Nonparametric Semi-Supervised Classification with Application to Signal Detection in High Energy Physics

Alessandro Casa

casa@stat.unipd.it

University of Padua
Department of Statistical Sciences

Motivation

- The Standard Model represents the state of the art in High Energy Physics (HEP)
- it describes how the fundamental particles interact with each others and with the forces between them giving rise to the matter in the universe
- Does it fully provide knowledge of the Universe?
- empirical confirmation of the Higgs Boson (Atlas, 2012; CMS, 2012)
- failure to explain gravity, the nature of dark matter, dark energy, and other pivotal phenomena

Motivation

- Research aims at explaining the shortcomings of this theory:
- Model dependent: to confirm specific physical conjectures, not explained by the Standard Model
- Model independent: to detect empirically any possible deviation from the known physics, without any model constraints
- Experiments are conducted within accelerators (e.g., LHC, Fermilab), where physical particles are made collide and the product of their collision detected
- Do collisions produce any unclassified particle?

Framework - physical

- Ingredients:
- background: process describing the known physics, predominant, always observed
- signal (new particle): anomalous process, if present
- Main assumption:
- (possible) signal behaves as a deviation from the background, occurring collectively as an excess over the invariant mass of the background (Vatanen et al., 2012)

- Research problem:

- identify the signal and discriminate it from the background

Framework - statistical

- Ingredients:
- $\mathcal{X}_{b} \sim f_{b}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+} \cup\{0\}$ data exclusively from the background density, known or estimable arbitrarily well \rightarrow labelled
- $\mathcal{X}_{b s} \sim f_{b s}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{+} \cup\{0\}$: data from the whole process density, unknown, may contain signal \rightarrow unlabelled
- Main assumption:
- (possibile) signal arises as a mode in $f_{b s,}$, not seen in f_{b}
- Research problem:
- semi-supervised learning \rightarrow classify observations based on the knowledge of one (background) out of the two possible classes (background and signal) (anomaly detection)

Contribution

- Aim: introduce a nonparametric global methodology to integrate available information about the labelled background within a nonparametric unsupervised framework contribution 1 aid nonparametric clustering by limiting the curse of dimensionality via variable selection contribution 2 tune a nonparametric estimate of the density underlying the unlabelled data to guarantee the most accurate classification of the labelled background observations

The nonparametric unsupervised framework - why?

- The nonparametric approach is consistent with the use of a model-independent logic
- Clusters are defined as the domain of attraction of the modes of the density underlying the data \rightarrow physical interpretation is natural
- The density identifies a partition of the sample space, not only of the data

The nonparametric unsupervised framework - how?

- Operational search of the modal regions \rightarrow problem not faced here, use of preexisting methods
- bump hunting
- detection of connected components of the density level sets
- Nonparametric estimate of the density, e.g. via kernel methods:

$$
\begin{equation*}
\hat{f}(x ; \mathcal{X}, h)=\frac{1}{n \cdot h^{d}} \sum_{i=1}^{n} \prod_{j=1}^{d} K\left(\frac{x_{j}-x_{i j}}{h}\right), \tag{1}
\end{equation*}
$$

- requires h to be known \rightarrow selection of the smoothing amount h (contribution 1)
- requires d to be limited \rightarrow selection of variables (contribution 2)

Selection of variables

- Main idea: a variable is relevant if its marginal distribution $f_{b s}$ shows a changed behavior with respect to $f_{b} \leftarrow$ this difference shall be due to the presence of a signal, not seen in background density
- marginal distributions are estimated on subsets of k variables to account for correlations among variables while working on a reduced space
- comparison of the marginals \hat{f}_{b} and $\hat{f}_{b s}$ estimated on the selected variables is done via

$$
T=\int_{\mathbb{R}^{k}}\left[\hat{f}_{b s}(x)-\hat{f}_{b}(x)\right]^{2} d x,
$$

with \hat{f}_{b} and $\hat{f}_{b s}$ estimated nonparametrically (Duong et al., 2012)

Selection of variables

- Main steps:

- select randomly k variables
- compare the marginals \hat{f}_{b} and $\hat{f}_{b s}$ estimated on the selected variables via the application of a test based on T
- if the comparison highlights a different behavior, update a counter for the selected variables
- repeat a large number of times and evaluate the relevance of each single variable by evaluating the proportion of times it has resulted relevant
- select the most relevant variables

Selection of the smoothing amount

- Main idea: tuning a nonparametric estimate of the unlabelled data by selecting the smoothing amount so that the induced modal partition will classify the labelled background data as much accurately as possible.
- adequacy of the estimation of $f_{b s}$ concerns with its capability of maintaining the relevant structures of background density.
- an accurate classification of the labelled background data is possible due to our knowledge of f_{b}

Selection of the smoothing amount

- Main steps:

- estimate f_{b} by $\hat{f}_{b} \rightarrow$ a partition $\mathcal{P}_{b}\left(\mathcal{X}_{b}\right)$
- for $h_{b s}$ varying in a range of plausible values:
- estimate $f_{b s}$ by $\hat{f}_{b s}\left(; ; \mathcal{X}_{b s}, h_{b s}\right) \rightarrow$ identify the partitions $\mathcal{P}_{b s}\left(\mathcal{X}_{b s}\right)$ and $\mathcal{P}_{b s}\left(\mathcal{X}_{b}\right)$ both defined by the modal regions of $\hat{f}_{b s}$.
- compare $\mathcal{P}_{b s}\left(\mathcal{X}_{b}\right)$ with $\mathcal{P}_{b}\left(\mathcal{X}_{b}\right)$ via the computation of some agreement index I
- select the bandwidth $h_{b s}$ that maximizes $/$ to estimate $f_{b s}$
- identify the ultimate partition $\mathcal{P}_{b s}\left(\mathcal{X}_{b s}\right)$ (Azzalini and Torelli, 2007)

Application to HEP data

Physical process simulated within ATLAS detector configuration (Baldi et al., 2016)

- Experiment: HEP proton-proton collisions (1 collision = 1 observation) \rightarrow produce particles from two physical processes:
- background: dominant standard model top quark pair production
- signal: also decaying to top quark but lacking of an intermediate resonance
- Variables: kinematic features of the collisions
- 18 low-level variables
- 5 high-level variables
- \mathcal{X}_{b} and $\mathcal{X}_{b s}$ both labelled, labels of $\mathcal{X}_{b s}$ employed to evaluate results only
- $n_{b}=20000 ; n_{b s}=10000$
- Signal amount set to 30% of $\mathcal{X}_{b s}$

Results

- Three variables show a remarkably different behavior between f_{b} and $f_{b s}$
- Variables selected for the subsequent steps

Results

- Empirical distribution of the
 agreement index for a given bandwidth and varying bootstrap subsamples of \mathcal{X}_{b}
- The higher the agreeement, the more confident we are about the use of that bandwidth
- Selected the bandwidth associated to the highest nondegenerate accuracy

Results

- Pairwise marginal density of the three selected variables, obtained with the selected smoothing parameter; $\mathcal{X}_{b} s$ overimposed.
- Strong overlapping of signal and background
- The estimated distribution is correctely bimodal

Results

	Clusters	
Label	1	2
Bkg	6176	847
Sgn	369	2608
Misclassification error:	12.16%	
True positive rate:	87.60%	

- Confusion matrix of the classification

Concluding remarks

- Given the awkward problem, results are promising but the physical context requires high sensitivity and specificity
- Further research is required at different levels:
- reduce arbitrariness \rightarrow make smoothing selection fully authomatic
- reduce simplification \rightarrow use more realistic signal to background ratio and handle imbalance

Relevant references

1. Azzalini, A., \& Torelli, N. (2007). Clustering via nonparametric density estimation. Statistics and Computing, 17(1).
2. Baldi, P. Cranmer, K, Faucett, T., Sadowski, P. \& Whiteson, D. (2016) Parameterized Machine Learning for High-Energy Physics. The European Physical Journal C, 76(5).
3. Bhat, P. C. (2011). Multivariate analysis methods in particle physics. Annual Review of Nuclear and Particle Science, 61.
4. Chandola, V., Banerjee, A., \& Kumar, V. (2009). Anomaly detection: A survey, ACM computing surveys (CSUR), 41(3).
5. Duong, T., Goud B. \& Schauer K. (2012) Closed-form density-based framework for automatic detection of cellular morphology changes. Proceedings of the National Academy of Sciences 109(22)
6. Vatanen, T., Kuusela, M., Malmi, E., Raiko, T., Aaltonen, T., \& Nagai, Y. (2012). Semi-supervised detection of collective anomalies with an application in high energy particle physics. IEEE International Joint Conference on Neural Networks (IJCNN).
