

Outline

- **Group members**
- **Research fields**
	- **Nuclear physics**
	- **Solar neutrons**
	- **hadrontherapy**
- **Strategy**
	- **Recoil proton technique**
- **Detector concept**
	- **Daq & trigger**
	- **Sensor**
- **Monte Carlo Simulation**
	- **Optics**
	- **Track reconstruction**
		- **Methods**
		- **Results**
- **Milestones & Requests**
- **Bibliography**
- **Conclusions**

Group Members

RIPTIDE: RecoIl ProTon Imaging DEtector

Research fields: nuclear Physics: Research **fields: nuclear Physics**

Heavy Ions En ~ MeV

 \Box heavy ions interactions at Fermi energies

Radioactive beams En < 100 MeV

- \Box study of nuclear matter far from stability
- □ reactions induced by neutron-rich projectiles

Neutron facilities En < 1 GeV

- \Box study of neutron-induced reactions
- Neutron-neutron scattering length

Study of the neutron-neutron scattering length by the nuclear reaction:

 $n + 2H \rightarrow n + n + p$

requires information on neutron momentum

Research fields: solar neutrons

Neutron production processes:

neutron @E<30MeV produced by

heavy ions interaction on ambient H and ⁴He (decay before arriving on the earth)

neutron @ E>30MeV produced by

- **α** interaction with ambient H and 4He,
- **proton** interactions with ambient ⁴He
- □ Only these can be detected near Earth

Crucial the direction determination to distinguish signal from background:

Research fields: hadrontherapy

Neutrons produced:

- **in the accelerator head**
- **in the body patient**
	- **p+16O n+p+15O**

Neutron direction distinguishes the two sources

- **improve the TPS**
- **estimate the secondary production**

Can be used to monitor the beam in the patient

Metodology: Recoil proton Tecnique

Metodology: Recoil proton Tecnique

of new Empshire Scholar's Repository, https://scholars.unh.edu/ssc/208

a 65 MeV neutron incident from top

 n p is only elastic (at this energy) σ(n C) > σ(n p) large bkg events?

but …

n in a plastic scintillator

Detection volume: (6 cm)3 neutron energies: 3-50 MeV proton ranges: 0.2 – 30 mm H:C = 1.1

p & C Range

 $R(E) = \alpha E^p$ a depends on material
n on Energy (~ 1.75)

p on Energy (\sim 1.75)

C n n a carbon b proton ν energy **p n n n at 60 MeV Rp = 35 mm Rc = 1.5 mm**

Carbon range \rightarrow **0 (lighted points) signal lower than thereshold**

Literature, 1 S.M. Valle et al, NIM A 845 (2017) 556; 10.1016/j.nima.2016.05.001 E. Gioscio et al, NIM A 958 (2020) 162862; 10.1016/j.nima.2019.162862 M. Marafini et al, Phys. Med. Biol. 62 (2017) 3299; 10.1088/1361-6560/aa623a

MOnitor for Neutron Dose in HadrOntherapy

Layers of perpendicular scintillating fibers (250 μm)

Light produced in fibers are

- **amplified with a triple GEM intensifier**
- **acquired with CMOS Single Photon Avalanche Diode arrays**

Literature,2 **SOlar Neutron TRACking**

G. A. De Nolfo et al, "SOlar Neutron TRACking (SONTRAC) Concept." (ICRC2019), PoS 36 (2019) 1074; 10.22323/1.358.1074 J.G. Mitchell et al, "Development of the Solar Neutron TRACking (SONTRAC) Concept" (ICRC2021), PoS 395 (2021) 1250; 10.22323/1.395.1250

32 layers of perpendicular scintillating fibers (1 mm)

Light produced in fibers

- **acquired with SiPM**
- **RO system: 32-channel CAEN DT5550W**

neutron detectors placed or

- **in low Earth orbit (LEO)**
- **In Lunar Gateway (space station between earth and moon)**
- **In deep-space probes to the inner Heliosphere**

16

Neutron ARray for Correlation Studies (PRIN at LNS)

Pagano EV, et al. (2023), NArCoS: The new hodoscope for neutrons and charged particles. Front. Phys. 10:1051058. doi: 10.3389/fphy.2022.1051058

Neutrons detection via recoil proton technique

(only single scattering \rightarrow fixed target experiment to determine neutron direction, tof to determine energy)

VETO to discriminate primary protons from primary neutrons array of unitary cells Solid angle \approx 7 msr (0.05%) Angular resolution DSSSD $\approx 0.15^{\circ}$ Angular resolution NArCos \approx 1.25° 75 cm 150 cm

Energy range 5 – 50 MeV

Each cell consists of 3x3 cm EJ276G cube + SiPM + electronic readout

- **PSA** (pulse shape analysis) discriminate protons/neutrons from γ
- **VETO** discriminate neutrons from primary protons

proton ranges: 0.2 – 30 mm

RIPTIDE: Trigger system

Cube, SiPM and a system of electronic RO are already available

Tests done with cosmic rays

SiPM Characterization: light yield with cosmic rays

CINEFOIL:

- **Only direct light**
- **Lower signal**
- **Better time resolution**

amplifier?

TEFLON:

- **Direct and indirect light**
- **higher signal**
- **Worsen time resolution**

SiPM

locations

Trigger logic and Data collecting electronics

Number of cameras to be decided

RIPTIDE: lens system

Lens system is necessary to reconstruct the photon direction

Each surface is unifomly illuminated

W Without lens system is not possible to reconstruct the proton track

Crucial to simulate all the optic steps

Toy MC to simulate only optics Apply optic system to GEANT simulation

Possible Sensor

Pro:

On the shelf! And in our lab! Direct connection with a PC **Cont:** Low fps No empty pixel suppression High dead time during reading

Physics and detector Simulation

 Generated 106 neutrons and 106 protons □ Initial proton position: concentric cube of 2 cm □ Initial proton momentum: isotropcal emission □ Initial neutron position: (-3.1, 0, 0) cm \Box Initial neutron momentum direction $(1, 0, 0)$ \blacksquare Initial kinetic Energy: 5, 10, 20, 50, 100 MeV

- Cube geometry and material characteristics
- **D** Transport Models
	- p and n derived from n-TOF results
	- **ISOTROPICALLY EMISSION OF 104 photons per MeV of proton**

Reconstruction:

from 2 bidimensional images on sensors

 \rightarrow Tridimensional Proton tracks

Toy MC simulation: photon transmission (Snell law)

If $\theta > \theta_{max}$ on the first wall, $\theta > \theta_{max}$ on the all walls (γ doesn't exit) \rightarrow low bkg \rightarrow low intensity

Toy MC simulation: photon transmission (Polarization)

γ has a random polarization that can be decomposed (50% parallel and 50% perpendicular)

parallel or **perpendicular** to the incident plane (plane having the photon momentum and the normal to the surface)

Optics scheme

Those fixed on the common sense (obviously can be changed if needed)

D (f), a,b to be evaluated by simulation

The apparent source

As a spherical diopter here is a plane (sphere with $R \rightarrow \infty$)

the source is seen by the optics shifted by 18.9 mm)

the optics see the cube «crushed» by a factor $1/n_1$

Apparent active volume \rightarrow Active volume/n₁

Lens magnification

Photon collection efficiency (γ emitted along the lens axis) $\Omega = 2\pi (1 - \cos \theta_{max})$ when D=2f **Lens** $f(\Omega) = 3(1 - \cos \theta_{max})$ θ_{max} $\tan \theta_{max} = \frac{D}{2p} = \frac{f}{p}$ $\theta_{in,max} = \theta_{max}/n_1$ D**f** $f(\Omega) = 3 [1 - \cos(\frac{f}{p n_1})]$ **p Acceptance vs p/f ratio Angle vs p/f ratio** Fraction of accepted photons **p/f=3,** 0.3 40 **p/f=3, P(Ω)=6.0 %** Internal reflection $\theta_{in,max} = 11.5^{\circ}$ $35E$ 0.25 $\theta_{max}=39^{\circ}$ зоЕ 0.2 $25E$ **p/f=4, p/f=4,** 0.15 20 **P(Ω)=3.5%**

 0.1

 0.05

 $\overline{2.5}$

 3.5

4.5

p over f ratio

3

 $\overline{2}$

 1.5

30

Final dimensions

to collect the light in the active volume we need a lens of similar size.

R from 2 to 4 cm (assume R=3 cm)

Simulation: Final dimension of the object ~30x30x10 cm3

Position Resolution

photons generated randomly in the center of a cube (53x53x53 mm3)

- **Number of photons: 6.88x104**
- **Energy: 6.88 MeV**

Position Resolution: variation of cube dimension

Position Reconstruction (the same for Y and Z)

cube (53x53x53 mm3)

cube (40x40x40 mm3) cube (30x30x30 mm3)

- **Decreasing the Cube dimension improve the Position Reconstruction**
- **Decreasing the Cube dimension → decrease the detector efficiency**

Geant simulation **cube 60x60x60 mm3**

protons generated isotropically in the center of a cube [-1:1] for X-Y-Z

Energy: 30 MeV

10 k photons per MeV

Material: only H

Cube surface: total absorption (no reflection)

Standard optics with p/f=3, f = 30 mm, R = 30 mm

Geant simulation: variation of the radius of the lens

XY Projection (the same for the others)

 Decreasing the radius of the lens decrease the spherical aberration bkg decrease Decreasing the radius of the lens decrease the light yield

Tracks reconstruction

Requests:

 Minimum track lenght detectable ~ 0.2 mm 3.5 MeV 104 photons per MeV of protons over the entire solid angle Scintillator covered by absorbing material to avoid internal light reflection \rightarrow **decrease the source of noise**

2 different approaches

- **Simple linear fit**
	- **Without exclusion of points**
	- **With exclusion of points**
- **Principal component analysis (PCA)**

Radius of the Lens: 0.5 cm

CMOS pixel: 100x100

Residual (100 events)

2 methods are compatible inside the error

Radius of the Lens: 1 cm CMOS pixel: 100x100

v1(pixels)

v2(pixels)

2 methods are compatible inside the error

PCA Analysis, 1

In general \rightarrow data sets are points $(x_1, x_2, ..., x_n)$ in the n-D space to discriminate/cluster **PCA (Principal Component Analysis) : machine learning tool supporting decisions and data analysis**

INPUT data for Principal Component Analysis

Data analysis (standard case): raw data set

41

 \blacktriangleleft

 0.8 0.6 0.4

 0.2

10

6

-8

X axis [mm]

Proton track

- **30 MeV energy**
- **Generated in (2x2x2)cm3 cube inside detector**
- **Direction isotropic**

Έ

-6

-8

 -10 ₋₁₀

raw data (zero mean) on PC

 -6

 -4

 -2

0

photon source MC

-8

Proton track • **30 MeV energy** • **Generated in (2x2x2)cm3 cube inside detector**

• **Direction isotropic**

3D Track Reconstruction

Proposal Summary

Fast neutron tracking based on n-p elastic scattering

Our knowdlege

GEANT4 Simulation

- **D** p+BC408
- n+BC408
- □ Optical photons transport

Toy MC of a simple Optical System

- \Box Systematics of optical parameters
- **D** Point light source
- **D** Proton source

Track Reconstruction

- **D** Point interpolation
- \Box PCA

Challenge

- **Final Optical system**
	- **Q** Small aberration
	- \Box High light collection
- **System geometry**
	- □ Use of only 2 cameras
	- \Box compact detector
- **Working Prototype**
	- \Box scintillation light photograph
	- □ Benchmarking of MC simulation
- **Track reconstruction**
	- Double scattering
	- **Q** New methods (AI)

Requests and milestones

Duration: 3 years

- 2024: detector definition
- 2025: detector realization
- 2026: data taking

Bibliography

- **Riptide: A. Musumarra et al, JINST 16 (2021) C12013-5**
- **Mondo: S.M. Valle et al, NIM A 845 (2017) 556**
- **Recoil proton: J. Hu et al, Sci. Rep. 8 (2018) 13363**
- **SONTRAC: G. A. De Nolfo et al, PoS 36 (2019) 1074**
- **N tracking: Z Wang, C Morris, NIM A 726 (2013) 145**
- **Master thesis of Claudia Pisanti**
- **P. Console Camprini et al. JINST 18 C01054**
- **M. Filipenko et al. Eur. Phys. J. C. (2014) 74:3131**

Conclusions

In our opinion the project is of extreme interest because:

- Useful in different physics fields (hadrontherapy, astrophysics, …)
- It is a new approach on neutron detection
- \Box More applications can be identified
- **Low cost of realization**
- Realistic duration time (3 years) and manpower (3.8 FTE)

Backup slides

Sorting and triggering

Circular buffer of time-sorted images

Simulation

Percentage of exited protons after single scattering

Percentage of exited protons after double scattering

PCA Analysis, 1

In general (not our case) n points (x, y, z) in the space Covariant matrix

