High-Speed Serial Data Transmission - 2

Gianni Mazza

INFN sez. di Torino

mazza@to.infn.it

June 20th, 2018

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 1 / 31

Case studies

- GBLD laser driver
- ALICE ALPIDE DTU

Case study : the GBLD laser driver

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 3 / 31

GBLD specifications

Laser diode type	EE or VCSEL				
Bit rate	5 Gb/s				
Modulation current	2÷24 mA	in 1.6 mA steps			
Bias current	2÷48 mA	in 1.6 mA steps			
Emphasis current	0÷12 mA	in 0.8 mA steps			
Independently programmable pre/de emphasis					
Power supply	2.5 V	single supply			
Random jitter	$<\!\!1$ ps				
Deterministic jitter	<25 ps				
Control interface	l ² C slave				
TID tolerance	>1 MGy				
SEU tolerance	TMR with self correction				
Technology	CMOS 0.13 μ m				

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 4 / 31

A laser driver circuit looks relatively simple, but...

- High driving currents and high speed are conflicting requirements:
 - + High speed circuit \rightarrow small RC delays \rightarrow minimize R and/or C
 - \bullet Small resistors \to high power consumption
 - + High I_{DS} current \rightarrow Large transistors \rightarrow High parasitic capacitances
 - Electromigration rules \rightarrow Large metal lines \rightarrow High parasitic capacitances
- Laser diodes voltage swing requires at least a 2.5 V supply:
 - Core transistors can sustain only up to 1.5 V
 - IO transistors are slower and less tolerant to radiation
 - Higher power consumption

GBLD flavours

GBLD version 4

- Max modulation current : 24 mA
- Max bias current : 24 mA
- Power supply : single, 2.5 V
- Core supply current : 88.9 mA

GBLD version 5

- Max modulation current : 12 mA
- Max bias current : 20 mA
- Power supply : single, 2.5 V or dual, 2.5 V and 1.5 V
- Core supply current : 55.3 mA

GBLD architecture

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 7 / 3

Modulator architecture

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 8 / 31

Emphasis architecture

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 9 / 31

GBLD die

Die size 2×2 mm². CMOS 0.13 μ m technology.

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 10 / 31

Optical eye diagrams

11 / 31

G. Mazza (INFN Torino)

Data Transmission

TID results

G. Mazza (INFN Torino)

June 20th, 2018 12 / 31

SEU test results

Difference between v4.1 and v4.2 : asynchronous reset net.

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 13 / 31

GBLD production

- 76 GBLD wafers
- 91000 GBLD dies
- Yield > 99%
- ...much more than needed
- Biggest issues were contact problems

- Problem : large spread in the bias currents
- Solution 1 : use the bias current control DAC
- Solution 2 : select only GBLDs within $\pm 20\%$ from nominal value.
- "Choosy" solution has been selected

Data from L. Olantera presentation at ACES 2018

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 14 / 31

Case study : ALICE ITS upgrade

- 3 Inner Barrel layers (IB)
- 4 Outer
 Barrel layers
 (OB)

- Based on high resistivity epi layer MAPS
- Radiation levels (IB layer 0) : 270 kGy
- Radial coverage : 21-400 mm
- \circ $\approx 10 \text{ m}^2$

G. Mazza (INFN Torino)

June 20th, 2018 15 / 31

ALPIDE ASIC

- Pixel size : 29imes27 μ m² with low power FE (40 nW)
- Power density : \approx 300 nW/pixel
- Chip area : 30×15 mm²
- Active area : 30×13.9 mm²

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 16 / 31

ALPIDE Data Transmission Unit (DTU) specifications

Input clock 40 MHz Transmission clock 600 MHz DDR Transmission type 0.96/1.2 Gb/s (IB) Data/Line rate Data/Line rate 320/400 Mb/s (OB) Data encoding 8b10b Electrical protocol pseudo LVDS CIS 0.18 µm Technology

DTU scheme

June 20th, 2018 18 / 31

PLL scheme

- Input : 40 MHz
- Output : 600 MHz
- Lock time : $\approx 10 \ \mu s$
- Power : 15.4 mW

- Area : 1.059×0.12 mm² (owing to floorplan requirements)
- Differential ring oscillator VCO (range 500-700 MHz)
- SEU tolerant frequency divider

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 19 / 31

VCO scheme

Reference : J. Maneatis Low-Jitter Process-Independent DLL and PLL Based on Self-Bias Techniques IEEE J. Solid-State Circ., Vol. 31, No. 11, Nov 1996

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 20 / 31

VCO frequency spread

VCO with 4 stages (sim & measurements)

VCO with 3-4-5 stages (sim only)

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 21 / 31

Serializer scheme

- Double Data Rate
- Pre-emphasis
- Power : 22.56 mW

- TMR-based SEU protection
- Programmable phase control synchronization

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 22 / 31

Driver scheme

- Pseudo-LVDS driver
- $V_{CM} = 900 \text{ mV}$
- Power : 17.06 mW

- Output current : $0\div5$ mA in 312 μ A steps (4 bits)
- Pre-emphasis current : $0\div2.5$ mA in 156 μ A steps (4 bits)
- Pre-emphasis time width : $0.5 \times T_{CK}$

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 23 / 31

Main current driver

- DAC controlled driver current
- Feedback common mode control
- pseudo-LVDS architecture (V_{CM} reduced to 900 mV).

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 24 / 31

Pre-emphasis current driver

Control signals from the serializer

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 25 / 31

PLL test summary - 1

- Input frequency : 40 MHz
- Input frequency range : 30÷50 MHz
- Main output frequency : 600 MHz ($f_{IN} \times 15$)
- Main output frequency : 200 MHz ($f_{IN} \times 5$)

	Mean	σ
clock period	1.667 ns	6.86 ps
clock frequency	600.01 MHz	2.47 MHz
duty cycle	50.79%	0.0896%

Random jittter	4.736 ps	r.m.s.
Periodic jitter	46.342 ps	pk-pk

PLL test summary - 2

Figure: Oscilloscope waveforms

Figure: Eye diagram

Figure: Jitter

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 27 / 31

DTU electrical tests

Figure: No pre-emphasis Figure: Pre-emphasis 12% Figure: Pre-emphasis 25%

	PE 0	PE 12%	PE 25%
Eye width	0.822 UI	0.826 UI	0.835 UI
Rj	11.4 ps	10.9 ps	12.0 ps
Dj	48.8 ps	52.8 ps	57.4 ps

G. Mazza (INFN Torino)

Test with 30 MeV protons

Figure: Flux 10^8 protons cm⁻² s⁻¹

Figure: Flux 10⁹ protons cm⁻² s⁻¹

Test with ions : PLL and DFF

- LET_{TH} = 3.9 MeV cm^2/mg for a DFF
- Note : cross section per bit
- LET_{TH} = 9 MeV
 cm²/mg for the PLL

Estimated PLL loss of lock MTBF in layer 0 (108 DTUs) : 149h 33m Only 1 (out of 37) GTX loss of lock

G. Mazza (INFN Torino)

June 20th, 2018 30 / 31

Test with ions : BER cross section

$$LET_{TH} = 3 \text{ MeV}$$

$$cm^2/mg$$

 Note : cross section per bit

Estimated BER per link : 3.53×10^{-14} Estimated transmission MTBF in layer 0 (108 DTUs) : 42.8 s

G. Mazza (INFN Torino)

Data Transmission

June 20th, 2018 31 / 31