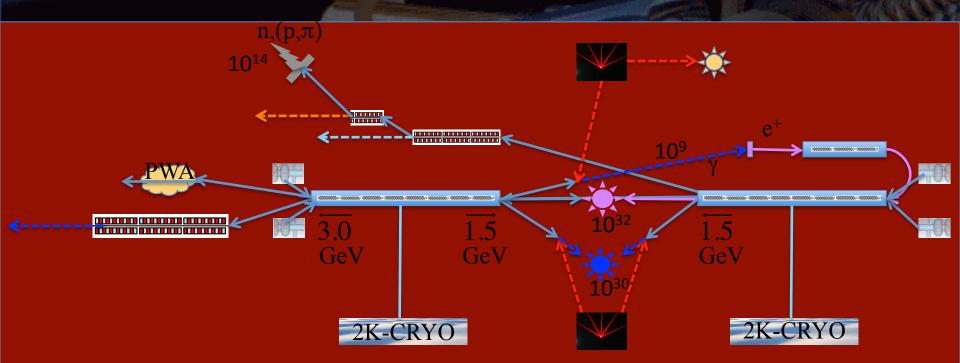
IRIDE

Interdisciplinary Research Infrastructure with Dual Electron

linacs Massimo.Ferrario@lnf.infn.it on behalf of

D. Alesini¹, M. P. Anania¹, M. Angelone, D. Babusci¹, A. Bacci², A. Balerna¹, M. Bellaveglia¹, M. Benfatto¹, R. Boni¹, R. Bonifacio⁷, M. Boscolo¹, F. Bossi¹, B. Buonomo¹, M. Castellano¹, L. Catani⁴, M. Cestelli-Guidi¹, V. Chiarella¹, A. Clozza¹, A. Cianchi⁴, R. Cimino¹, F. Ciocci¹⁴, E. Chiadroni¹, C. Curceanu¹, S. Dabagov¹, G. Dattoli¹⁴, P. De Felice⁵, G. Delle Monache¹, D. Di Gioacchino¹, D. Di Giovenale¹, E. Di Palma¹⁴, G. Di Pirro⁴, A. Doria¹⁴, U. Dosselli¹, A. Drago¹, A. Esposito¹, R. Faccini², M. Ferrario¹, G. P. Gallerano¹⁴, A. Gallo¹, M. Gambaccini¹¹, C. Gatti¹, G. Gatti¹, A. Ghigo¹, L. Giannessi¹⁴, F. Giorgianni², E. Giovenale¹⁴, C. Guaraldo¹, R. Gunnella⁸, S. Ivashyn¹², S. Loreti⁵, S. Lupi², A. Marcelli¹, C. Martani¹⁶, M. Mattioli², G. Mazzitelli¹, P. Michelato³, M. Migliorati², C. Milardi¹, E. Milotti¹³, S. Morante⁴, D. Moricciani², A. Mostacci², V. Muccifora¹, P. Musumeci¹⁰, E. Pace¹, C. Pagani³, L. Palumbo², M. Pedio, A. Perrone⁹, A. Petralia¹⁴, V. Petrillo³, P. Pierini³, A. olo, M. Pillon, R. Pompili⁴, C. Quaresima¹⁵, L. Quintieri⁵, J. V. Rau, C. Ronsivalle¹⁴, J. B. g¹⁰, A. R. Rossi³, E. Sabia¹⁴, L. Serafini³, D. Sertore³, O. Shekhovtsova¹², I. Spassovsky¹⁴, T. Spadaro¹, B. Spataro¹, V. Surrenti¹⁴, A. Tenore¹, A. Torre¹⁴, C. Vaccarezza¹, A. Vacchi¹³, P. ente², G. Venanzoni¹, S. Vescovi¹, F. Villa¹, N. Zema¹⁵, M. Zobov¹.

IRIDE


Interdisciplinary Research Infrastructure with Dual Electron

linac Massimo.Ferrario@lnf.infn.it on behalf of

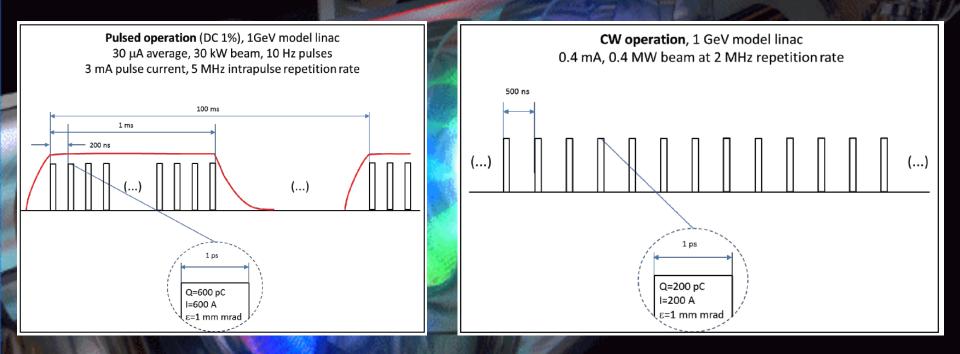
(1) INFN-LN

(2) INFN and Universita' di Roma"La Sapienza' (3) INFN and Universita' di Milano (4) INFN and Universita' di Roma' Tor Vergata' (5) Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA C R Casaccia. (7) INFN and Universidade Federal da Paraiba, Brazil (8) Universita' di Camerino (9) INFN and Universita' del Salento (10) UCLA, Los Angeles, USA (11) INFN and Universita' di Ferrara (12) ITP NSC KIPT, Kharkov, Ukraine (13) INFN and Universita' di Trieste (14) ENEA – Frascati (15) CNR (16) CNISM and Universita' di Roma"La Sapienza"

I R I D E is a large infrastructure for fundamental and applied physics research. Conceived as an innovative and evolutionary tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications, it will be a high intensity "particle beams factory".

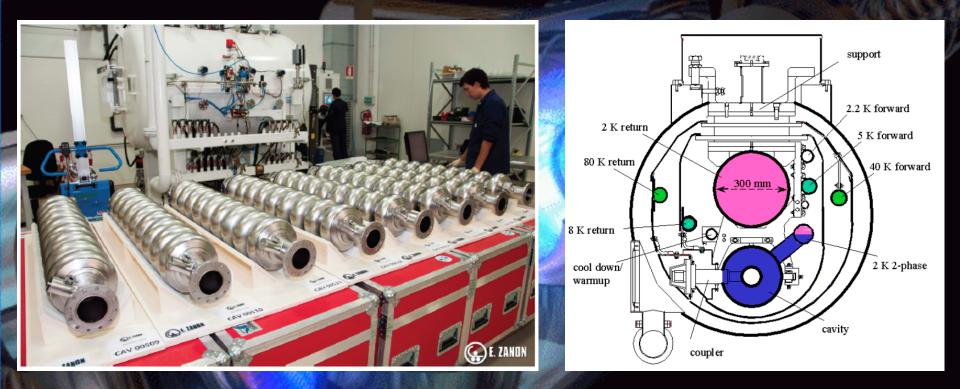
Based on a combination of a high duty cycle radio-frequency superconducting electron linac (SC RF LINAC) and of high energy lasers it will be able to produce a high flux of electrons, photons (from infrared to γ -mass), neutrons, protons, pions and eventually positrons, that will be available for a wide national and international scientific community interested to take profit of the most advanced particle and radiation sources.

We can foresee a large number of possible activities, among them:

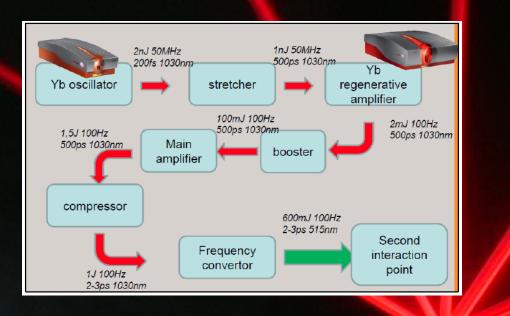

- Science with Free Electron Lasers (FEL) from infrared to X-rays,
- Nuclear photonics with Compton back-scattering γ-rays sources,
- Fundamental physics with low energy linear colliders
- Advanced Neutron sources by photo-production,
- Science with THz radiation sources,

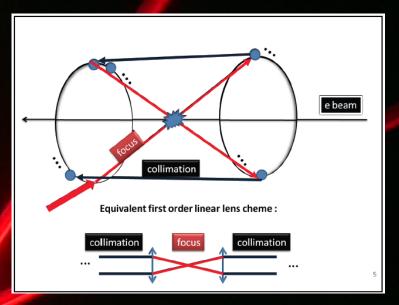
Physics with high power/intensity lasers,

R&D on advanced accelerator concepts including plasma accelerators and polarized positron sources


- ILC technology implementation
- Detector development for X-ray FEL and Linear Colliders
 - R&D in accelerator technology and industrial spin off

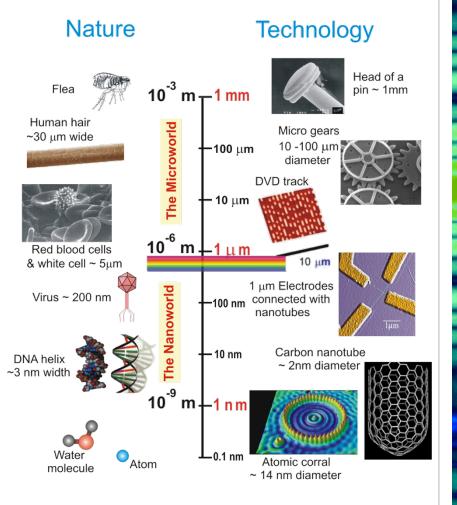
The main feature of a SC linac relevant for IRIDE is the possibility to operate the machine in continuous (CW) or quasi-continuous wave (qCW) mode with high average beam power (>1 MW) and high average current (>300 μ A).

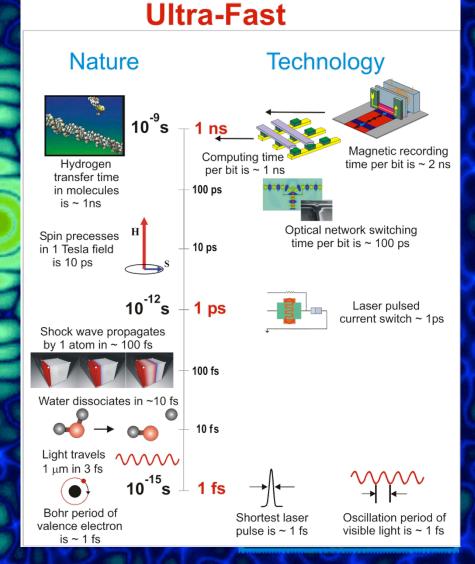

The CW or qCW choice, combined with a proper bunch distribution scheme, offers the most versatile solution to provide bunches to a number of different experiments, as could be envisaged in a multi-purpose facility.


INFN is in a leading position in the SC RF technology, with knowledge and strong capabilities in the design, engineering and industrial realization of all the main component of a superconducting radiofrequency accelerator.

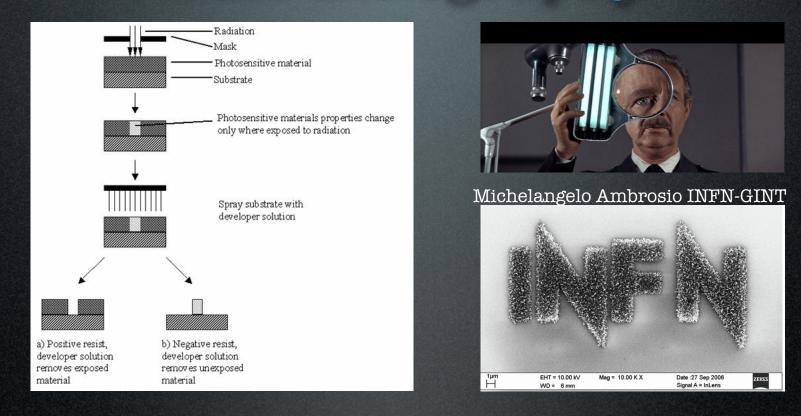
INFN strongly participated to TESLA since the early design stages through the final engineering and shares the know-how and has the recognized intellectual property of several main components one of which is the cryo-module concept and its evolution.

The laser system complex is deputed to deliver optical photon beams able to fulfill the several requirements of the IRIDE facility:





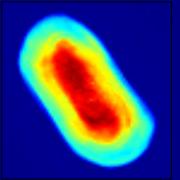
- drivers of photo-cathodes for electron beam generation
- colliding laser pulses to drive the back-scattering Compton (Yb:YAG, 100 W, 1 J, 0.1% bw)
- drivers for high advanced acceleration experiments (Ti:Sa, 1 PW, 10²² W/cm²)


Science with Photons

Ultra-Small

nano lithography

• Extreme UV Lithographt is the candidate technology with <50-35 nm

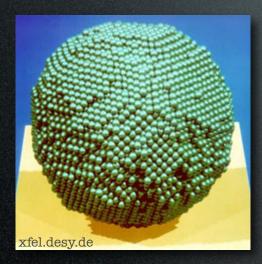

• Cost effective solutions based on FEL sources can be foreseen

FIRST FLASH DIFFRACTION IMAGE OF A LIVING CELL

FLASH soft X-ray laser, Hamburg, Germany

FLASH pulse length: 10 fs Wavelength: 13.5 nm

RECONSTRUCTED CELL STRUCTURE



Filipe Maia, Uppsala

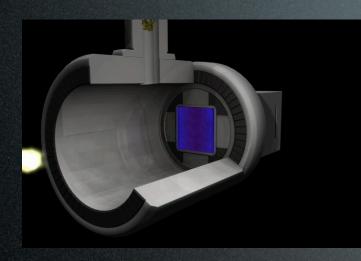
J. Hajdu, I. Andersson, F. Maia, M. Bogan, H. Chapman, and the imaging collaboration

			1	'
30	60	∞	60	
	Resolution le	ngth on the detector	(nm)	

cluster and nanoparticle

Clusters are small bits of matter composed of anywhere from a few to tens of thousands of atoms.

Small particles are different from bulk matter; finite size effects influence all properties of matter.


Examples are tiny carbon spheres and carbon tubes that are considered promising candidates for use as nanotechnological components. (17 000 copper atoms in the picture on the right).

Limited photon energy of standard laser systems prevents measuring the full valence electron structure as well or performing photon energy dependent spectroscopy across shallow core edges

The beam intensities available at 3rd generation

synchrotron radiation facilities are still far below what is required for meaningful gas phase experiments.

Protein imaging

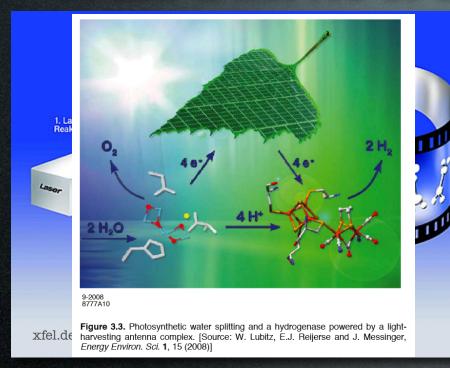
Leser pulse intensity

Lawrence Livermore National Laboratory (LLNL)

Using extremely short and intense X-ray pulses to capture images of objects such as proteins before the X-rays destroy the sample.

Single-molecule diffractive imaging with an Xray free-electron laser.

Individual biological molecules will be made to fall through the X-ray beam, one at a time, and their structural information recorded in the form of a diffraction pattern.


The pulse will ultimately destroy each molecule, but not before the pulse has diffracted from the undamaged structure.

The patterns are combined to form an atomicresolution image of the molecule.

The speed record of 25 femtoseconds for flash imaging was achieved.

Models indicate that atomic-resolution imaging can be achieved with pulses shorter than 20 femtoseconds.

make a movie of chemical reactions

Chemical reactions often take place incredibly quickly: orders of magnitude of femtosecond are not rare. The atomic changes that occur when molecules react with one another take place in moments that brief.

The XFEL X-ray laser flashes make it possible to film these rapid processes with an unprecedented level of quality.

Since the flash duration is less than 100 femtoseconds, images can be made in which the movements of detail are not blurred.

And thanks to the short wavelength, atomic details become visible in the films.

To film a chemical reaction, one needs a series of pairs of X-ray laser flashes.

The first flash in each pair triggers the chemical reaction. With the second flash, a snapshot is then made.

The delay between the two flashes can be precisely modified to within femtosecond and a series of snapshots can be made at various times following the start of the reaction.

In each case, the images are of different molecules, but these images can be combined into a film.

Axion-Like Particle Generation with the Free-Electron Laser VUV-FEL

- AR, "Fundamental physics at an X-ray free-electron laser," arXiv:hep-ph/0112254
- R. Rabadan, AR and K. Sigurdson, "Photon regeneration from pseudoscalars at X-ray laser facilities," arXiv:hep-ph/0511103
- U. Kötz, AR and T. Tschentscher, "Production and detection of axion-like particles at the VUV-FEL: A study of feasibility," in progress

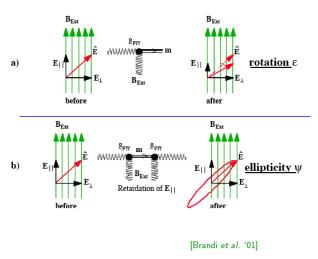
"Plenty of Room also in the Vacuum"

Polarization experiments

- Send linearly polarized laser beam through transverse magnetic field ⇒ measure changes in polarization state
- Real and virtual production induce
 - rotation: photons polarized || B will disappear leading to apparent rotation of polarization plane by

$$\varepsilon_{\phi} = -N_r \left(\frac{gB\ell}{4}\right)^2 F(q\ell) \sin 2\theta$$

- ellipticity: virtual production causes retardation between $E_{||}$ and $E_{\perp} \Rightarrow$ elliptic polarization


θ

$$\psi_{\phi} \approx \frac{N_r}{6} \left(\frac{g \ B \ \ell}{4}\right)^2 \frac{m_{\phi}^2 \ \ell}{\omega} \sin 2$$

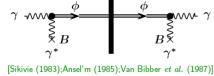
for small masses,
$$m_{\phi}^2 \ell/4\omega \ll 1$$
.

3

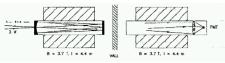
"Vacuum magnetic dichroism and birefringence" [Maiani,Petronzio,Zavattini '86]

– Axion-Like Particle Generation . . . –

Photon regeneration


- Production: Polarized laser beam along transverse magnetic field, such that $E \mid\mid B \Rightarrow$ conversion $\gamma \rightarrow \phi$
- Absorb laser beam in wall
- **Detection:** Detect photons behind wall from back conversion $(\phi \rightarrow \gamma)$ in second magnetic field:

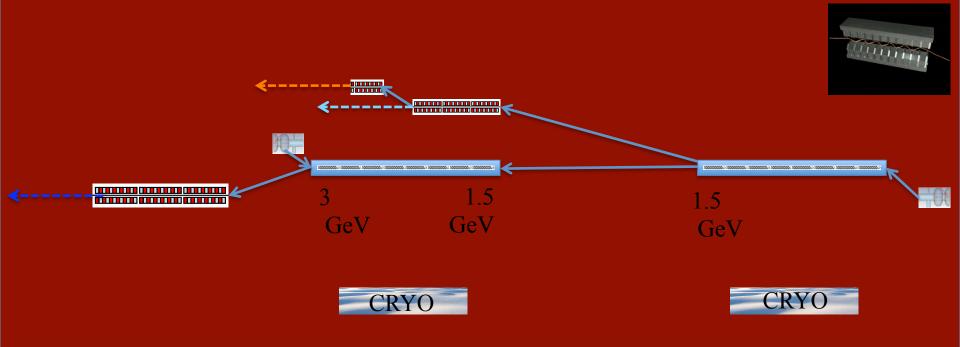
$$\dot{N}_{\gamma} = \underbrace{\frac{\langle P \rangle}{\omega}}_{\dot{N}_{0}} \frac{N_{r}}{2} \underbrace{\frac{1}{16} \left(g \ B \ \ell\right)^{4} F^{2}(q \ell)}_{P^{2}_{\gamma \leftrightarrow \phi}}$$


with $F \approx 1$ for $q\ell \ll 1$ (coherence),

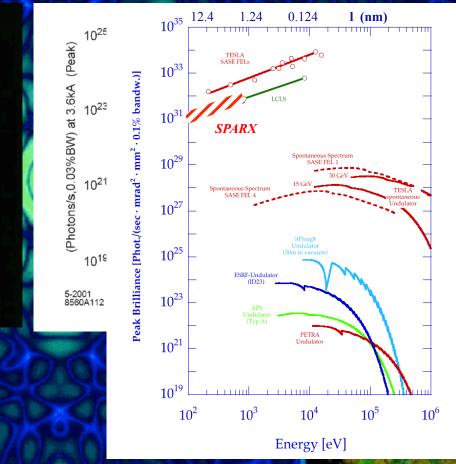
 $m_{\phi} \lesssim 10^{-3} \mathrm{eV} \left(\frac{\omega}{1 \mathrm{eV}} \frac{1 \mathrm{m}}{\ell} \right)^{1/2}$

"Light shining through a wall"

BFRT experiment: (Brookhaven, Fermilab, Rochester, Trieste)

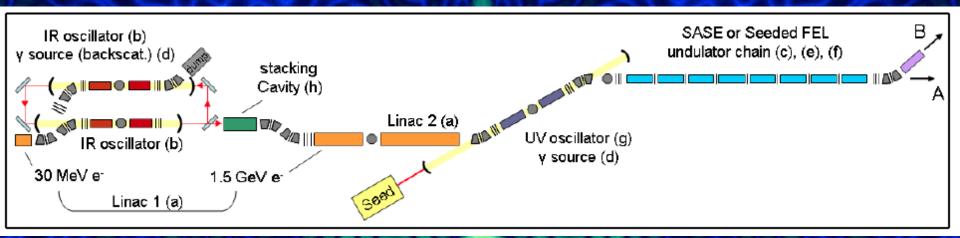


[Cameron et al. (1993)]


$$\beta = 3.7 \text{ T}, \ell = 4.4 \text{ m}, \underbrace{\langle P \rangle = 3 \text{ W}, \omega = 2.4 \text{ eV}}_{\dot{N}_0 = 8 \times 10^{18}/\text{s}}, N_r = 200$$

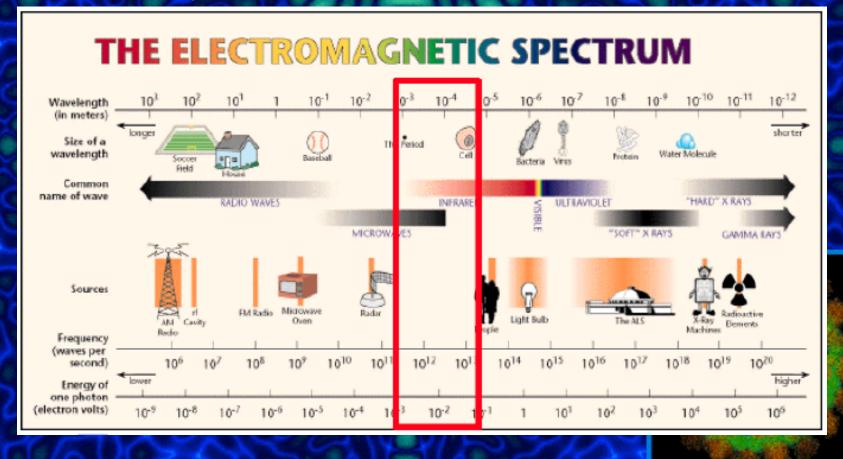
Free electron Lasers

The IRIDE project will provide a new concept of FEL facility by merging the two technologies of FEL oscillators and fourth generation radiation sources by developing a facility providing radiation from IR to EUV to the nm region down to Å level using a mechanism of emission already successfully tested at SPARC.


A Free Electron Laser is a device that converts a fraction of the electron kinetic energy into coherent radiation via a collective instability in a long undulator

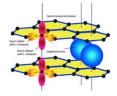
0

$$\lambda_{rad} \approx \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \vartheta^2 \right)$$


Radiation properties: GW power - Monocromaticity - Tunability from IR to X- Short pulses

		d the stand			110 march	
>	Electron beam energy	FEL osc_I	FEL osc_II	FEL osc_III	SASE&Seeding	∞
20	50-100 MeV	10-0.1 X-ray intracavity				20
		generation	100			54
2	750 Mev		120 nm+ Harmonics& Intracavity- scattering		30nm-10nm	
	2.28 GeV			13.5nm+ Harmonics &intracavity scattering	6-2 nm	
	3 GeV				1-0.1nm	

THz radiation source


The interest for having high-power, sub-ps pulsed radiation covering the spectral range from THz to MIR is rapidly growing, both as it is a powerful tool for investigating the behavior of matter at low energy, and as it allows for a number of possible applications spanning from medical science to security.

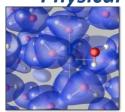
THz radiation source

Condensed Matter Physics

Superconductivity

Energy gap Symmetry of the order parameter Direct determination of the superfluid density Dynamics of Cooper pairs

Low-dimensional materials


Dimensionality crossover Non-Fermi liquid normal states Broken symmetry ground states

Coherent Phase Transitions

Polarons Structural Phase Transitions

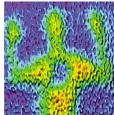
Magnetic sub-ps Dynamics

Physical and Analytical Chemistry

Polar liquids Hydrogen bond Van der Waals interactions Acoustic-Optic phonon mixing in water Solutions

Static and dynamic interactions between solvated ions and solvent

Life Sciences

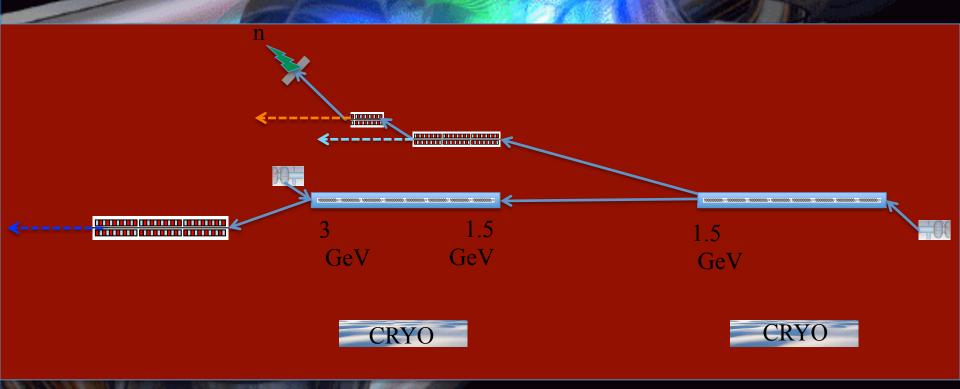

Macromolecules conformation Secondary and tertiary structure Coherent dynamic development

Imaging

3D tomography of dry tissues Near-field sub-wavelenght spatial resolution

New Technologies

THz technologies
 Array THz detectors
 Metamaterials
 Medical diagnostic
 Skin cancer detection
 Industrial production
 Material inspection
 Production line monitoring
 Defense industry/Homeland security
 Detection of explosives and biohazards

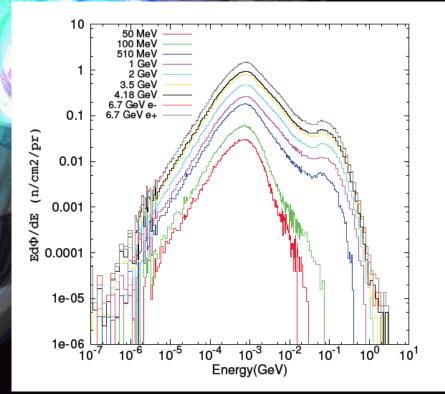


THz radiation source

Electron beam parameters						
Electron energy (GeV)	1.5 – 0.5					
Charge/bunch (pC/bunch)	250					
RMS bunch length (µm)	60					
Normalized emittance (mm mrad)	1					
Undulator						
Period (cm)	40					
Number of periods	10					
Magnetic field (T)	0.1 -1					
Coherent Undulator Radiation parameters						
Wavelength (µm)	20 – 200					
Peak power (MW)	100					
Micropulse energy (mJ)	10					
Micropulse duration (fs)	200					
Coherent Diffraction Radiation parameters						
Wavelength (µm)	> 60					
Peak power (MW)	100					
Micropulse energy (µJ)	> 10					
Micropulse duration (fs)	200					

Neutron Source

A Neutron Source can be realized by photo-production sending high energy electrons on a suitable high Z target. This kind of source allows to obtain neutrons with an energy spectrum that spans over more than 9 decades of energy from few meV up to hundred of MeV, even if most of them have energy around the nuclear equilibrium temperature of the target material (for W, it is around 1 MeV)



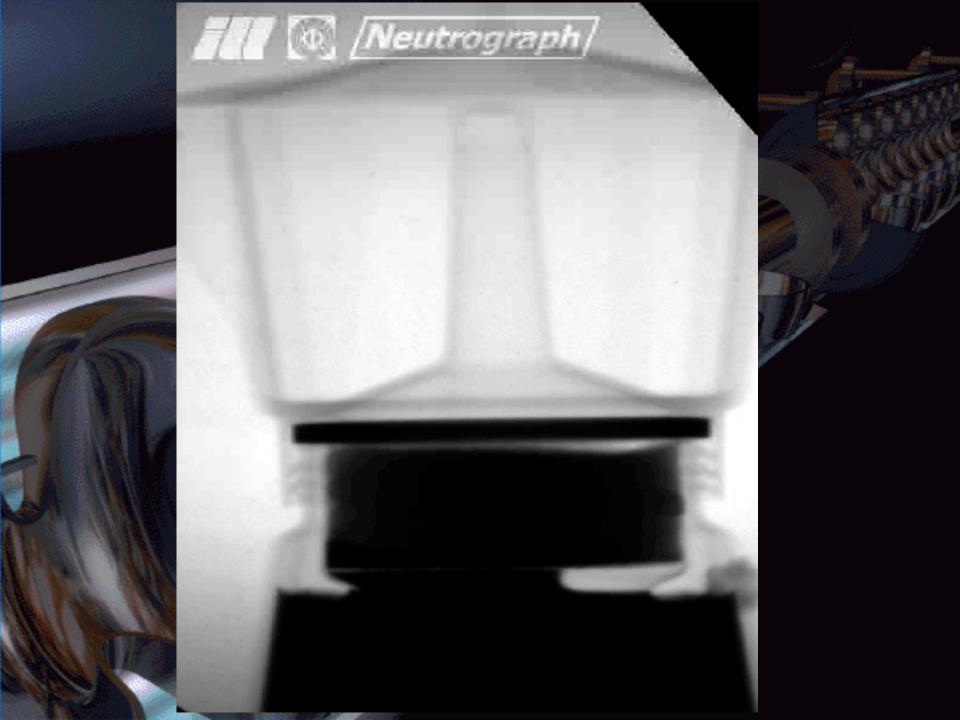
Neutron Source

This source may be suitable for multiple applications, ranging from material analysis for industrial and cultural heritages purposes to chip irradiation and metrology. These applications envisage the development of properly designed beam lines with neutron moderation and possibly cold/thermal neutron transport systems. The proposed new facility will represent a great opportunity for research and development of neutron instrumentation (e.g. detectors) as well as training of young scientist in the use and development of neutron

techniques

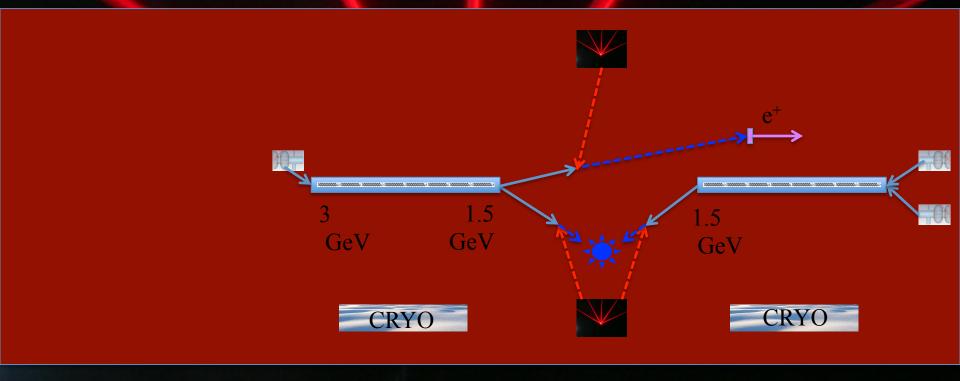
Deposited Power [kW]	Primary Electron Energy [GeV]	Expected Average Neutron Emission rate [n/s]
30	1	1.3 E+14
250	1	1.0 E+15
400	1	1.7 E+15
30	3	4.3 E+13
250	3	3.3 E+14
400	3	5.6 E+14

Neutron Source


Neutron Resonance Capture Analysis (NRCA): Each resonance is the fingerprint of a nuclear specie (isotopical recognition) thus allowing for the elemental material analysis (qualitative and quantitative) especially on metallic samples (e.g. cultural heritages).

Bragg Edge Transmission (BET): By means of this technique, stresses and strain in bulky samples can be analysed. This analysis is very important for both industrial as well as cultural heritages applications.

Chip irradiation : In order to test the robus ness of electronic devices to neutron field in a few minutes, neutron beams produced at facilities are desirable as the may provide an almost atmospheric-like neutron spectrum but several order of magnitude more intense.

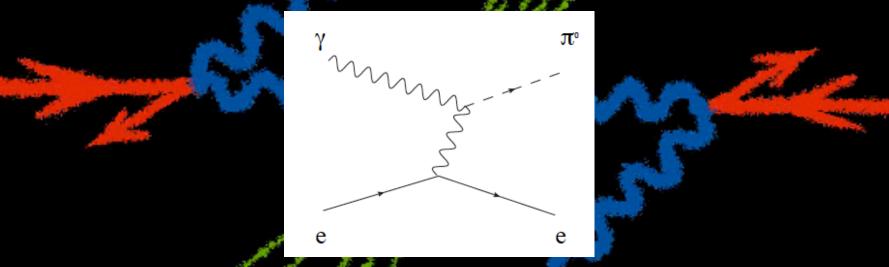

Radiography and Tomography (NR, NJ) By means of radiography it is possible to obtain an image of a object that evidences the internal structure, by rotating the sample with respect to the incident beam and collecting images for each angular position a 3D image of the object is obtained (tomography).

Neutron metrology: In this context, The Italian National Institute of Ionization radiation Metrology (INMRI) is interested in having in Italy (and especially in Roma area) a high energy neutron source in order to develop primary standards for neutron emission rate and energy spectrum calibration

Advanced y-ray Compton Source

Thestate of the art in producing high brilliance/spectral density mono-chromatic γ -ray beams will be soon enhanced, stepping up from the present performances (γ -ray beams with bandwidth nearly 3% and spectral density of about 100 *photons/s·eV*) up to what is considered the threshold for Nuclear Photonics, *i.e.* a bandwidth of the γ -ray beam lower than 0.3% and a spectral density larger than 10⁴ *photons/s·eV*.

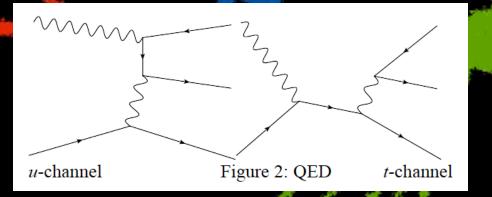
Advanced y-ray Compton Source

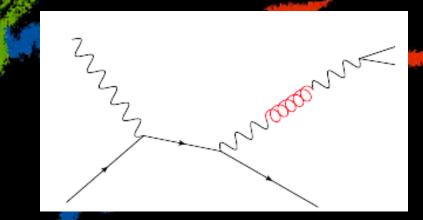

Nuclear Photonics with SC-CW e ⁻ beam and Fabry-Perot cavity	Units	Thomson Compton Source
Beam energy	[GeV]	0.2-1.5
Beam power	[MW]	0.2-1.5
Charge	[pC]	10
Bunch length rms	[µm]	300
Rep. rate	[MHz]	100
Average current	[mA]	1
rms spot size at collision	[µm]	10
Stored Laser Power	[MW]	1
Laser pulse energy	[J]	0.01
Laser pulse rms length	[ps]	2
Laser pulse bandwidth	%	0.05
rms norm. emittance	[µm]	0.2
rms energy spread	%	0.04
Photon Peak spectrum energy	[MeV]	1-60
Phot. per shot (within bandwidth)		100
Phot. per sec (within bandwidth)		10 ¹⁰
Rms bandwidth	%	0.1
Spectral Density @ 1 MeV	1/s [·] eV	10′
Spectral Density @ 20 MeV	1/s [•] eV	5 ⁻ 10 ⁵

Advanced γ-ray Compton Source

- studies of the nucleus structure at the Pigmy and Giant Dipole Resonance with unprecedented resolution in reconstructing the nuclear states: this is crucial also to understand some unknown processes in the stellar nucleo-sinthesys
- studies of two level barionc states in the high energy resonance of the nuclei, above 20 *MeV* and up to 60 *MeV*, crucial to reconstruct the equation of state of the nuclear matter
- detection and imaging of fissile and strategic material with isotopic reconstruction of the components with large impact on the national security scenario
- remote sensing and diagnosys of nuclear wastes in containers, with reconstruction of the isoptope and nuclear composition of the waste material, with large impact on the atomic energy scenario
- medical imaging and therapy

y-e Linear Collider

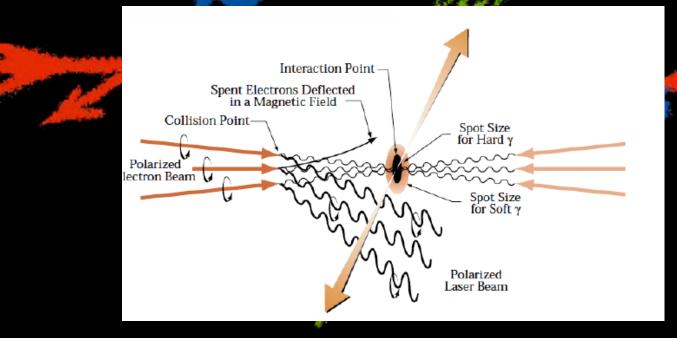

The precise measurement of the π^0 width through the process $e \gamma \rightarrow \pi^0 e$ (*Primakoff effect*), and the search for light dark bosons in the energy region of few to hundreds MeV. These measurements, which provide important tests of the Standard Model, are not possible at present electron-photon colliders due to the low photon intensities of the machines.



 π^{o} width measurement: the axial anomaly of Adler, Bell and Jackiw (non-conservation of the axial vector current) is responsible for the decay of the neutral pion into two photons. It bridges in QCD the strong dynamics of infrared physics at low energies (pions) with the perturbative description in terms of quarks and gluons at high energies. The anomaly allows to gain insights into the strong interaction dynamics of QCD and has received great attention from theorists over many years.

y-e Linear Collider

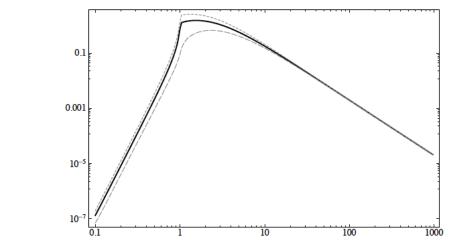
Search for dark forces: several puzzling astrophysical observations (PAMELA abundance of positrons, ATIC excess, WMAP haze, INTEGRAL signal) could be explained on a common ground by existence of a new, beyond-standard-model (BSM), weakly interacting boson "U". The mass of the U boson is expected to be at MeV or GeV scale. Such a particle would be a slim dark matter candidate and, technically, a gauge boson of a "hidden sector" abelian symmetry group U(1).



At IRIDE we can search for U boson via the lepton triplet production process in the electron-photon collision. The main QED process of the lepton triplet production is through u channel exchange ("BH diagram") and the t channel exchange ("VCS diagram").

The U-boson contribution is included as the *t*-channel part with the photon line modified by the mixing with the U.

γ-γ Linear Collider


The vacuum of QED poses some still unsolved challenges which are central not only in the context of field theory, but also of super-symmetry and string theory as well. The elastic photon-photon scattering offers unique opportunities to probe the nature of QED vacuum. We propose an experiment to observe photon-photon scattering in the range 1 MeV - 2 MeV CM energy, i.e., near the peak of the QED cross-section.

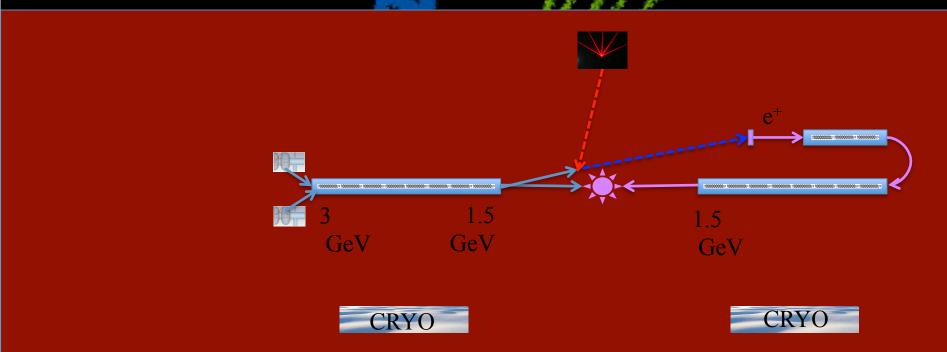
In addition a low-energy photon-photon collider investigation could lead to the necessary technology developments and prepare the ground for a higher energy complex, while still providing a rich testing ground for QED, and, more generally, QFT.

γ-γ Linear Collider

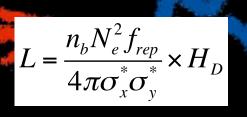
The most striking failing of QFT is the huge mismatch between the measured energy density of vacuum and the energy density of the ground level of the fundamental fields which is wrong by something like 120 orders of magnitude.

Figure 18: total cross-section (μ bar) vs. CM energy (MeV). Solid line: cross-section averaged over initial photon polarizations. Dotted line: incoming photons have the same circular polarization. Dashed line: incoming photons have opposite circular polarization.

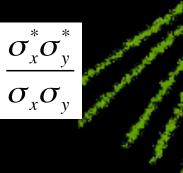
a photon-photon scattering experiment with photon energies in the 0.5-0.8 MeV range – where the cross-section is reasonably large, would be an important test of our understanding of the QED vacuum.

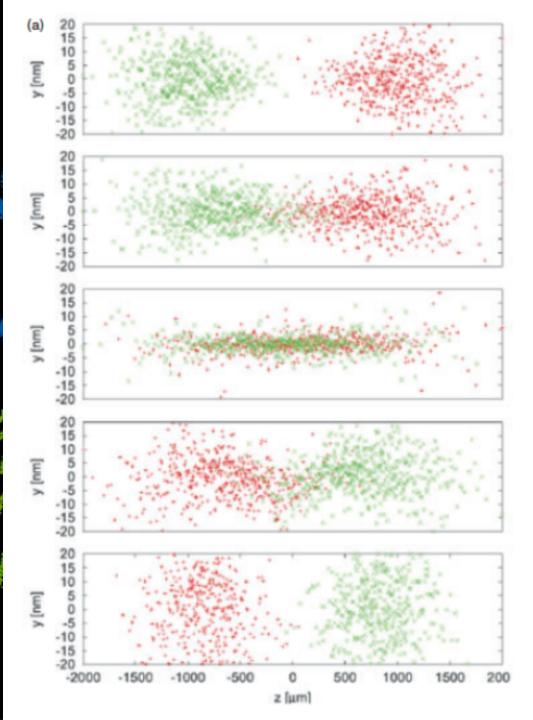

This experiment needs a low-energy photon-photon collider, and a photon detection apparatus which is very similar to that current PET scanners

Luminosity and beam requirements


Parameters	Units	Thomson	γ-γ	e-y	Parameters	Units	Thomson	γ-γ	e-y
for ELI-NP case		Compton	collider	collider	for SC-CW case		Compton	collider	collider
		Source					Source		
Beam energy	[GeV]	0.1-1	0.1-1	0.1-1	Beam energy	[GeV]	0.1-1	0.1-1	0.1-1
Beam power	[MW]	< 0.003	< 0.003	< 0.003	Beam power	[MW]	0.1-1	0.1-1	0.1-1
Charge	[nC]	0.5	0.5	0.5	Charge	[nC]	0.01	0.01	0.01
Bunch length rms	[µm]	300	300	125	Bunch length rms	[µm]	300	300	125
Peak current	[A]	200	200	1600	Peak current	[A]	4	4	32
effective Rep. rate	[Hz]	60x100	60x100	60x100	Rep. rate	[MHz]	100	100	100
Average current	[µA]	3	3	3	Average current	[µA]	1000	1000	1000
rms spot size at collision	[µm]	5	1	0.25	rms spot size at collision	[µm]	5	1	0.25
coll. Laser eff. Power	[kW]	0.1	0.1	0.1	coll. Laser eff. Power	[kW]	1000	1000	1000
coll. Laser pulse energy	[J]	1	1	1	coll. Laser pulse energy	[J]	0.01	0.01	0.01
rms norm. emittance	[µm]	0.5	1	1	rms norm. emittance	[µm]	0.5	1	1
beta-funct. at coll. (1 GeV)	[mm]	100	2	0.125	beta-funct. at coll. (1 GeV)	[mm]	100	2	0.125
Luminosity	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	n.d.	1.6 10 ²⁸	1.3 10 ³⁰	Luminosity	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	n.d.	$1.1 \ 10^{25}$	9.3 10 ²⁸

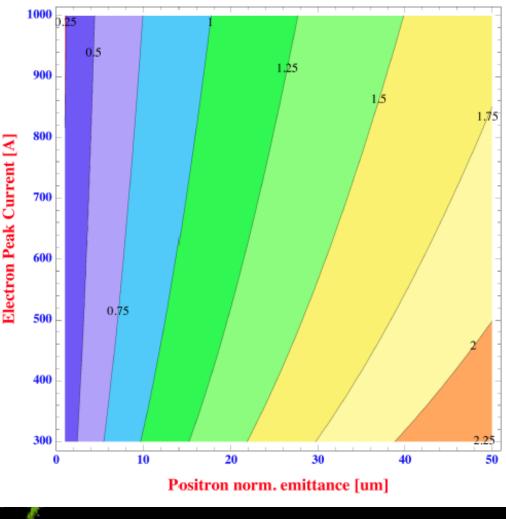
e⁺ e⁻ Linear Collider


An electron-positron collider with luminosity of 10^{32} cm⁻²s⁻¹ with center of mass energy ranging from the mass of the φ -resonance 1 GeV up to ~3.0 GeV, would complement high-energy experiment at the LHC and future linear collider (ILC). Such a machine can easily collect an integrated luminosity of about 5 fb⁻¹ in a few years of data taking.



This will allow one to measure the e^+e^- cross section to hadrons with a total fractional accuracy of 1%, a level of knowledge that has relevant implications for the determination of SM observables, like, the *g*-2 of the muon and the effective fine-structure constant at the M_Z scale. The latter are, through quantum effects, sensitive to possible bSM physics at scales of the order of hundred GeV or TeV. A primary effect of the electronpositron interaction is an enhancement of the luminosity due to the pinch effect, i. e. the reduction of the cross section of both beams occurring at the IP due to self focusing forces that is included in the luminosity definition through the factor H_D .

 H_D


$$\sigma_{pos,x}'' + \frac{k_{el}^2}{\gamma} \sigma_{pos,x} = \frac{\varepsilon_{pos,n}^2}{\gamma^2 \sigma_{pos,x}^3}$$

$$k_{el}^2 = \frac{4I_{el}}{I_A \sigma_{el,x}^{*2}}$$

$$\sigma_{x,pos} = \sqrt[2]{\frac{\varepsilon_{n,pos}}{\sqrt{\gamma} k_{el}}}$$

Under the previous condition the positron beam spot size remains constant during the interaction due to the balance between its own defocusing emittance pressure and the counter-propagating electron beam focusing effect.

Positron Equilibrium spot at Final Focus [um]

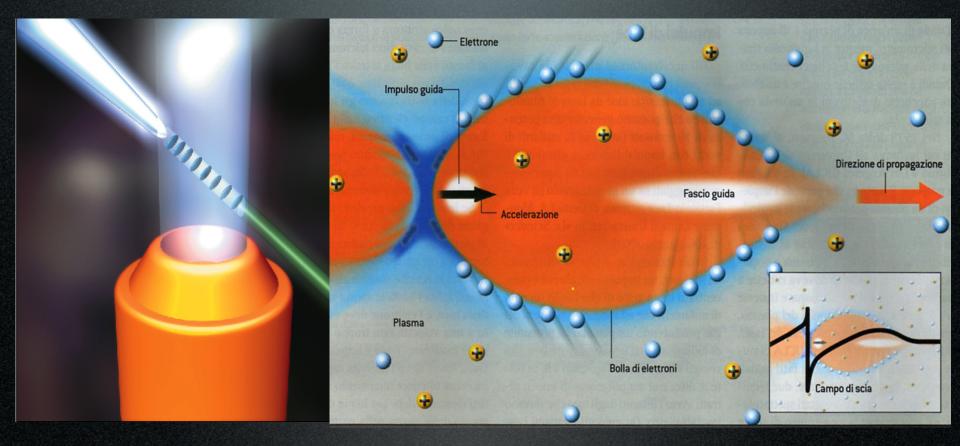
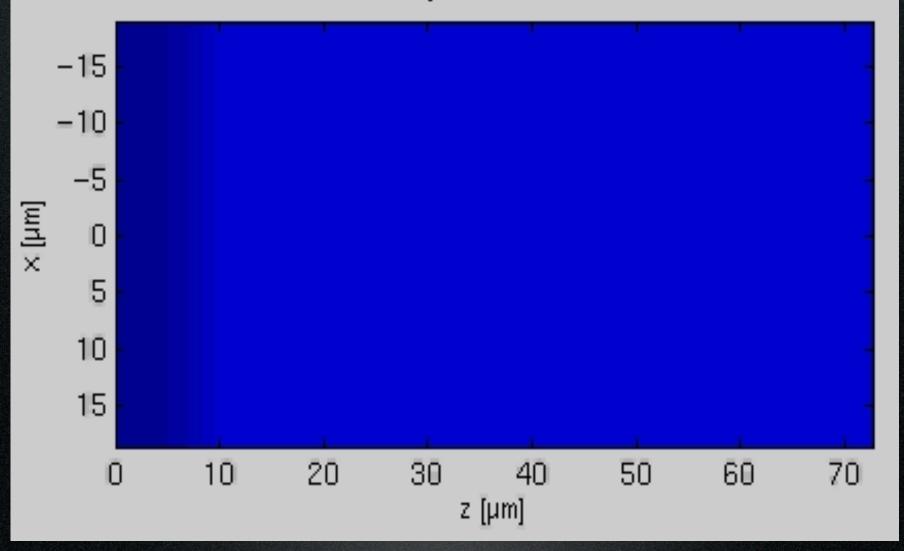
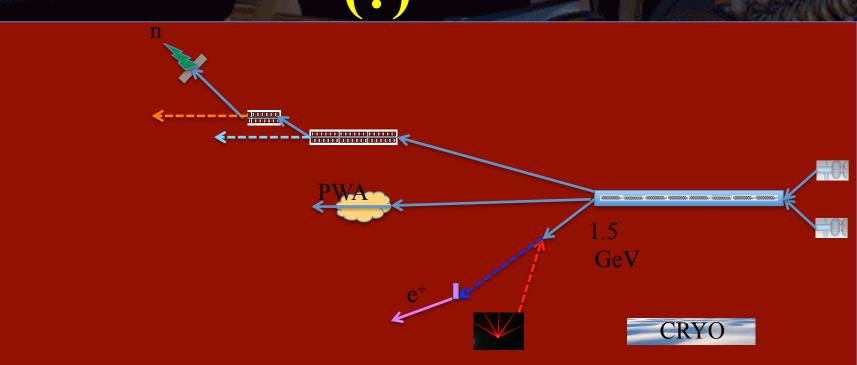

Parameters	Units	Electrons ><	Electrons ><	Reduced Positron
		Electrons	Positrons	quality
Beam energy	[GeV]	1	1	1
Beam power	[MW]	1	1	0.4
AC power	[MW]	1.9	1.9	1.3
Charge	[nC]	0.2	2	0.8
Bunch length rms	[µm]	500	675	450
Peak current	[A]	120	888	533
Rep. rate	[MHz]	5	0.5	0.5
Average current	[mA]	1	1	0.4
Transverse rms spot at IR	[µm]	0.5	1.5	1.5
Norm. emittance	[µm]	1	2	10
Beta at IR	[mm]	0.5	2.6	0.45
Aspect ratio	А	1	0.3	1
Disruption parameter	D	-3.5	5.3	1.4
Beam-strahlung parameter	δ _ε	~10 ⁻⁷	~10 ⁻⁷	~10 ⁻⁷
Luminosity enhancement	H _D	(<) 1	5.8	1.3
factor				
Luminosity	cm ⁻² s ⁻¹	$\sim 2.5 \ 10^{32}$	$1.6\ 10^{33}$	$\sim 1.1 \ 10^{32}$

Table 12: Comparison between Conventional and	ICS positron source performances
---	----------------------------------

	Conventional	ICS based
RMS source size	400 μm	50 μm
N. particles/driving pulse	one 600 MeV electron	one 60 MeV photon
Target thikness	6X0	0.4X ₀
RMS transverse momentum	5 MeV	1 MeV
RMS emittance	0.001 m rad	50*10 ⁻⁶ m rad
N. positrons/pulse	1	0.4


For the peak brightness the main advantage of driving the conversion directly with a photon beam relies on the possibility of using thinner targets. The emittance of the positron beam emerging from the target is determined by the source size and the beam divergence.

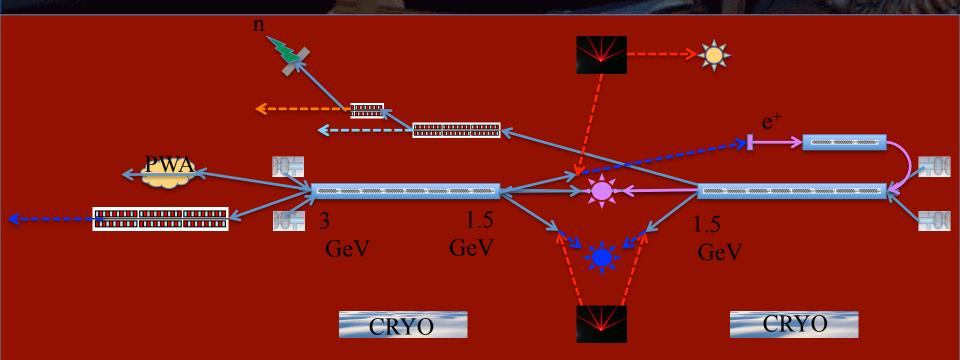
Particle Wake Field Acceleration



Particle Wake Field Acceleration

N_e[10²⁰ 1/cm³]

Preliminary cost evaluation – step 1 (?)



Preliminary cost evaluation – step 1

Components	M€	
Injector 1	10	
Linac 1 modules including CW RF	30	
Cryogenic Plant 1	20	
Total for Linac 1		60
FEL undulators	10	
FEL Optics and user beam lines	20	
Total for FEL		30
Neutron source		5
Advanced Accelerator Exp.		5
THz source		3
C-band Injector	13	
High Energy Yb:YAG Laser 1	7	
Interaction region and laser recirculator:	4	
γ -ray beam collimation and diagnostics	3	
Compton Users Beam Lines	10	
Total for Compton source		37
-		
Polarized positron source		5
•		
GRAND TOTAL	1	45

Preliminary cost evaluation – step 2

Preliminary cost evaluation – step 2

CONT.	
Components	M€
Injector 2	10
Linac 2 modules including RF	30
Cryogenic Plant 2	20
Total for Linac 2	60
FEL undulators	20
FEL Optics and user beam lines	40
Total for FEL	60
High Energy Yb:YAG Laser 2	7
Detector $e/\gamma \gamma/\gamma$	10
Total for $e/\gamma \gamma/\gamma$ collider	17
Positron surce	
Damping Ring ?	
Detector e ⁺ e ⁻	
Total for e^+e^- collider	To be evaluated
GRAND TOTAL	137

To Do List

Preliminary Proposal is almost ready

Kick Off Meeting by the end of February

One day international meeting on June 2 during EAAC 2013

Conceptual Design Report ready for Summer

1st European Advanced Accelerator Concepts Workshop 2-7 June 2013, La Biodola, Isola d'Elba, Italy

Novel schemes using advanced technologies (table-top FEL, plasma linear collider) High gradient and multibunch acceleration in metallic structures (C-X-band and beyond) with innovative power generation schemes Advanced beam diagnostics for beams and plasma Dielectric structures and other novel technologies Plasma accelerators driven by electron beams Plasma accelerators driven by modern lasers Plasma accelerators driven by proton beams Computations for Accelerator Physics

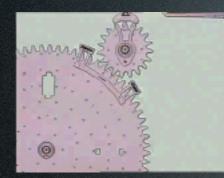
The European Advanced Accelerator Concepts workshop has the mission to discuss and foster methods of beam acceleration with gradients beyond state of the art in operational facilities. The most cost effective and compact methods for generating high energy particle beams

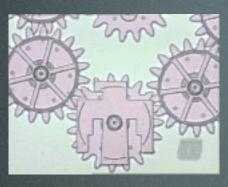
shall be reviewed and assessed. This includes diagnostics methods, timing technology, special need for injectors, beam matching, beam dynamics with advanced accelerators and development of adequate simulations. This workshop is organized within the 7th European Programme by the European Network for Novel

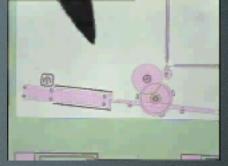
Accelerators (EuroNNAc), representing 52 European Research Institutes. The EAAC will be followed by a 1-day network meeting by invitation only.

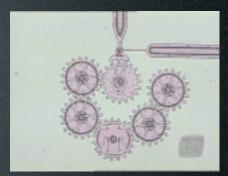
On Friday 7th: EuroNNAc 2013 yearly meeting

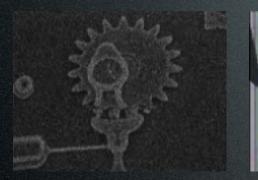
Workshop Organizing Committee Massimo Ferrario (INFN - LNF), chair Ralph Assmann (DESY) Jens Osterhoff (DESY) Arnd Specka (Ecole Polytechnique)

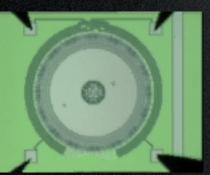

DESY

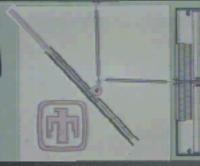

www.Inf.infn.it/conference/EAAC2013/

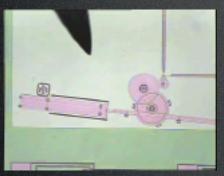

International Advisory Committee

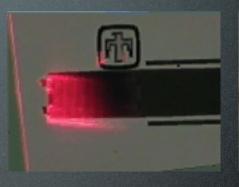

Seh Brassend, University of Technology Eindhoven - Weisen Chou, INAL - Merie-Einmannalle Coupries, Soid - Digita Cros, UrQD - Danio Gludett, University Pres and IMP - Los Gizzi, Consultation - Los Gizzi, Consultation - Edite Galera, Edita Galerandone, CEINN - Metri Kope, SAL-C. Simon Holse, Urbinentity of Andre Dio Jenzarymak, University Strathophe - Melle Sfakze, University Industry, Edita Galerandone, CEINN - Metri Kope, SAL-C. Samon Holse, Urbinentity of Andre Russia - Konstantin Lotoy, Suder IMP - Wei Lu, Tainghua University Deling - Victor Mala, LOA - Mauro Miglionst, University of Rome - Parito Maggi, Max-Panck-Institut do Physic - Zudier Negrodi, Suder IMP - Wei Lu, Tainghua University Deling - Victor Mala, LOA - Mauro Miglionst, University of Rome - Parito Maggi, Max-Panck-Institut do Physic - Zudier Negrodi, Impetal Colega - Asconder Publice, Urbinenty Ossekodri - Marius Roth, GBI - Carl Schoeker, LOM - Mate Salek, PD - Andrei Senji, Admir Galera, CEIN - Metri Maggi, Max-Panck-Institut do Adams Institute - Zheng-Min Sheng, Stangfai Jiao Tong University - Luis Silve, Instituto Superior Teorico da Luidos - Susan Smith, AdTud - Abarle Senji, Johnson Jiane, Lui Mariah - Case-Gane Metri Metalo, University Ossekof - Marius Robino - Susan Smith, AdTud - Shenghen, CEIN - Tash Taime, LIM March - Case-Gane Weiholdt, University University University University Ossekof - Mathies Robino - Susan Smith, AdTud - Shenghen, CEIN - Tash Taime, Ming Markho - Case-Gane Weiholdt, University University University University Coles - Susan Smith, AdTud - Shenghen - Celega - Marine Markito, University Calega - Londo - Frenk Zimmermen, CEIN

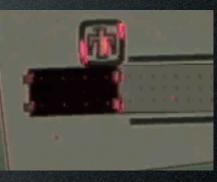

Programme Committee to be announced Local Organizing Committee Massimo Ferrario, *chair* Maria Pia Anania, Enrica Chiadroni, Roberto Cimino, Francesca Casarin Maria Rita Ferrazza, Lucia Lilli Giancarlo Gatti, Fabio Villa

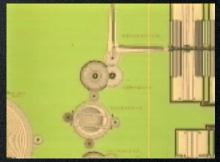


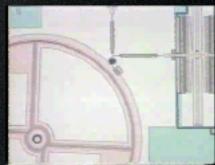


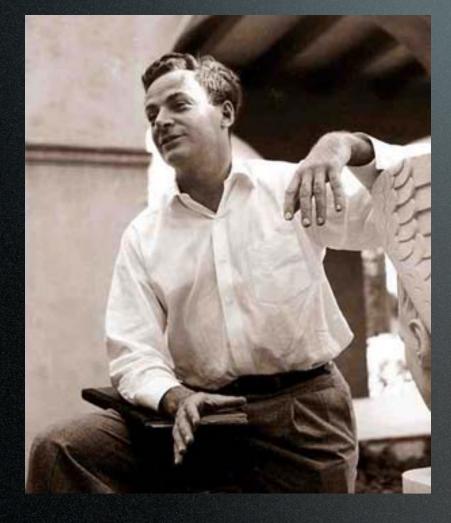












"Plenty of Room at the Bottom" Richard P. Feynman December 1959

I imagine experimental physicists must often look with envy at men like Kamerlingh Onnes, who discovered a field like low temperature, which seems to be bottomless and in which one can go down and down. Such a man is then a leader and has some temporary monopoly in a scientific adventure.

I would like to describe a field, in which little has been done, but in which an enormous amount can be done in principle. Furthermore, a point that is most important is that it would have an enormous number of technical applications.

What I want to talk about is the problem of manipulating and controlling things on a small scale.

As soon as I mention this, people tell me about miniaturization, and how far it has progressed today. They tell me about electric motors that are the size of the nail on your small finger. But that's nothing; that's the most primitive, halting step in the direction I intend to discuss. It is a staggeringly small world that is below. In the year 2000, when they look back at this age, they will wonder why it was not until the year 1960 that anybody began seriously to move in this direction.

Why cannot we write the entire 24 volumes of the Encyclopedia Brittanica on the head of a pin?