Advanced Model Independent Searches for New Physics via Parametric Anomaly Detection

G. Kotkowski, L. Finos, G. Menardi, B. Scarpa University of Padova 08/09/2017

Università degli Studi di Padova

This report is part of a project that has received funding from European Union's Horizon 2020 research and innovation program under grant agreement N^0 675440.

Framework and data

The two processes are considered:

- **Background** refers to the known physics.
- Signal a deviation from the background, an unknown process not accounted for in the Standard Model.

1 Simulated data

 $\mathcal{X} = (\mathbf{x}'_1, \dots, \mathbf{x}'_n)', \mathbf{x}_i \in \mathbb{R}^p$ is a (Monte Carlo) sample from the background process (labeled observations).

$$\boldsymbol{x}_i \sim p_B(\cdot; \theta_B)$$

2 Experimental data

 $\mathcal{Y} = (\mathbf{y}'_1, \dots, \mathbf{y}'_m)', \mathbf{y}_i \in \mathbb{R}^p$ is a sample of the observed process consisting mostly of the background and a possible signal (unlabeled observations).

$$m{y}_i \sim p_{SB}(\cdot; heta_{SB})$$

Signal Detection

Discrimination between the known background process and an unknown (possibly missing) signal process

 \rightarrow anomaly detection: deviation from the known background processes.

- \rightarrow semi-supervised classification.
 - A parametric model is specified as

$$p_{SB}(\mathbf{y}) = (1 - \lambda)p_B(\mathbf{y}; \theta_B) + \lambda p_S(\mathbf{y}; \theta_S).$$

Flexible parametric model for p_B and p_S (i.e. mixture of Gaussian distributions).

Università decli Studi di Padova

With growing dimensionality, the number of parameters to be estimated explodes \rightarrow dimensionality reduction.

Research question

How to reduce data dimensionality while enhancing exhibition of a possible signal?

- A penalty is imposed on likelihood to remove variables not relevant for signal/background discrimination
- Estimation of parameters $\theta = (\theta_B, \theta_S, \lambda)$ is obtained via maximization of the penalized log-likelihood

 $I_p(\theta|data) = I(\theta|data) - \gamma h(\theta).$

causing model regularization.

Synthetic data of size 80 and dimension 8 was generated from a mixture of two Gaussian distributions

- The full model has 105 unknown parameters.
- Penalty regularizes 44 of them leaving 61 nonzero parameters.

The classification results performed by the developed technique and *mclust* algorithm on testing set are compared

Table: Classification results of thedeveloped algorithm

Table: Classification results of themclust algorithm

		Predicted class	
		1	2
True	1	38	2
class	2	0	40

		Predicted class		
		1	2	
True	1	33	7	
class	2	32	8	