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Framework

Development of multivariate statistical learning methods for problems emerging in a context
of High-Energy Physics

Theory and framework construction (Standard Model - SM).
Validation of SM via empirical experiments.
Experiments consist of products detection of the high speed protons collisions.

Large Hadron Collider layout CMS detector

The final product of each collision is assumed to be generated from one of the two processes:
Background - refers to the known physics.
Signal - a deviation from the background, represents a new possible particle or
interaction not accounted for in the SM expected to be seen in the data.

Sources of the data

Simulated data
X = (xxx ′1, . . . ,xxx

′
n)′, xxx i ∈ Rp

A (Monte Carlo) sample from the
background process of size n based on the
SM (labeled observations).

xxx i ∼ pB(·; θB)

Experimental data
Y = (yyy ′1, . . . ,yyy

′
m)′, yyy i ∈ Rp

A sample from the observed process of size
m consisting mostly of the background and
a possible signal (unlabeled observations).

yyy i ∼ pSB(·; θSB)

Semi-supervised parametric clustering for signal detection

Discrimination between the known background process and an unknown (possibly
missing) signal process
→ anomaly detection: deviation from the known background processes.
→ semi-supervised classification.

A parametric model is specified as

pSB(yyy) = (1− λ)pB(yyy ; θB) + λpS(yyy ; θS).

pB → distribution of background process, governed by a vector of parameters θB .
pS → distribution of signal process, governed by a vector of parameters θS .
Flexible parametric models for pB and pS .

The fixed background model (Vatanen et al., 2012)

Distributions of the processes can be modeled by finite Gaussian mixtures:

pB(xxx ; θB(X )) =
J∑

j=1

πjφ(xxx |µµµj ,Σj), pS(yyy ; θS(Y)) =
Q∑
q=1

ρqφ(yyy |τττ q, Γq)

Parameters estimated via maximum likelihood in two steps:
1 Background parameters θB(X ) = (πππj ,µµµj ,Σj) estimated by

maximization of

l(θ(X )|X ) =
n∑

i=1

log

 J∑
j=1

πjφ(xxx i |µµµj ,Σj)

 .
2 Signal parameters λ and θS(Y) = (τττ q, ρρρq, Γq) estimated by

maximization of

l(θ(Y)|Y , θ̂(X )) =

m∑
l=1

log

(1− λ)
J∑

j=1

π̂j(X )φ
(
yyy l |µ̂µµj(X ), Σ̂l(X )

)
+ λ

Q∑
q=1

ρqφ (yyy l |τττ q,Σq)

 .
i.e. given θ̂B(X ).

The model works well for low dimensional data, although:
With growing dimensionality, the number of parameters to
be estimated explodes
→ dimensionality reduction.
The authors used Principal Component Analysis to perform
the signal detection in 2 dimensions
→no guarantee that the selected subspace preserves a
possible signal deviation.

Research question

How to reduce data dimensionality while enhancing exhibi-
tion of a possible signal?

Example of a background model for
data X (mixture of 5 Gaussian
components).

Example of an anomaly model for
data Y containing 5% of signal
events.

Dimensionality reduction

Penalty on likelihood to remove variables not relevant for signal/background discrimination
Estimation of parameters θ = (θB , θS , λ) is obtained via maximization of the penalized
log-likelihood

lp(θ|data) = l(θ|data)− γh(θ).

Penalty causes model regularization that leads to a sparse solution.
→ uninformative variables are removed (Pan and Shen, 2007)

Choice of penalty h(θ)

Assume that:
Data are standardized (i.e. each variable has
zero mean and unitary variance)
all the mixture components (of both pB and
pS) have common covariance matrix
→ could be relaxed

Informative variable Uninformative variable

Informative variables have components with true means far from 0 and vice versa for uninformative.
The l2 penalty expressed as

h1(µµµ,τττ ) =

p∑
k=1

√√√√ J∑
j=1

µ2
jk +

Q∑
q=1

τ 2
jk

shrinks simultaneously the mean components for the respective variables to 0. If all the mean
components for the k th variable are shrunk, then the k th attribute does not contribute to
components discrimination.

Generalized approaches

Current problem

Gaussian mixtures with common covariance matrix are not flexible for density modeling.

Common component covariance matrix relaxed to be component specific.

i) Generalization 1: component specific, diagonal covariance matrix
Variable is uninformative if all its components have 0 mean and variance equal to 1 (for
standardized data).
New penalty term is introduced

h2(Σ, Γ) =

p∑
k=1

 J∑
j=1

log(Σj ,kk) +
Q∑
q=1

log(Γq,kk)


that shrinks diagonal elements od Σq and Γq to 1 (Xie et at., 2008).

ii) Generalization 2: Component specific, sparse covariance matrix
The physical data correlation matrix is often sparse and contains high correlation values.
Components covariances are decomposed as follows Σj = QjDjQ

′
j and Γq = RqEqR

′
q.

Penalty of form

h3(D,E ) =

p∑
k=1

 J∑
j=1

Dj ,kk +
Q∑
q=1

Eq,kk


shrinks eigenvalues to 0 that results in a sparse solution.

Results

Synthetic data of size 80 and dimension 8 was generated from a mixture of two Gaussian
distributions with equal proportions:

The means are set to 0.
Eigenvalues of component covariance matrices are respectively (4, 3, 2, 1, 0, 0, 0, 0) and (4, 3, 2, 1, 0.6, 0.3, 0, 0).

The first eigenvector matrix is P1 = 1√
8



−1 1 1 −1 1 −1 −1 1
1 1 −1 1 −1 −1 −1 1
1 −1 1 −1 −1 −1 1 1
−1 1 −1 −1 −1 1 1 1

1 −1 −1 −1 1 1 −1 1
−1 −1 −1 1 1 −1 1 1
−1 −1 1 1 −1 1 −1 1

1 1 1 1 1 1 1 1


and the second eigenvector matrix

P2 = (c1, c2, c5, c6, c7, c8, c3, c4), where ci denotes i th column of P1.

The full model has 105 unknown parameters.
The data is standardized.
Application of the h3 penalty alone allowed for the correct identification of the null eigenvalues
→ Number of effective (nonzero) parameters dropped to 77.
Simultaneous usage of h1 and h3 penalties additionally shrunk all the components means to 0
→ 61 effective parameters.

Current problem

Shrinkage causes bias but decreases variance of the model (less effective parameters) that results
in better model-based classification.

The developed technique and mclust algorithm (Fraley et al., 2012) were used for unsupervised
classification of the two classes represented by each Gaussian distribution on the testing set.

Classification results of the developed algorithm

Predicted class
1 2

True class 1 38 2
2 0 40

Classification results of the mclust algorithm

Predicted class
1 2

True class 1 33 7
2 32 8
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