B\left(z^{-1}\right)^{\top} A\left(z^{-1}\right)^{-\top}
$$

Define the set $\mathfrak{S}_{m, n}$ of matrix Schur polynomials

$$
M(z)=\sum_{k=0}^{n} M_{k} z^{-k}, \quad M_{k} \in \mathbb{R}^{m \times m}
$$

such that

- M_{0} is lower triangular with positive diagonal elements;
- $\operatorname{det} M(z)=0$ implies $z \in \mathbb{D}$;

$$
\int_{-\pi}^{\pi} \operatorname{tr}\left[M\left(e^{i \theta}\right) M\left(e^{i \theta}\right)^{*}\right] \frac{d \theta}{2 \pi}=\operatorname{tr}\left(\mathbf{M M}^{\top}\right)<\mu
$$

where $\mathbf{M}=\left[M_{0}, \ldots, M_{n}\right] \in \mathbb{R}^{\frac{1}{2} m(m+1)+m^{2} n}$ and μ is an arbitrarily large positive constant. The set $\mathfrak{S}_{m, n}$ is open and bounded if identified as a subset of the Euclidean space.

Define the set $\mathfrak{P}_{m, n}$ of Hermitian matrix pseudo-polynomials of order n

$$
P(z)=\sum_{k=-n}^{n} P_{k} z^{-k}, \quad P_{-k}=P_{k}^{\top} \in \mathbb{R}^{m \times m}
$$

and the subset that contains positive ones on the unit circle

$$
\mathfrak{P}_{m, n}^{+}:=\left\{P(z) \in \mathfrak{P}_{m, n}: P(z)>0, \forall z \in \mathbb{T}\right\}
$$

Problem 1 (VARMA Covariance Matching). Suppose we are given an MA polynomial $B(z) \in \mathfrak{S}_{m, n}$ and $n+1$ real $m \times m$ matrices $C_{0}, C_{1}, \ldots, C_{n}$, such that the block-Toeplitz matrix

$$
\mathbf{T}_{n}=\left[\begin{array}{ccccc}
C_{0} & C_{1} & C_{2} & \cdots & C_{n} \\
C_{1}^{\top} & C_{0} & C_{1} & \cdots & C_{n-1} \\
C_{2}^{\top} & C_{1}^{\top} & C_{0} & \cdots & C_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{n}^{\top} C_{n-1}^{\top} & C_{n-2}^{\top} & \cdots & C_{0}
\end{array}\right], \quad n \in \mathbb{Z}_{+}
$$

is positive definite. Determine the $A R$ polynomial $A(z) \in \mathfrak{S}_{m, n}$ such that the first $n+1$ covariance matrices of the process $\{y(t)\}$ described by the VARMA model (1) match the sequence $\left\{C_{k}\right\}$.

An equivalent algebraic problem

Given covariance data organized as a block row vector

$$
\mathbf{C}=\left[\begin{array}{llll}
C_{0} & C_{1} & \ldots & C_{n}
\end{array}\right]
$$

define a map

$$
\begin{aligned}
& f_{\mathrm{C}}: \mathfrak{S}_{m, n} \\
& \rightarrow \mathfrak{P}_{m, n} \\
& A(z) \mapsto P(z)
\end{aligned}
$$

as follows. First compute the polynomial $H(z):=\sum_{k=0}^{n} H_{k} z^{-k}$ of order n by polynomial multiplication and truncation

$$
H(z):=\left\lceil A(z)\left(C_{0}+2 C_{1} z^{-1}+\cdots+2 C_{n} z^{-n}\right)\right\rceil_{-n}^{0}
$$

where the operation $\lceil\cdot\rceil_{-n}^{0}$ means retaining only the terms with powers from $-n$ up to 0 .
Then proceed to define

$$
P(z):=\frac{1}{2}\left[H(z) A\left(z^{-1}\right)^{\top}+A(z) H\left(z^{-1}\right)^{\top}\right] .
$$

In particular, we have

$$
P_{0}=\mathbf{A T}_{n} \mathbf{A}^{\top}, P_{n}=\frac{1}{2}\left(H_{n}+A_{n} C_{0}\right) A_{0}^{\top} .
$$

Problem 2. Given $B(z) \in \mathfrak{S}_{m, n}$, let $P(z)=B(z) B\left(z^{-1}\right)^{\top}$. Find a solution $A(z) \in$ $\mathfrak{S}_{m, n}$ to the system of quadratic equations

$$
f_{\mathrm{C}}(A(z))=P(z)
$$

Proposition 1. A solution (if it exists) to Problem 2 solves Problem 1, and vice versa.

Review of the degree theory

Assume $D \subset \mathbb{R}^{n}$ is bounded open and $f: \bar{D} \rightarrow \mathbb{R}^{n}$ is smooth (in C^{∞}). Consider the solvability of the equation

$$
f(x)=y .
$$

We call $y \in \mathbb{R}^{n}$ a regular value of f if either
(i) for any $x \in f^{-1}(y), \operatorname{det} f^{\prime}(x) \neq 0$ or
(ii) $f^{-1}(y)$ is empty.

Here $f^{\prime}(x)$ denotes the Jacobian matrix of f evaluated at x. Let y be a regular value of type (i) and $y \notin f(\partial D)$, the degree of f at y is defined as

$$
\operatorname{deg}(f, y, D):=\sum_{f(x)=y} \operatorname{sign} \operatorname{det} f^{\prime}(x)
$$

where the sign function

$$
\operatorname{sign}(x)= \begin{cases}1 & \text { if } x>0 \\ -1 & \text { if } x<0\end{cases}
$$

and not define at 0 . For regular values of type (ii), we set $\operatorname{deg}(f, y, D)=0$.
Moreover, the set of regular values is dense in \mathbb{R}^{n} by Sard's theorem. When y is not a regular value (also called a critical value), the degree can also be defined by means of limit. Further properties of the degree related to our problem:

- If y_{1} and y_{2} belong to the same component of $\mathbb{R}^{n}-f(\partial D)$, then $\operatorname{deg}\left(f, y_{1}, D\right)=$ $\operatorname{deg}\left(f, y_{2}, D\right)$.
- If $\operatorname{deg}(f, y, D) \neq 0$, there exists $x \in D$ such that $f(x)=y$.
\bullet Homotopy invariance. If $F: \bar{D} \times[a, b] \rightarrow \mathbb{R}^{n}$ is continuous and if $F(x, t) \neq y$ for $x \in \partial D$ and $t \in[a, b]$, then $\operatorname{deg}\left(F_{t}, y, D\right)$ is defined and independent of $t \in[a, b]$. Here F_{t} is the map of D into \mathbb{R}^{n} defined by $F_{t}(x)=F(x, t)$.

Existence of a solution

Given the block Toeplitz matrix $\mathbf{T}_{n}>0$, let $\lambda_{\min }>0$ be its smallest eigenvalue. Define the subset

$$
\mathfrak{D}_{m, n}^{+}:=\left\{P(z) \in \mathfrak{P}_{m, n}^{+}: \operatorname{det} P_{n} \neq 0 \text { and } \operatorname{tr} P_{0}<\min \left\{1, \lambda_{\min }\right\} \mu\right\} .
$$

Theorem 1. For any fixed $B(z) \in \mathfrak{S}_{m, n}$ such that $P(z):=B(z) B\left(z^{-1}\right)^{\top}$ belongs to $\mathfrak{D}_{m, n}^{+}$, there exists a matrix polynomial $A(z) \in \mathfrak{S}_{m, n}$ such that the first $n+1$ covariance matrices of the VARMA model (1) defined by the coefficients of $A(z), B(z)$ match the given data C_{0}, \ldots, C_{n}.
Sketch of the proof. It is sufficient to show that $\operatorname{deg}\left(f_{\mathrm{C}}, P(z), \mathfrak{S}_{m, n}\right) \neq 0$ for $P(z) \in \mathfrak{D}_{m, n}^{+}$ Compute the degree using the homotopy invariance property.

Consider the data $\mathbf{O}=\left[I_{m}, 0, \ldots, 0\right]$, and the corresponding map becomes

$$
P(z)=f_{\mathrm{O}}(A(z)):=A(z) A\left(z^{-1}\right)^{\top}
$$

and the problem is reduced to the matrix spectral factorization.
Lemma 1. Define $\boldsymbol{\Sigma}(t):=t \mathbf{C}+(1-t) \mathbf{O}, t \in[0,1]$, and the corresponding function $f_{\boldsymbol{\Sigma}(t)}$ in the same way as f_{C}. Then the function

$$
\begin{aligned}
\mathcal{F}: \mathfrak{S}_{m, n} \times[0,1] & \rightarrow \mathfrak{P}_{m, n} \\
(A(z), t) & \mapsto f_{\boldsymbol{\Sigma}(t)}(A(z))
\end{aligned}
$$

is a smooth homotopy between f_{C} and f_{O}.
Lemma 2. For any $P(z) \in \mathfrak{D}_{m, n}^{+}$

$$
\left|\operatorname{deg}\left(f_{\mathrm{O}}, P(z), \mathfrak{S}_{m, n}\right)\right|=1 .
$$

In order to conclude that for $P(z) \in \mathfrak{D}_{m, n}^{+}$,

$$
\operatorname{deg}\left(f_{\mathbf{C}}, P(z), \mathfrak{S}_{m, n}\right)=\operatorname{deg}\left(f_{\mathrm{O}}, P(z), \mathfrak{S}_{m, n}\right)
$$

we need to ensure that

$$
f_{\Sigma(t)}(A(z)) \neq P(z) \text { for any } A(z) \in \partial \mathfrak{S}_{m, n} \text { and } t \in[0,1]
$$

References

[1] B. Zhu, On vector ARMA models consistent with a finite matrix covariance sequence, arXiv e-prints, available on: https://arxiv.org/abs/1708.04482.
[2] J. Ježek, Symmetric matrix polynomial equations, Kybernetika, vol. 22, no. 1, pp 19-30, 1986
[3] J. T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach Science Publishers, 1969.

