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General idea: use topological summaries to visualize and compare
complex data
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Goal: Hypothesis Tests for spatially complex data

Large-scale structure of the Universe

Fibrin

Source: http://www.kicc.cam.ac.uk, http://www.med.unc.edu, NASA, Klumpp et al. (2011)
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Bendich et al. (2016)

98 brain artery trees, subject ages from 18 to 72

Looking for correlations in brain artery trees between sex and age
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Homology

Looking for holes of order 0 (connected components), 1 (loops), 2
(voids), . . .

�0 = 1, �1 = 1 �0 = 15, �1 = 0 Universe

�0 = # of connected components, �1 = # of loops

Image: http://astro.berkeley.edu
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Persistent homology

radius = 0.45 radius = 0.48 radius = 0.92

Birth of loop: radius = 0.48

Death of loop: radius = 0.92

Persistence (or lifetime) of loop: 0.92 - 0.48 = 0.44
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Persistent homology summaries
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Kernel density estimation
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Parameter h controls the
amount of smoothing

 Width of red curves
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Persistent homology summaries
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Persistent homology summaries
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Topological randomness - I

Sample size = 16
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Sample size = 30
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Sample size = 50
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Sample size = 800
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Confidence sets for persistent homology

Fasy et al. (2014)
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Topological randomness - II

Figure: Cisewski et al. (2014)
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Hypothesis testing

Cold Dark Matter (left) vs. Warm Dark Matter (right)
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Two-sample hypothesis tests

Given two sets of persistence diagrams, {P(1)
1 , . . . , P(1)

n

} and

{P(2)
1 , . . . , P(2)

m

}.

H0 : P(1) = P(2) vs. H1 : P(1) 6= P(2)

where P(1) and P(2) are the true underlying distributions of
persistence diagrams for group 1 and 2, respectively.

What to use for the test statistic?
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Proposed summary statistics
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Proposed summary: Euler Characteristic Fn
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Landscape functions

For h = 0, 1, 2, . . . (homology dim) and
birth and deaths {b

hi

, d
hi

}n
i=1

⇤
p

hi

(t) =

8
><

>:

t � b
hi

t 2 [b
hi

, d

hi

+b

hi

2 ]

d
hi

� t t 2 [ dhi+b

hi

2 , d
hi

]

0 otherwise

Landscape functions are the following
collection of functions:

�
D

h

(k , t) = kmax
p

hi

2D

h

⇤
p

hi

(t),

t 2 [tmin, tmax], k = 1, . . . , n
h

Bubenik (2015)
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Silhouette functions

Rather than working with each k of �
D

h

(k , t) (landscapes)
individually, silhouettes provide a way of combining the triangle
functions:

�
h

(t) =

P
m

i=1 whi

⇤
hi

(t)P
m

i=1 whi

with weights w
i

. We use the recommend w
hi

= |d
hi

� b
hi

|p, (p is a
tuning parameter)

Chazal et al. (2014)
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Proposed summary: Silhouette functions
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Proposed summary: Intensity function

For each persistence diagram, estimate corresponding intensity
function (Chen et al., 2015):

̂⌧ =
X

j

(b
j

� d
j

)
1

⌧2
K

✓
x � b

j

⌧

◆
K

✓
x � d

j

⌧

◆

with symmetric kernel K and smoothing parameter ⌧
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Figure 1: An example of a persistence diagram and the smoothed persistence intensity estimator constructed from a
density estimator. Left: the density estimator. Middle: the persistence diagram. Each black dot is a 0-dimensional
topological feature and each red triangle is a 1-dimensional topological feature. Right: the smoothed persistence
intensity estimator. Note that in this case we only use the topological feature of dimension 0 to compute the intensities.
i.e. the connected components.

these quantities are generated from one another. Note
that there are two sources of randomness: � and each Pj.
It is easy to see that if Pj is given, the randomness of f j,
the persistence diagram D j, and its associated random
measure �(x,y) are determined by Pj. For each distribu-
tion Pj, we have a persistence intensity by equation (1)

� j(x,y) � �Pj(x,y)

and using the given diagram D j, we have an estimator

b��,i(x,y).

Note that � j depends on Pj so it is actually a random
quantity. However, we cannot consistently estimate each
individual � j since we only have one diagram. On the
other hand, if we consider the population version of in-
tensity function, we can consistently estimate it.

There are two ways to define a population intensity func-
tion and later we will show that they are the equivalent.
For the first definition, we define

�̄(x,y) = E�(� j(x,y)).

Namely, �̄(x,y) is the average intensity using the dis-
tribution �. Alternatively, we consider the distribution
�P = E�(Pj), which is the ‘mean’ distribution of �. Let
�X be a sample from �P. Then we define

��(x,y) � ��P(x,y)

by equation (1). Both �̄(x,y) and ��(x,y) are population
level quantity. The following lemma shows that they are
the same.

Lemma 1 Let ��(x,y), �̄(x,y) be defined as the above.
Assume ��(x,y), �̄(x,y) are bounded. Then

��(x,y) = �̄(x,y).

We always assume both ��(x,y), �̄(x,y) are bounded so
they are the same. For simplicity we write

�(x,y) � ��(x,y) = �̄(x,y). (2)

A nonparametric estimator for the population intensity
function �(x,y) is

b�n(x,y) =
1
n

n

�
i=1

b��,i(x,y). (3)

Essentially, this is the sample average for the intensity
function.

One may consider other weights such as

w j = g(� j)L� j(d j �b j),

where � j is the dimension of j-th topological feature and
Lk is some smooth function with Lk(0) = 0. The reason
we impose the constraint Lk(0) = 0 is to avoid a discon-
tinuity of �(x,y) along the diagonal since we will not
have any topological features below the diagonal line.
The function g determines how we want to give different
weights to topological features with different dimensions
and each Lk is a function that determines how we want
to give weight to the k dimensional topological features
according to their lifetime. Note that the parameter of
interest �(x,y) depends on the weight we choose. In this
paper, we use life time as the weight w j = d j �b j, which
is the case that g(� j) = 1 and Lk(x) = x. Although our
theoretical analysis is done for the this simple case, it can
be generalized to other weights easily.

3

Related idea: Persistent images (Adams et al., 2015) 21



Proposed summary: Intensity functions
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Perform a (permutation) kernel test (Gretton et al., 2012)

For intensity functions {X1, . . . ,Xn

} and {Y1, . . . ,Ym

}

T =
1

n2

nX

i=1

nX

j=1

K
h

(X
i

,X
j

)� 2

mn

nX

i=1

mX

j=1

K
h

(X
i

,Y
j

)+
1

m2

nX

i=1

nX

j=1

K
h

(Y
i

,Y
j

),

K
h

(X ,Y ) can be thought of as a similarity measure between
intensity functions X and Y

E.g. Gaussian kernel K
h

(X ,Y ) = exp(� ||X�Y ||2
h

2 )

For the tests based on functional summaries, �
i

(t), for each
persistence diagram i , we estimate

bx
i

=

Z
tmax

tmin

|�
i

(t)| dt.

Then do a two-sample t-test.
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Large-scale structure (LSS) simulation model⇤

Abbrev Definition Value
percWall Percentage of particles on the walls 0.98� p

f

percFil Percentage of particles on the filaments p
f

percClust Percentage of particles in the clusters 0.02

Table: Parameters of LSS model. For the simulation study, p
f

will vary
from 0.1 to 0.9.

⇤Variation of “Voronoi Foam Model” of Icke and van de Weygaert (1991) 24
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(a) PercFil 0.1 (b) PercFil 0.5 (c) PercFil 0.9

(d) PercFil 0.1 (PD) (e) PercFil 0.5 (PD) (f) PercFil 0.9 (PD)

25

Simulation study details

Vary p
f

(% of points on filaments) from 0.1 to 0.9; p
f

= 0.1
is the null model

15 datasets in each sample

1000 repetitions

26



Euler characteristic functions

Silhouette functions

Intensity kernel functions

Weighted intensity kernel functions

Comparison of the best performers within each group

Median log10 p-value ± 25th and 75th percentiles of the 1000 iterations

The horizontal axis represents the true PercFil (10%, 15%, 20%, 25%, 30%),
compared to the null PercFil of 10%

The vertical axis shows the log10(p-values)
27

Dark Matter Simulations

Cold DM (left) vs. Warm DM (right)

28



Only have one realization of each cosmological simulation

- we divide each cube into 23 sub-cubes and 24 sub-cubes

- do matched-pairs t-test

29

Test 23 Sub-cubes 43 Sub-cubes
EC 1.2e-06 7.4e-26
EC(0:2) 2.1e-05 7.4e-28
EC(0) 3.3e-08 3.8e-30
EC(1) 1.8e-05 8.2e-21
EC(2) 0.340 0.088
Sil(EC) 7.7e-08 2.5e-20
Sil(0:2) 1.9e-06 1.1e-33
Sil(0) 3.0e-08 1.5e-34
Sil(1) 1.2e-05 2.9e-23
Sil(2) 0.925 0.035
CORR 6.7e-04 7.4e-16

30



Summary

Spatially complex data is becoming more common in science
(e.g. Cosmic Web, fibrin, brain artery trees)

However, analyzing these data is not straightforward

We explore several summary statistics derived from
persistence diagrams to carryout two sample hypothesis tests

The test based on the Euler Characteristic function performs
the best in the simulation study with large-scale structure

Thank you!
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