Astro@Stats 2017 – Sino-Italian Workshop on Astrostatistics September 8, 2017

Nonparametric Semi-Supervised Classification with Application to Signal Detection in High Energy Physics

Alessandro Casa casa@stat.unipd.it Giovanna Menardi menardi@stat.unipd.it

University of Padua Department of Statistical Sciences

Motivation

- The Standard Model represents the state of the art in High Energy Physics (HEP)
 - it describes how the fundamental particles interact with each others and with the forces between them giving rise to the matter in the universe
- Does it fully provide knowledge of the Universe?
 - empirical confirmation of the Higgs Boson (Atlas, 2012; CMS, 2012)
 - failure to explain gravity, the nature of dark matter, dark energy, and other pivotal phenomena

Motivation

- Research aims at explaining the shortcomings of this theory:
 - Model dependent: to confirm specific physical conjectures, not explained by the Standard Model
 - Model independent: to detect empirically any possible deviation from the known physics, without any model constraints
- Experiments are conducted within accelerators (e.g., LHC, Fermilab), where physical particles are made collide and the product of their collision detected
- Do collisions produce any unclassified particle?

Framework - physical

• Ingredients:

- *background*: process describing the known physics, predominant, *always* observed
- signal (new particle): anomalous process, if present
- Main assumption:
 - (possible) signal behaves as a deviation from the background, occurring collectively as an excess over the invariant mass of the background (Vatanen *et al.*, 2012)
- Research problem:
 - identify the signal and discriminate it from the background

Framework - statistical

- Ingredients:
 - $\mathcal{X}_b \sim f_b : \mathbb{R}^d \to \mathbb{R}^+ \cup \{0\}$ data exclusively from the background density, known or estimable arbitrarily well \to *labelled*
 - $\mathcal{X}_{bs} \sim f_{bs} : \mathbb{R}^d \to \mathbb{R}^+ \cup \{0\}$: data from the whole process density, unknown, **may** contain signal \to unlabelled
- Main assumption:
 - (possibile) signal arises as a *mode* in f_{bs} , not seen in f_b
- Research problem:
 - semi-supervised learning → classify observations based on the knowledge of one (background) out of the two possible classes (background and signal) (anomaly detection)

Contribution

- Aim: introduce a nonparametric global methodology to integrate available information about the labelled background within a nonparametric unsupervised framework
 - **contribution 1** aid nonparametric clustering by limiting the curse of dimensionality via variable selection
 - contribution 2 tune a nonparametric estimate of the density underlying the unlabelled data to guarantee the most accurate classification of the labelled background observations

The nonparametric unsupervised framework - why?

- The nonparametric approach is consistent with the use of a model-independent logic
- Clusters are defined as the domain of attraction of the modes of the density underlying the data \rightarrow physical interpretation is natural
- The density identifies a partition of the sample space, not only of the data

The nonparametric unsupervised framework – how?

- Operational search of the modal regions → problem not faced here, use of preexisting methods
 - bump hunting
 - detection of connected components of the density level sets
- Nonparametric estimate of the density, e.g. via kernel methods:

$$\hat{f}(\mathbf{x}; \mathcal{X}, h) = \frac{1}{n \cdot h^d} \sum_{i=1}^n \prod_{j=1}^d K\left(\frac{\mathbf{x}_j - \mathbf{x}_{ij}}{h}\right), \qquad (1)$$

- requires h to be known \rightarrow selection of the smoothing amount h (contribution 1)
- requires *d* to be limited → selection of variables (contribution 2)

6/18

Selection of variables

- Main idea: a variable is relevant if its marginal distribution f_{bs} shows a changed behavior with respect to $f_b \leftarrow$ this difference shall be due to the presence of a signal, not seen in background density
 - marginal distributions are estimated on subsets of k variables to account for correlations among variables while working on a reduced space
 - comparison of the marginals \hat{f}_b and \hat{f}_{bs} estimated on the selected variables is done via

$$T = \int_{\mathbb{R}^k} [\hat{f}_{bs}(x) - \hat{f}_b(x)]^2 dx$$

with \hat{f}_b and \hat{f}_{bs} estimated nonparametrically (Duong *et al.*, 2012)

Selection of variables

• Main steps:

- select randomly k variables
- compare the marginals \hat{f}_b and \hat{f}_{bs} estimated on the selected variables via the application of a test based on T
- if the comparison highlights a different behavior, update a counter for the selected variables
- repeat a large number of times and evaluate the relevance of each single variable by evaluating the proportion of times it has resulted relevant
- select the most relevant variables

- Main idea: tuning a nonparametric estimate of the unlabelled data by selecting the smoothing amount so that the induced modal partition will classify the labelled background data as much accurately as possible.
 - adequacy of the estimation of f_{bs} concerns with its capability of maintaining the relevant structures of background density.
 - an accurate classification of the labelled background data is possible due to our knowledge of f_b

Selection of the smoothing amount

• Main steps:

- estimate f_b by $\hat{f}_b \to$ a partition $\mathcal{P}_b(\mathcal{X}_b)$
- for *h_{bs}* varying in a range of plausible values:
 - estimate f_{bs} by $\hat{f}_{bs}(\cdot; \mathcal{X}_{bs}, h_{bs}) \rightarrow \text{identify the partitions } \mathcal{P}_{bs}(\mathcal{X}_{bs})$ and $\mathcal{P}_{bs}(\mathcal{X}_b)$ both defined by the modal regions of \hat{f}_{bs} .
 - compare $\mathcal{P}_{bs}(\mathcal{X}_b)$ with $\mathcal{P}_b(\mathcal{X}_b)$ via the computation of some agreement index I
- select the bandwidth h_{bs} that maximizes I to estimate f_{bs}
- identify the ultimate partition $\mathcal{P}_{bs}(\mathcal{X}_{bs})$ (Azzalini and Torelli, 2007)

Application to HEP data

Physical process simulated within ATLAS detector configuration (Baldi *et al.*, 2016)

- Experiment: HEP proton-proton collisions (1 collision = 1 observation) → produce particles from two physical processes:
 - background: dominant standard model top quark pair production
 - signal: also decaying to top quark but lacking of an intermediate resonance
- Variables: kinematic features of the collisions
 - 18 low-level variables
 - 5 high-level variables
- \mathcal{X}_b and \mathcal{X}_{bs} both labelled, labels of \mathcal{X}_{bs} employed to evaluate results only
- $n_b = 20000; n_{bs} = 10000$
- Signal amount set to 30% of \mathcal{X}_{bs}

Results

- Three variables show a remarkably different behavior between f_b and f_{bs}
- Variables selected for the subsequent steps

Results

- Empirical distribution of the agreement index for a given bandwidth and varying bootstrap subsamples of X_b
- The higher the agreeement, the more confident we are about the use of that bandwidth
- Selected the bandwidth associated to the highest nondegenerate accuracy

14/18

Results

- Pairwise marginal density of the three selected variables, obtained with the selected smoothing parameter; $\mathcal{X}_b s$ overimposed.
- Strong overlapping of signal and background
- The estimated distribution is correctely bimodal

	Clusters	
Label	1	2
Bkg	6176	847
Sgn	369	2608
Misclassification error:	12.16%	
True positive rate:	87.60%	

• Confusion matrix of the classification

Concluding remarks

- Given the awkward problem, results are promising but the physical context requires high sensitivity and specificity
- Further research is required at different levels:
 - reduce arbitrariness \rightarrow make smoothing selection fully authomatic
 - reduce simplification \rightarrow use more realistic signal to background ratio and handle imbalance

Relevant references

- 1. AZZALINI, A., & TORELLI, N. (2007). *Clustering via nonparametric density estimation*. STATISTICS AND COMPUTING, 17(1).
- BALDI, P. CRANMER, K, FAUCETT, T., SADOWSKI, P. & WHITESON, D. (2016) *Parameterized Machine Learning for High-Energy Physics.* The European Physical Journal C, 76(5).
- 3. Bhat, P. C. (2011). *Multivariate analysis methods in particle physics*. Annual Review of Nuclear and Particle Science, 61.
- 4. Chandola, V., Banerjee, A., & Kumar, V. (2009). *Anomaly detection: A survey*, ACM computing surveys (CSUR), 41(3).
- 5. DUONG, T., GOUD B. & SCHAUER K. (2012) Closed-form density-based framework for automatic detection of cellular morphology changes. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES 109(22)
- VATANEN, T., KUUSELA, M., MALMI, E., RAIKO, T., AALTONEN, T., & NAGAI, Y. (2012). Semi-supervised detection of collective anomalies with an application in high energy particle physics. IEEE International Joint Conference on Neural Networks (IJCNN).

18/18