Searches for Physics Beyond SM at CMS

Artur Apresyan on behalf of the **CMS Collaboration**

XXVI Rencontres de Physique de La Vallee d'Aoste

LHC pp luminosity in 2011

Fantastic performance of the LHC machine Peak instantaneous luminosity: **3.55 x 10³³** Hz/cm² Close to **5fb⁻¹** recorded by the CMS experiment **91%** data-taking efficiency

Searches beyond the SM

- The SM will be complete if the Higgs boson with mass < ~1 TeV is discovered
 Even if the Higgs boson is found, questions remain...
- Non-zero neutrino masses
 - Are there right-handed neutrinos?
- Dark matter
 - No SM particles with "correct" properties
- Mass hierarchy of the SM particles

 Why 3 generations?
- Baryo- and Leptogenesis
- Gauge hierarchy problem, Gravitation
 Why is gravity so weak?
- Dark energy
- Many models exist to address these
 O Directly probe them at the LHC

CMS searches

- Signature based searches
 - Cover many theoretical models
 - Practical approach: understand the sample composition \rightarrow constrain several models

 Resonances of <i>l</i>, γ, jets, tops, VV Extra dimensions Sequential SM Technicolor 	 Non-resonant excesses in <i>l</i>+jets 4th generation quarks W'_{KK} Leptoquarks
 Displaced decays of stable new particles SUSY hidden valley, UED 	 High/low multiplicity events Mono<i>jet</i>, mono<i>photon</i> Microscopic black holes Generic multi-muon searches

- Many new results, using full 2011 dataset (4.7fb⁻¹), **four** first releases today
 - Full list: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO</u>

CMS-PAS-EXO-11-006, 4.6 fb⁻¹

Heavy resonances: $Z' \rightarrow t\bar{t}$: all hadronic

- Large BR($t \rightarrow Wb \rightarrow qqb$) in all-hadronic final state
 - All 3 jets in one hemisphere are merged into one *top jet*: **Type 1** top candidate
 - Only 2 of the 3 jets are merged, W-tagged: **Type 2** top candidate
- Identify merged jets by looking at jet substructure
 - Type 1 top tagging: at least three subjets in each jet with $M_{jet} \sim M_{top'} M_{jj} \sim M_W$
 - Jet pruning to identify Type 2 jets in three-jet topologies (W-jet + b-jet)

CMS-PAS-EXO-11-006, 4.6 fb⁻¹

Heavy resonances: $Z' \rightarrow t\bar{t}$: all hadronic

Type1 jet P_T>350GeV; W jet P_T>200 GeV; b jet P_T>30 GeV

- Main background are QCD multijet production and top pairs
 - Top tagging mistag rate for QCD events in signal depleted sample, $R(p_T) \sim 0.01-0.07$
- Fit M_W to derive the JES for subjets from semileptonic ttbar samples
 Data/MC scale factor for finding jets with substructure from control sample 3

CMS-PAS-EXO-11-006, 4.6 fb⁻¹

Heavy resonances: $Z' \rightarrow t\bar{t}$: all hadronic

- Type 1+1: expect 1709 ± 99 events, observe: 1738
- Type 1+2: expect 2379 ± 147 events, observe: 2423
- Set limits on generic Z' with two widths (1% and 10%) and KK glue
- Any enhancement to the σ_{tt} above 1 TeV is < 2.8 times the σ_{NLO}

CMS-PAS-EXO-11-024, 4.7 fb⁻¹

Heavy resonances: $W' \rightarrow l\nu$

- A heavy analogue of the SM W boson
 - Look for a Jacobian peak: $M_T = \sqrt{2E_T^{\ell}E_T^{miss}[1 \cos\Delta\phi(\ell, E_T^{miss})]}$
 - o Assume SM-like branching fractions and decay modes (also *tW* opens up)
- SM backgrounds: $W \rightarrow l\nu$, DY $\rightarrow ll$, top, dibosons, QCD multijets
- Fit M_T shape in MC \rightarrow normalize to data in sideband

CMS-PAS-EXO-11-024, 4.7 fb⁻¹

- Exclusion limits for different W' models:
 - RH W' with SM-like couplings, and W'_{KK} -states in the framework of UED
 - LH *W*′ including interference with the SM *W*
- *W'* with SM-like couplings is excluded below 2.5 TeV
 - o Including interference, exclude: < 2.63 TeV (constructive), < 2.43 TeV (destr

CMS-PAS-EXO-11-061, 4.7 fb⁻¹

- RS Graviton hadronic decays: $G^* \rightarrow ZZ \rightarrow qqvv$
 - o Focus on high masses ($M_G > 1$ TeV): boosted Zs merge into single jet
 - o Veto events with isolated tracks (EWK bckds) and with back-to-back jets (QCD bckd)
- Backgrounds derived from sidebands in data

CMS-PAS-EXO-11-061, 4.7 fb⁻¹

- Agreement between the estimated background and the observed data
- Set limits on the *σ*x*BR* of a resonance decaying to *ZZ*
 - The limits interpreted in terms of the coupling parameters of the RS model:
- Exclude RS Graviton for $k/M_{Pl} = [0.11, 0.31]$ and $m_G = [1000, 1500]$

Heavy resonances: $W \rightarrow WZ$

- W' or ϱ_{TC} decaying to WZ
 - o Couplings to SM leptons may be suppressed
- Select events with three leptons (e, μ) and v
 - o Two SF, OS, isolated leptons consistent with Z
 - o Additional high p_T, isolated lepton, high MET
- HT cut optimized for various signal hypothesis

Pair produced di-jet resonances

- Predicted in several models: coloron, axigluon, hyperpions...
- Require two pairs of dijet masses to be close: $|\Delta m|/m_{avg} < 15\%$
 - ≥4 jets with p_T >150 GeV, optimized for a generic coloron search
- QCD background derived using a 4-parameter fit

Pair produced di-jet resonances

- Overall, good agreement of background model with observed data
 - Largest deviation with respect to the background model is around M=615 GeV
- Exclude pair production of colorons with mass between **320 580** GeV

4th generation quarks: *b*'

- Could relax indirect bounds on Higgs boson, relevant for baryogenesis
- $b'b' \rightarrow tWtW \rightarrow (bW)W(bW)W$ assuming $M_{b'} > M_{top} + M_W$
- Look at the clean final state of same-sign dilepton or trilepton
 7.3% of b' decays, but very rare final states for the SM backgrounds
- Fake and mis-ID bckds from data (top,V+jets, WW); MC for *ttV*, *ZZ*, *WZ*

CMS-PAS-EXO-11-036, 4.6 fb⁻¹

4th generation quarks: *b*'

	sar	ne-sign dilepto	n	trilepton		
Number of b-tagged jets	signal	background	data	signal	background	data
≥ 0	33	15	14	11	1.3	5
\geq 1 (default)	25	11	12	8	0.73	1
≥ 2	11	4.6	3	3	0.31	0

• Exclude $M_{b'} < 600 \text{ GeV}$ assuiming 100% BR for b' $\rightarrow tW$

4th generation quarks: t'

- Search in the dilepton channel (*ee*, $e\mu$, $\mu\mu$): $t' \rightarrow Wb$
- Use M_{lb}^{min}: minimum value of four possible *lb* combinations
 - Reduce top background selecting events with $M_{lb}^{min} > 170 \text{ GeV}$
 - Main backgrounds (mis-ID leptons, *b*-jets) derived from data in an orthogonal sample
- Exclude t' with masses below **552 GeV**

CMS-PAS-EXO-11-096, 4.7 fb⁻¹

 $(p_T^{\gamma})=384 \text{ GeV}$

MET=407 GeV

Extra Dimensions and WIMPs: γ+MET

- "Compactified" EDs are hidden from view
 - Gravity only *appears* weaker
 - Probe direct production of Gravitons at LHC
- Similar signature from WIMP + γ from ISR
 - Assume a DM-hadron coupling to quarks exists
- Data-driven estimate of the instrumental bkgds

Extra Dimensions and WIMPs: γ+MET

- Good agreement between data and expectation
 71.9±9.1 (exp) and 73 (obs) events
- Exclude M_D < **1.59-1.66** TeV for n=3-6 at 95%CL
- Limits on WIMP-nucleon interaction cross-section (JHEP 1012:048(2010))
 - Set limits on spin-independent (SD) and spin-dependent (SI) WIMP-nucleon xsection
 - Better sensitivity than direct detection experiments for spin-dependent case

Extra Dimensions, DM and unparticles: monojet

- Similar to monophoton, but with a jet in the final state
- Main backgrounds from $Z \rightarrow vv$ and $W \rightarrow lv$ (lepton is lost, τ hadronic)
 - o $Z \rightarrow vv$ is estimated from $Z \rightarrow \mu\mu$: similar kinematic characteristics
 - o W $\rightarrow lv$ from W $\rightarrow \mu v$, understand the Data/MC scale factors

CMS-PAS-EXO-11-059, 4.7 fb⁻¹

Extra Dimensions, DM and unparticles: monojet

• Exclude large parameter space:

- $M_D < 4.45 2.46$ TeV for number of extra dimensions $\delta = 2-6$ (*ADD*)
- Exclude Λ_U < 28.5-1.16 TeV for scale dimensions d_U =1.4-1.9 (*unparticles*)
- o Best limits below 3.5 GeV for SI DM models (hard for the direct detection experiments)
- o Most stringent constraints over 1-1000 GeV mass for SD DM models

CMS-PAS-EXO-11-022, 4.7 fb-1

Heavy stable charged particles

- Small coupling or mass splitting between NLSP and LSP → stable NLSP
 Various versions of SUSY (GMSB, split SUSY), UED and other extensions to SM
- R-hadron: bound state of strongly interacting particle
 - $\circ~$ Squarks or gluinos hadronize with SM quarks/gluons
- Characteristics: high momentum, but slower than light
 - High dE/dx (heavy particle) and long TOF to the muon system (slow)
 - Charge exchange possible in material
- Two approaches: tracker only and full tracking (with muon hits)+ TOF

CMS-PAS-EXO-11-022, 4.7 fb⁻¹

Heavy stable charged particles

- Counting experiment in a mass window in [M_{RECO}-2σ, 2000 GeV]
 Select candidates with large p_T, large dE/dx, and large TOF
- Observations consistent with expected data-driven background
 - Limits on many models: M(glu)>1091 GeV, M(stop)>734 GeV, M(stau) > 221 GeV.
 - Exclude stable gluino < 923 GeV that becomes neutral before reaching muon detectors.

Microscopic black holes

- $S_T = \sum E_T$ (jets, *e*, μ , γ , ν ; $E_T > 50 \text{GeV}$) used for search
 - Democratic decay via Hawking radiation
 - QCD multijet production is the main background
 - \circ S_T multiplicity invariance: shape of S_T is independent of N

○ Use S_T =1200-1800 GeV, N = 2, 3 data → background shape

Microscopic black holes

- Model-independent limits for high-S_T and high-N searches: ~0.6 fb at high S_T
- Semi-classical and quantum black holes exclude < **3.8–5.3** TeV limit range
- Exclude string balls with masses below **4.6** to **4.8** TeV

CMS-PAS-EXO-11-045, 4.7 fb⁻¹

Multileptons

- A "generic", low-background signature (\geq 3 leptons, e, μ , τ)
 - R-Parity-conserving & RPV-SUSY, GMSB, mSUGRA, high tan β (taus)
- Exclusive channels binned in: S_T, lepton charge, Z/no-Z
- MC (tt, VV+jets) and data-driven (V+jets, Zγ, QCD) background models

CMS-PAS-EXO-11-045, 4.7 fb⁻¹

Multileptons

- Overall, a good agreement of data with background model
- Divide into exclusive channels
 - Any specific new-physics model may produce excess events only in some channels
- Exclude RPV couplings and H-RPV for M_{squark}/M_{gluino}<1 TeV

CMS-PAS-EXO-11-030, 1.8 fb⁻¹

 $M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2} \ M_T^R \equiv \sqrt{rac{E_T(p_T^{j_1} + p_T^{j_2}) - E_T^{'} \cdot (ec{p}_T^{j_1} + ec{p}_T^{j_2})}{2}} \ R \equiv rac{M_T^R}{M_R}$

Scalar Leptoquarks: 3rd gen

- $LQ_3 \rightarrow bv_{\tau}$: jets and MET in the final state
- Main sources of backgrounds
 - Fake MET: mismeasured jets from QCD *b*-jets
 - Real MET: W/Z+*b*-jets, top pair production
- Use R/M_R variables to search for signal
 - o Largest backgrounds derived from independent sample in data

CMS-PAS-EXO-11-030, 1.8 fb⁻¹

29

Scalar Leptoquarks: 3rd gen

- Search for signal in the sample with no leptons, two *b*-tagged jets
- No significant excess over background prediction is observed
 - o Expected yield: **326.98 ±30.98**, observed: **295**
- Exclude scalar leptoquarks with masses below **350** GeV (β =1).

Conclusion

- Search for deviations from SM in wide range of final states
 - After two years of LHC, the SM is **alive and well**
 - o No departures from the known physics yet
 - o Have excluded a wide range of BSM parameters, mass scales
- New physics may appear any time
 o LHC run at √s=8TeV in 2012 → higher mass scales
 o X3 larger statistics in 2012 → smaller cross-sections

• An exciting year ahead for the BSM searches in CMS

Backup

CMS BSM summary

CMS-PAS-EXO-11-092, 4.3 fb⁻¹

Heavy resonances: $Z' \rightarrow t\bar{t}$: *e*+jets

- Assign each object in the event to the leptonic or hadronic top candidate
 - Minimize ΔRs on the side of leptonic top decay: collinear ele+2jets+neutrino
 - Maximize $\Delta R(t^{\text{lep}}, t^{\text{had}})$: favor back-to-back decays
- Backgrounds: W/Z+jets, top (pair and single), QCD
 - QCD shape derived from data in the orthogonal sample
 - Template fit to extract the absolute normalization of QCD background
 - Reject QCD using topological cuts: $\Delta \phi(e, MET)$ and $\Delta \phi(\text{jet}, MET)$

CMS-PAS-EXO-11-092, 4.3 fb⁻¹

Heavy resonances: $Z' \rightarrow t\bar{t}$: *e*+jets

				L = 4.33 fb ⁻¹ , e+jets	CMS 2011 Preliminary, $\sqrt{s} = 7$ TeV
		, F	1 0	CLs method	— expected (95% C.L)
Sample	Event Yield	<u> </u>			central 1 _o expected
$Z', M = 1 \text{ TeV}/c^2$	153 ± 2				— observed (95% C.L.)
$Z', M = 1.5 \text{TeV}/c^2$	244 ± 3		•		Topcolor Z', 1.2% width, Harris et al.
$Z', M = 2 \text{TeV}/c^2$	273 ± 3	í÷			Topcolor Z', 3.0% width, Harris et al.
$Z', M = 3 \mathrm{TeV}/c^2$	229 ± 3	+	, 1⊨		
Single Top	285 ± 4		I F		
W+jets	5408 ± 105		y [
Z+jets	152 ± 8	ર	ך כ	-	
ŧ	2707 ± 29		10-1		
Fotal MC	8551 ± 109		10 .	Ē	
QCD data-driven	375 ± 16			•	
Fotal Background	8927 ± 111		-	-	a second s
Data 2011	9236		F	-	
			10 ⁻² 1	1.5	2 2.5 3
					Z' mass [TeV/c ²]

- Good agreement of data with the background model
 - \circ Set upper limits on Z' production cross-section as a function of mass
- Exclude xsections of: **2.85** pb for $M_{Z'}=1$ TeV; **0.63** pb for $M_{Z'}=2$ Te

Scalar Leptoquarks: 2nd gen

Carry both baryon and lepton numbers

- Quark+ charged lepton: $BR=\beta$, OR
- Quark + neutrino: BR = $1-\beta$
- Pair production: insensitive to Yukawa couplings λ
- Data-driven backgrounds if possible, some from MC normalized to data.
- Use $S_T = p_T(l_1) + p_T(l_2) + p_T(j_1) + p_T(j_2)$ as the discriminating variable $(l = \mu \text{ or } \nu)$

CMS-PAS-EXO-11-028, 2.0 fb⁻¹

Scalar Leptoquarks: 2nd gen

- No excess observed: optimize for best $S/\sqrt{S+B}$
 - Signal region optimized in S_T , $M_{\mu\mu}$ (or MET), and min($M_{\mu\nu}$ jet) for each LQ mass
- Exclude masses below 632 (523) GeV with the assumption that $\beta = 1(0.5)$.

Prospects for 2012 run

- 2011 was an amazing year for CMS physics program
 - Published 5 papers (with 2011 data), ~130 papers in review, ~40 public notes
 - Unfortunately, no NP has yet, but the room for Higgs boson is getting smaller
- 2012 data will allow to find or rule out the SM Higgs boson
- Likely scenario: increase \sqrt{s} to 8TeV
 - More luminosity, higher mass scales of NP accessible, higher x-sections for NP

Prospects for 2012 run

- E.g.: Z' estimated 95% CL mass limits for 20fb⁻¹ are extended by ~300 GeV
- Increase of 1TeV in \sqrt{s} has a big impact
 - Searches can probe much higher probability PDF regions
 - $\circ~~$ ~25% increase for $M_{\rm H} {\sim} 100~GeV$
 - Probe wider mass range for BSM Higgs
 - Look for rarer decay channels
 - For 1.5 TeV gluino get x4 in statistics relative
 - 2.5 σ hint \rightarrow 5 σ discovery
- Stop pairs: a key but challenging channel
 - Up to ~500 GeV is "natural"
 - \circ 8 TeV → ~50-80% more signal, better S/B

Model	√s=7 TeV	√s=8 TeV
Z' _{SSM}	2450 (GeV)	2750 (GeV)
Z'_{Ψ}	2150	2350
G _{KK} (k=0.1)	2250	2550

Looking ahead...

CALIFORNIA INSTITUTE TECHNOLOGY OF

The Compact Muon Solenoid (CMS)

A "general purpose" detector to cover full physics program with LHC

- Where did the particle originate from? → **tracking detectors**
 - Long-lived particles travel substantial distance before decaying
 - For precise reconstruction of objects' P_T need to know origin precisely

- Momenta of the particles
 tracking detectors and magnet
 - The higher the magnetic field, the better we can measure: R = p/(qB)
 - CMS magnetic field: **3.8 Tesla**

- Energy of all particles produced in the collision
 - Photons and pions measured in **electromagnetic calorimeters**
 - o homogeneous Lead-Tungstate crystal

- Energy of all particles produced in the collision
 - Strongly interacting hadrons measured in **hadronic calorimeter**

• Muon detectors at the outermost edges of the detector

- Negligible energy loss in the calorimeters: minimum ionizing particles
- Combine measurements in the inner tracker with hits in the outermost detector

Drift tubes, CSC + RPC $\sigma(P_T) \sim 13\% / 4.5\%$ (standalone/with tracker) for 1TeV μ

M_T for W' including interference

- constructive interference increases the W' cross section
- destructive interference would yield lower cross sections

