MINOS

Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

Overview and Current Status

- **o**Beam
- Detectors
- OAnalyses
 - Neutrino Charged Current
 - Anti-neutrino Charged Current
 - Electron Neutrino Appearance Analysis
 - Quasi-Elastic Scattering
 - Atmospheric Neutrinos

The Beam

OSmall cross section ⇒ we need large number of neutrinos ⇒ we need an intense beam

INDIANA UNIVERSITY XIV International Workshop on Neutrino Telescopes - L. Corwin 😽

http://www.hep.ucl.ac.uk/minos/minosmap.jpg

Detectors

Far Detector

735 km from target 1.3 T magnetic field 5.4 kton mass 4 kton fiducial

Near Detector

1 km from target 1.3 T magnetic field 1 kton mass ~0.03 kton fiducial

7.0 x 10²⁰ POT Neutrino Results 1.7 x 10²⁰ POT Neutrino Results

Mar. 15, 2011

Charged Current Interactions (v_µ)

Oscillations from v_{μ} to other types will manifest as a deficit at the far detector

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \frac{\sin^2(2\theta_{23})}{\sin^2} \sin^2 \left(\frac{1.27 \times \Delta m_{32}^2 / \text{eV} \times L / \text{km}}{E / \text{GeV}} \right)$$

INDIANA UNIVERSITY XIV International Workshop on Neutrino Telescopes - L. Corwin

Mar. 15, 2011

9

Mar. 15, 2011

10

- disfavored at 9σ • Pure decay at 7σ • World's most precise $|\Delta m^2|$ measurement Included Samples
 - Fiducial Events
 - Events outside fiducial volume
 - Muons from neutrino events in rock

$\star \mu^+ \overline{\mathbf{v}}_{\mu}$ Charged Current

X +

 $\bar{
u}_{\mu}$.

Osimilar to v_{μ} analysis but with reversed horn current.

- •Background
 - Neutral Current events (low energies)
 - Wrong sign CC events

• To reject wrong signs select events with positive reconstructed charge

o 39.9% pure antineutrino beam

INDIANA UNIVERSITY XIV International Workshop on Neutrino Telescopes - L. Corwin 💎

Mar. 15, 2011

12

 $\sin^2(2\bar{\theta}) = 0.86 \pm 0.11$

 $|\Delta \bar{m}^2| = 3.36^{+0.45}_{-0.40} \times 10^{-3} \text{eV}^2$

0.9

0.5 0.6 0.7 0.8

 $sin^{2}(2\theta)$ and $sin^{2}(2\overline{\theta})$

∆m² and <u>∆m² (10⁻³ eV²)</u>

Interesting Tension (2.3σ difference)
Plan to have at least double current data set by this Summer. 14

- Data taking interrupted by target failure on Feb. 26
- Plan to have new target in April

📙 INDIANA UNIVERSITY 🛛 XIV International Workshop on Neutrino Telescopes - L. Corwin 🛛 💦

Mar. 15, 2011

16

OANN uses 11 variables
OMost important plotted
OSelect ANN > 0.7

ANN Selection Variable

 $2sin^22\theta_{13}sin^2\theta_{23}$

Assuming $\theta_{23} = \pi/4$, $\delta_{CP} = 0$, $|\Delta m_{32}^2| = 2.43 \times 10^{-3}$ Normal Hierarchy : $\sin^2(2\theta_{13}) < 0.12$ (90%C.L.) Inverted Hierarchy : $\sin^2(2\theta_{13}) < 0.20$ (90%C.L.)

• Better than CHOOZ limit for most of NH

• More data collected

Events

• Multiple analysis improvements underway

Quasi-Elastic Scattering

18

- \circ Use v's as probe to measure axial vector mass M_A
- Internal nuclear structure and interactions are very difficult to model
- MINOS can address gap between MiniBooNE and NOMAD

Complementary Samples

• We can compare how well different parts of our model are simulating the data.

- 1 track QEL
- 2 track QEL
- 2 track resonance like

Mar. 15, 2011

20

Sample Purity

• The 2 track QE sample has its highest purity where the 1 track QE sample is falling off.

 o We can use this as a handle on the low Q^2 region o We can break correlation between the k_{Fermi} and $M_A{}^{QE}$

Projected Sensitivity Contours

• Assuming central value remains unchanged

- Previous measurement: $M_A^{QE} = 1.19^{+0.09+0.12}_{-0.10-0.14}$
- Projected Sensitivity:
- $M_A^{QE} = 1.19^{+0.03+0.12}_{-0.04-0.14}$

• Far Detector can detect neutrinos from cosmic ray interactions 22

- OL varies from ~10 to ~13000 km
- oL/E spans 4 orders of magnitude
- Oscillations in v_{μ} and \overline{v}_{μ} are detected

Data

• Divide the data into events with v interactions contained in the detector and events in the rock producing upward going muons.

• Perform a maximum likelihood fit to the L/E distributions to obtain oscillation parameters.

$oldsymbol{\Psi}$ indiana university

 $|\Delta m^2| = 2.6^{+4.4}_{-1.3} \times 10^{-3} \text{eV}^2$

24

Mar. 15, 2011

• For v sample, we fix the \overline{v} parameters to the the MINOS v best fit oscillation parameters from 2008.

• Then, we perform the opposite analysis for our \overline{v} sample. • 35 kT-yr. data set with 4 parameter fit coming soon

- •New antineutrino analysis with at least doubled data set
- •New electron neutrino result with more data and analysis improvements
- •New quasi-elastic M_A measurement
- Update atmospheric neutrino results
- ODiscussing running MINOS in the NOvA beamOThank you!

Backup Slides

26

Neutral Current

All neutrinos interact via NC
Far Det. event rate independent of standard oscillations 27

Mar. 15, 2011

Deficit would be evidence of mixing into sterile neutrinos
 (v_s)

 $f_s \equiv \frac{P(\nu_{\mu} \to \nu_s)}{1 - P(\nu_{\mu} \to \nu_{\mu})} < \begin{cases} 0.22 \ (90\% \text{ C.L. without } \nu_e \text{ appearance}) \\ 0.40 \ (90\% \text{ C.L. with } \nu_e \text{ appearance}) \end{cases}$

R (Data - Expected Background)/Expected Signal
 R = 1.09 ± 0.06(stat.) ± 0.05(syst.)^{+0.00}_{-0.08}(v_e)
 No evidence of depletion of NC events

Cosmic Ray Charge Ratio

• Use far and near detectors to test simple parameterization of the charge ratio.

 ϵ_{π} = 115 GeV and ϵ_{K} = 850 GeV are the critical energies at the muon production height above which the pion and kaon interaction probability exceeds the decay probability.

Mar. 15, 2011

O Data from these and other detectors matches the model well f_π = 0.55 f_K = 0.70
O Near: N_{μ+}/N_{μ-} = 1.266 ± 0.001^{+0.015}_{-0.014}
O Far: N_{μ+}/N_{μ-} = 1.374 ± 0.004^{+0.012}_{-0.010}

Mar. 15<u>. 2011</u>

31

Signal/BG Separation

- Use a kNN algorithm for NC/CC separation
- Integrated efficiency of 93% and purity of 94% at the Far Detector

Other Analyses

• The physics reach of MINOS is so rich, there are still analyses I have not had time to cover

- *Phys. Rev. D* **76**, 072005: "Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam"
- *Phys. Rev. Lett.* **101**, 151601: "Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector"
- *Geophysical Research Letters*, **36**, L05809: "Sudden stratospheric warmings seen in MINOS deep underground muon data"
- *Phys. Rev. D* **81**, 012001: "Observation of muon intensity variations by season with the MINOS far detector"

Greatest difficulty is modeling low Q² region
This sample has only single muon tracks
New analysis will use samples that include protons and other multi-track topologies