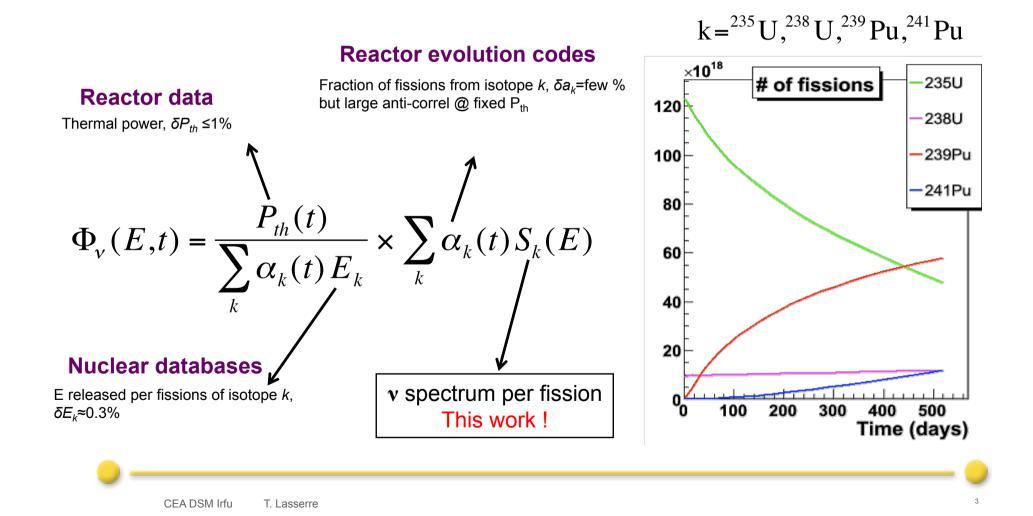
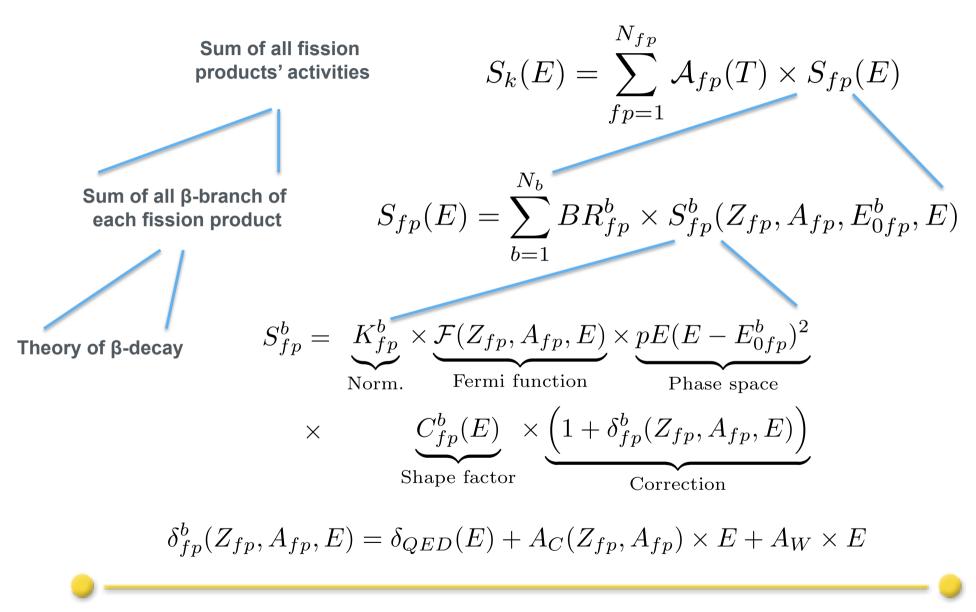

The Reactor Antineutrino Anomaly and implications

Th. Lasserre (CEA-Saclay, Irfu SPP & APC)

New Reactor Antineutrino Spectra

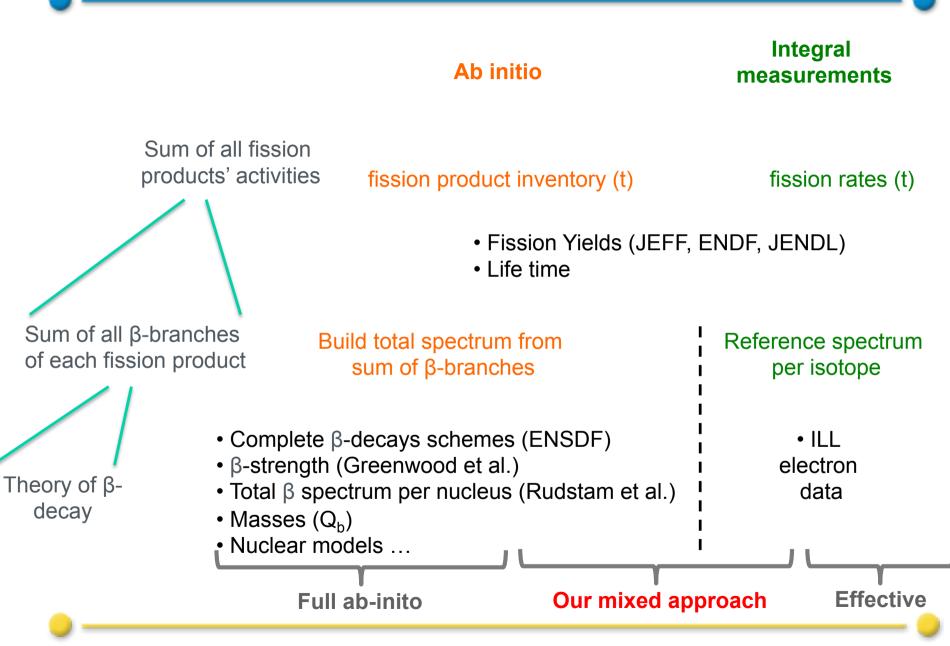

<u>T.A. Mueller, D. Lhuiller*,</u> M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, T. Lasserre, J. Martino, G. Mention, A. Porta, F. Yermia.

CEA / Irfu & IN2P3 / Subatech

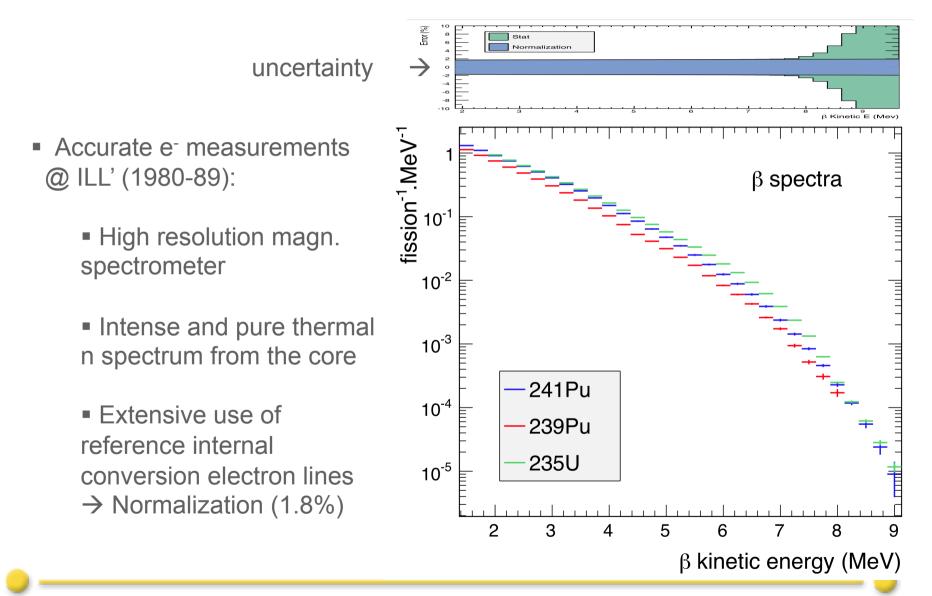

arXiv:1101.2663 [hep-ex], submitted to PRC * corresponding author

v spectrum emitted by a reactor

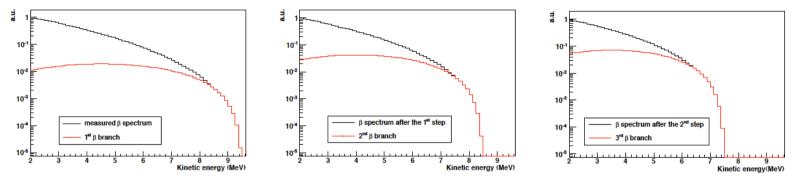
The prediction of reactor v spectrum is the dominant source of systematic error for single detector reactor neutrino experiments



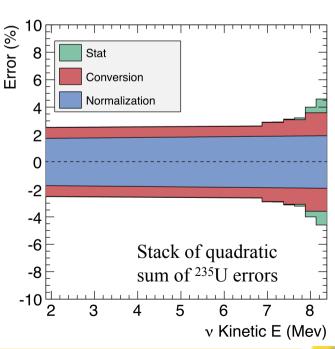
The guts of S_k(E)


CEA DSM Irfu T. Lasserre

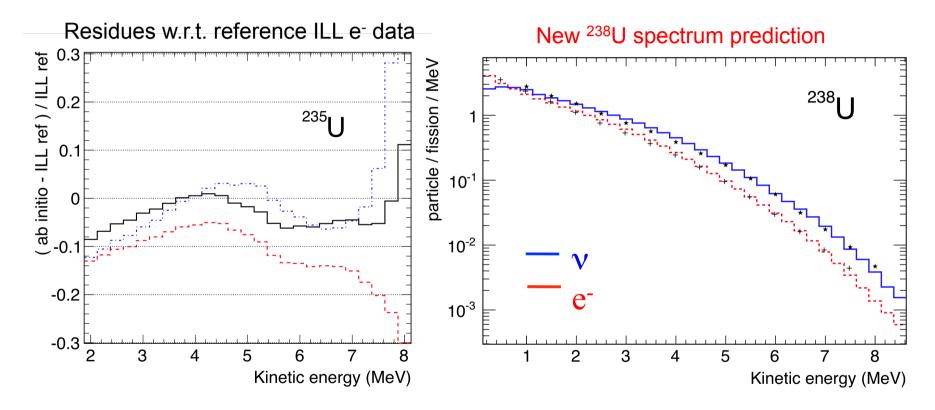
Complementary approaches to compute the v flux


The ILL electron Data Anchorage

Unique reference to be met by any other measurement or calculation


ILL data: conversion to v spectra

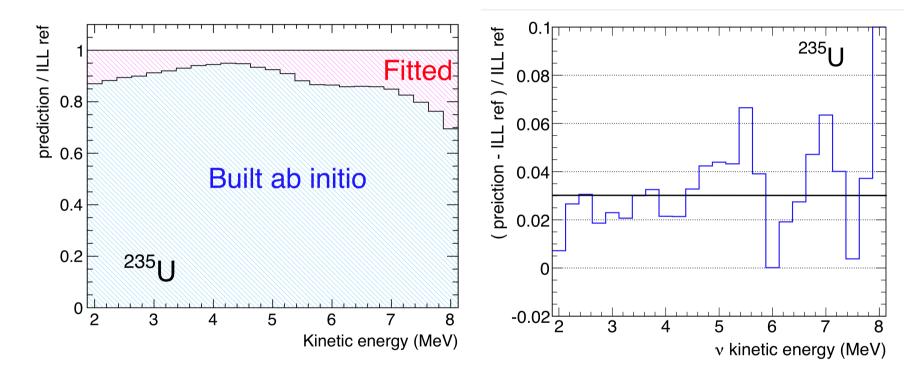
- Fit e⁻ spectrum with a sum of 30 effective branches
- Conversion of the effective branches to v spectra


• All theory included in these effective branches but:

- What Z? : Mean fit on nuclear data Z=f(E0) $Z(E_0) \approx 49.5 - 0.7E_0 - 0.09E_0^2, Z \ge 34$
- What A_{CW} ? : effective correction on the v-spectra $DN_n^{C,W}(E_n) \approx 0.65 \times (E_n - 4MeV) \%$
- Conversion error from envelop of numerical studies

The Full Ab Initio Attempt (electron data)

- MURE evolution code: core composition and off equilibrium effects
- BESTIOLE code: build up database of ~800 nuclei and 10000 β -branches

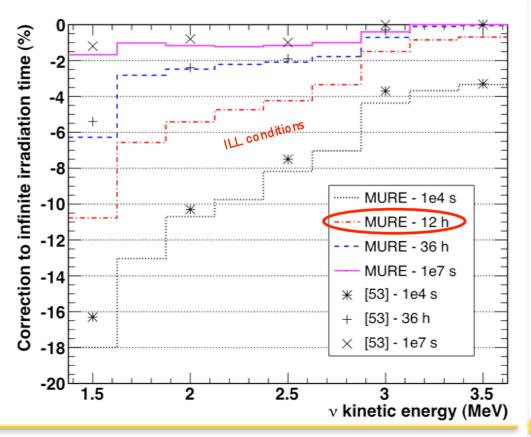


→ 95+/-5% of the spectrum reproduced but still not meeting required precision → Useful estimate of ²³⁸U spectrum which couldn't be measured @ ILL

→ Measurement at FRMII ongoing (N. Haag & K Schreckenbach)

The New Mixed Conversion Approach

- 1. SAME ILL e- data Anchorage
- 2. Ab-Initio: "true" distribution of β -branches reproduces >90% of ILL e⁻ data.
- 3. Old-procedure: five effective anchorage-branches to the remaining 10%.


- +3% normalization shift with respect to old v spectrum
- Similar result for all isotopes (²³⁵U, ²³⁹Pu, ²⁴¹Pu)
- Stringent Test Performed Origin of the bias identified

Off-Equilibrium Effects MURE evolution code (IN2P3/Subatech)

- ILL electron reference spectra : 12 hours to 1.8 days irradiation time
- Neutrino reactor experiments irradiation time >> months
- BUT 10% of fission products have a β-decay life-time long enough to keep accumulating after several days
 - \rightarrow need a correction through simulation
 - \rightarrow Not included prior to the CHOOZ experiment

Relative change of v spectrum w.r.t. infinite irradiation time

Correction included by default in our new reference model

The Reactor Antineutrino Anomaly → Updated with 7 additional results

G. Mention, M. Fechner, T. Lasserre, M. Cribier, Th. Mueller D. Lhuillier, A. Letourneau,*

CEA / Irfu

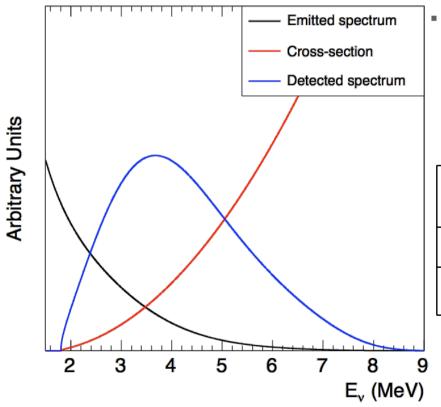
arXiv:1101.2755 [hep-ex], submitted to PRD * corresponding author

V-A IBD Cross Section

- Inverse Beta Decay: $\bar{\nu}_e + p \rightarrow e^+ + n$

- Theoretical predictions: our results agree with
 - Vogel 1984 (Phys Rev D29 p1918). Fayans 1985 (Sov J Nucl Phys 42)
 - Vogel-Beacom 1999: "supersedes" Vogel 84 (Phys Prev D60 053003)
 - Strumia-Vissani Phys. Lett. B564 (2003) 42-54

$$\sigma_{\rm V-A}(E_e) = \kappa \, p_e E_e (1 + \delta_{rec} + \delta_{wm} + \delta_{rad})$$


- The pre-factor κ (two pseudo-independent approaches)

$$\kappa = \frac{G_F^2 \cos^2(\theta_C)}{\pi} (1 + \Delta_{inner}^R)(1 + 3\lambda^2) = \frac{2\pi^2}{m_e^5 f^R \tau_n} \qquad \lambda = |\frac{g_A}{g_V}|^2$$

- κ ran down over the history, from 0.914 10⁻⁴² cm² in 1981
 - Vogel-Beacom 1999 : κ = 0.952 10⁻⁴² cm²
 - Our work is based on 2010 PDG $\tau_{\rm n}$: κ = 0.956 10^{-42} \, cm^2
 - But we anticipate 2011 κ =0.961 10⁻⁴² cm² (< τ_n > revision +0.5%)

Computing the expected rate/spectrum

$$\sigma_f^{pred} = \int_0^\infty S_{tot}(E_\nu) \sigma_{V-A}(E_\nu) dE_\nu = \sum_k f_k \sigma_{f,k}^{pred}$$

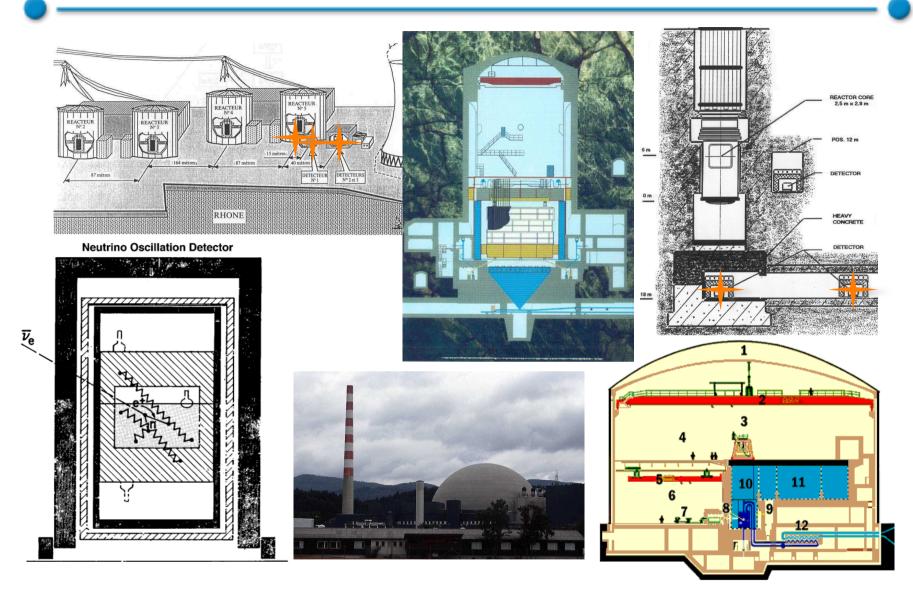
Bugey-4 BenchmarkPhys Lett B 338(1994) 383

•τ_n = 887.4 s

- "old" spectra (30 effective branches)
- no off-equilibrium corrections

10 ⁻⁴³ cm ² / fission	235U	²³⁹ Pu	²⁴¹ Pu		
BUGEY-4	6.39±1.9%	4.18±2.4%	5.76±2.1%		
This work	6.39±1.8%	4.19±2.3%	5.73±1.9%		

Final agreement to better than 0.1% on best known ²³⁵U


The New Cross Section Per Fission

- ν-flux: ²³⁵U +2.5%, ²³⁹Pu +3.1%, ²⁴¹Pu +3.7%, ²³⁸U +9.8% (σ_f^{pred} **7**)
- Off-equilibrium corrections now included $(\sigma_f^{\text{pred}} \nearrow)$
- Neutron lifetime decrease by a few % (σ_{f}^{pred} **7**)
- Slight evolution of the phase space factor ($\sigma_{f}^{pred} \rightarrow$)
- Slight evolution of the energy per fission per isotope ($\sigma_{f}^{pred} \rightarrow$)

• Burnup dependence:
$$\sigma_f^{pred} = \sum_k f_k \sigma_{f,k}^{pred} \quad (\sigma_f^{pred} \rightarrow)$$

-		old [3]	new
	$\sigma^{pred}_{f,235_U}$	$6.39{\pm}1.9\%$	$6.61{\pm}2.11\%$
	$\sigma^{pred}_{f,239Pu}$	$4.19{\pm}2.4\%$	$4.34{\pm}2.45\%$
New Results:	$\sigma^{pred}_{_{f}238II}$	$9.21{\pm}10\%$	$10.10{\pm}8.15\%$
_	$\sigma^{j,ied}_{f,^{241}Pu}$	$5.73{\pm}2.1\%$	$5.97{\pm}2.15\%$

19 Experimental Results at L<100m

Measured cross sections are taken at their face values

CEA DSM Irfu T. Lasserre

Technology								Baseline						
#	result	techno	τ_n (s)	²³⁵ U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu	old	new	err(%)	corr(%)	$\mathbf{L}(\mathbf{m})$		
$\frac{n}{1}$	Bugey-4	$^{3}\text{He}+\text{H}_{2}0$	888.7	0.538	0.328	0.078	0.056	0.987		3.0	3.0	15		
2	ROVNO91	$^{3}\text{He}+\text{H}_{2}0$		0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18		
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15		
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40		
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95		
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38		
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45		
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65		
9	ILL	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9		
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33		
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92		
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57		
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18		
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24		
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18		
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18		
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18		
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25		
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18		

Neutron lifetime

#	result	techno	τ_n (s)	^{235}U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu	old	new	err(%)	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	³ He+H ₂ 0		0.538	0.328	0.078	0.056		0.943	3.0	3.0	15
2	ROVNO91	$^{3}\text{He}+\text{H}_{2}0$	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

Averaged Fuel Composition

#	result	techno	τ_n (s)	²⁶⁵ U	²³⁹ Pu	²³⁸ U	241 Pt	old	new	err(%)	corr(%)	L(m)
1	Bugey-4	³ He+H ₂ 0	888.7	0.538	0.328	0.078	0.056	0.987	0.943	3.0	3.0	15
2	ROVNO91	3 He+H ₂ 0	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$	<0.01	< 0.01	<0.01	0.832	0.801	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

OBSERVED/PREDICTED ratios: OLD & NEW (this work)

								2				
#	result	techno	τ_n (s)	235 U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu	old	new	$\operatorname{err}(\%)$	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	$^{3}\text{He}+\text{H}_{2}0$	888.7	0.538	0.328	0.078	0.056	0.987	0.943	3.0	3.0	15
2	ROVNO91	3 He+H ₂ 0	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65
9	ILL	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

Total Errors Exp.+v-Spectra (%) & Correlated errors (%)

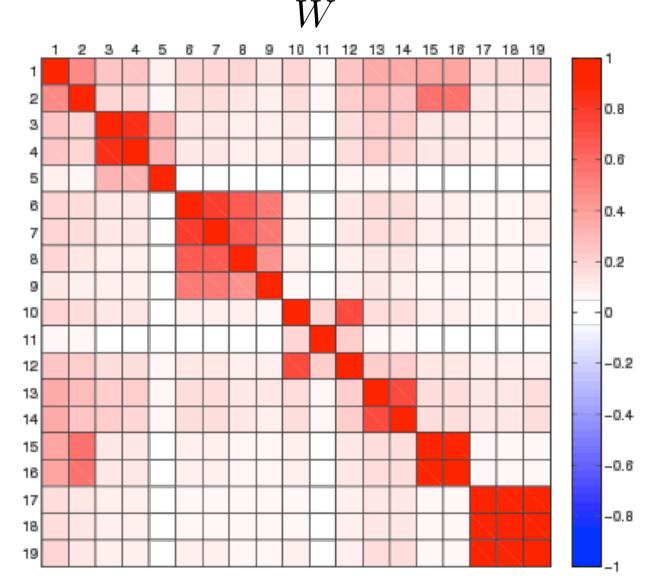
										~	7	
#	result	techno	τ_n (s)	235 U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu	old	new	$\operatorname{err}(\%)$	$\operatorname{corr}(\%)$	L(m)
1	Bugey-4	$^{3}\text{He}+\text{H}_{2}0$	888.7	0.538	0.328	0.078	0.056	0.987	0.943	3.0	3.0	15
2	ROVNO91	3 He+H ₂ 0	888.6	0.614	0.274	0.074	0.038	0.985	0.940	3.9	3.0	18
3	Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.943	5.0	5.0	15
4	Bugey-3-II	Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.948	5.1	5.0	40
5	Bugey-3-III	Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.873	14.1	5.0	95
6	Goesgen-I	³ He+LS	897	0.6198	0.274	0.074	0.042	1.018	0.966	6.5	6.0	38
7	Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.991	6.5	6.0	45
8	Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.924	7.6	6.0	65
9	\mathbf{ILL}	³ He+LS	889	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.832	0.801	9.5	6.0	9
10	Krasn. I	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.013	0.944	5.1	4.1	33
11	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.031	0.960	20.3	4.1	92
12	Krasn. II	³ He+PE	899	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.989	0.954	4.1	4.1	57
13	SRP I	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	0.987	0.953	3.7	3.7	18
14	SRP II	Gd-LS	887	$\simeq 1$	< 0.01	< 0.01	< 0.01	1.055	1.019	3.8	3.7	24
15	ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.917	6.9	6.9	18
16	ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.948	6.9	6.9	18
17	ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.972	7.8	7.8	18
18	ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.959	7.8	7.8	25
19	ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.938	7.2	7.2	18

Error Budget & Correlations

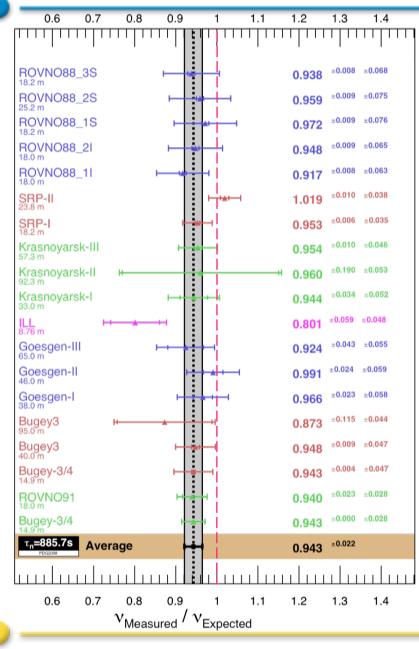
Our guiding principles: Be conservative - Be stable numerically (SRP case)

Reactor Antineutrino Sources

- 2% systematic on v-flux 100% correlated over ALL measurements
 - Different from 2.7% published on Arxiv:1101.2755
 - 2% corresponds to the normalization error on the ILL e- data


Detector: Non-flux systematic error correlations across measurements:

- Same experiment with same technology: 100% correlated
- ILL shares 6% correlated error with Goesgen although detector slightly different. Rest of ILL error is uncorrelated.
- Rovno88 integral measurements 100% corr. with Rovno 91 despite detector upgrade, but not with Rovno88 LS data
- Rovno91 integral meas. 100% correlated with Bugey-4
- Rovno88 integral meas. 50% correlated with Bugey-4

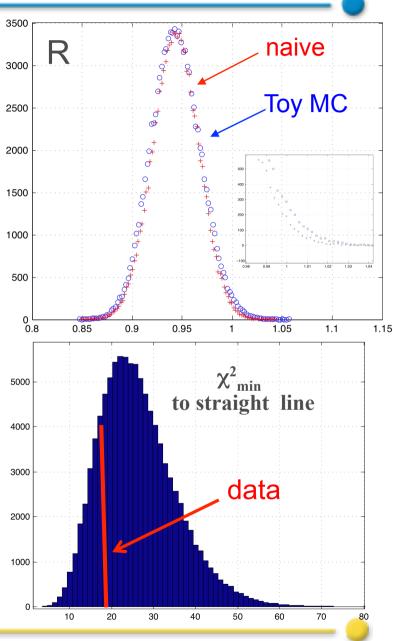

Experimental correlation matrix

$\overrightarrow{\mathbf{R}}$

- Bugey-4 15m
- Rovno91 18m
- Bugey-3 15m
- Bugey-3 40mBugey-3 92m
- Goesgen 38m
- Goesgen 45m
- Goesgen 65m
- ILL 9m
- Krasno 33m
- Krasno 92m
- Krasno 57m
- SRP I 18m
- SRP II 25m
- Rovno88 1I 18m
- Rovno88 2I 18 m
- Rovno88 1S 18m
- Rovno88 2S 25m
- Rovno88 3S 18m

The reactor antineutrino anomaly

$$\chi^2 = \left(r - \overrightarrow{\mathbf{R}}\right)^T W^{-1} \left(r - \overrightarrow{\mathbf{R}}\right)$$


- Best fit : μ = 0.943
- Uncertainty : 0.023
- χ^2 = 19.6/19
- Deviation from unity
 - Naïve Gaussian : 99.3% C.L.
 - Toy MC: 98.6% C.L. (10⁶ trials)
- No hidden covariance
 - = 18% of Toy MC have χ^2_{min} <19.6

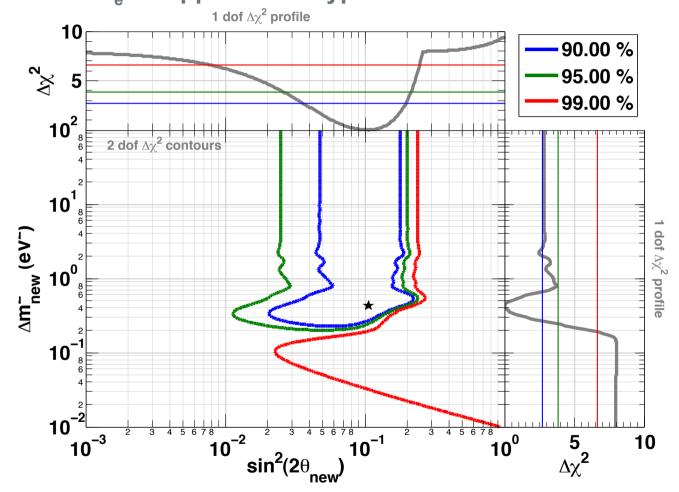
Are the ratios normally distributed?

- Our data points are ratios of Gaussians:
 - Numerator: measurement, Gaussian with stat & syst error, partially correlated
 - Denominator: common prediction, assumed to have Gaussian fluctuation of 2%
- Toy MC with correlated denominator with 2% fluctuation \rightarrow 10 6 events
 - Estimate weighted average R of 19 random points with correlations around 0.943.
 - P-value for (R >= 1): 1.4% (2.2σ)
 compared to naive Gaussian 2.4σ.
 - Our contours are reweighted by (2.2/2.4)²
 to take this slight non-normality into account

Hidden Covariance

• χ^2_{min} of data to straight line in the 18% quantile \rightarrow Data not incompatible with fluctuations

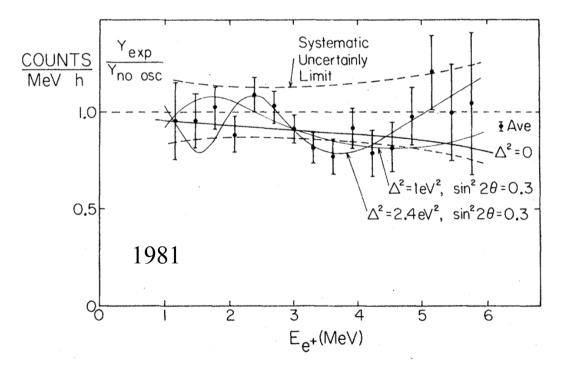
The reactor rate anomaly


- 18/19 short baseline experiments <100m from a reactor observed a deficit of anti-v_e compared to the new prediction
- The effect is statistically significant at more 98.6%
- Effect partly due to re-evaluation of cross-section parameters, especially updated neutron lifetime, accounting for off equ. effect

• At least three alternatives:

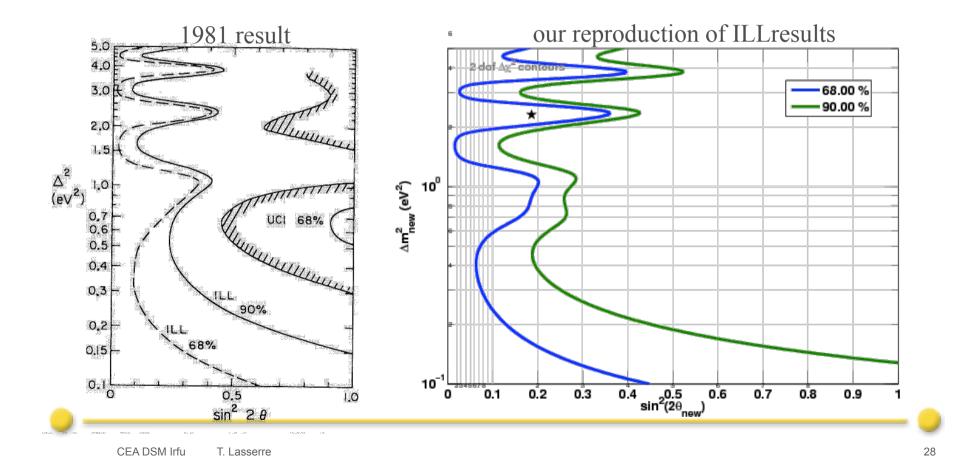
- Our conversion calculations are wrong. Anchorage at the ILL electron data is unchanged w.r old prediction
- Bias in all short-baseline experiments near reactors : unlikely...
- New physics at short baselines, explaining a deficit of anti-v_e:
 - Oscillation towards a 4^{th} , sterile v ?
 - a 4th oscillation mode with θ_{new} and Δm^2_{new}

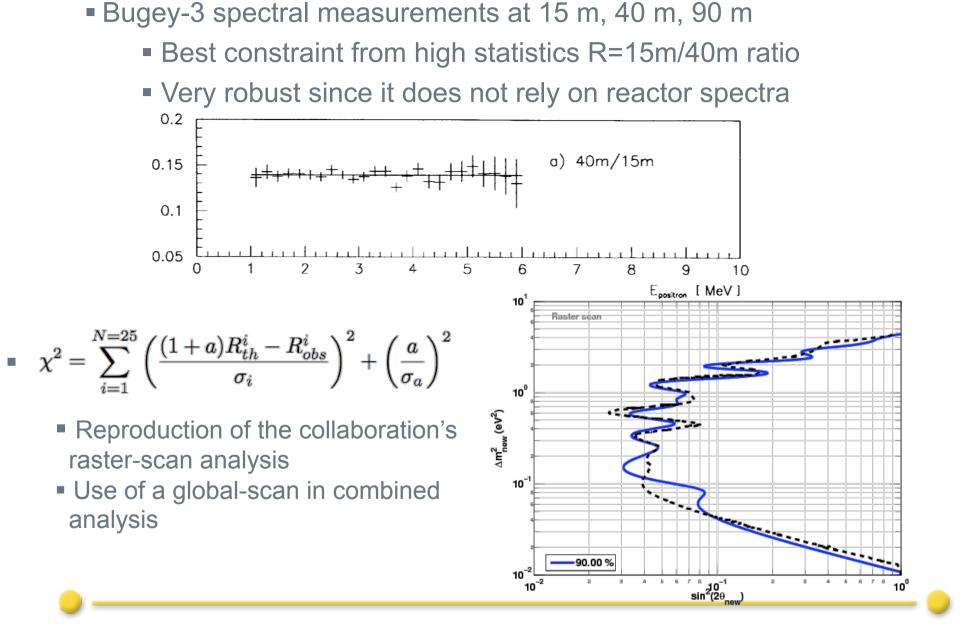
The 4th neutrino hypothesis


Combine all rate measurements, no spectral-shape information
 Fit to anti-v_e disappearance hypothesis

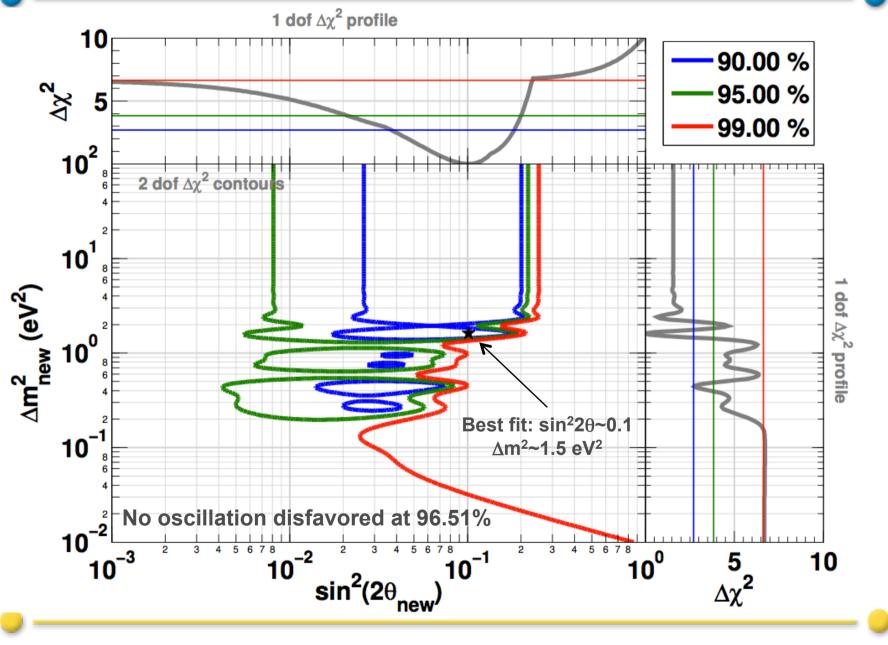
Absence of oscillations disfavored at 98.6% C.L.

The 1981 ILL measurement


- Reactor at ILL with almost pure ²³⁵U, with compact core
- Detector 8.76(?) m from core. Any bias?
- Reanalysis in 1995 by part of the collaboration to account for overestimation of flux at ILL reactor by 10%... Affects the rate only

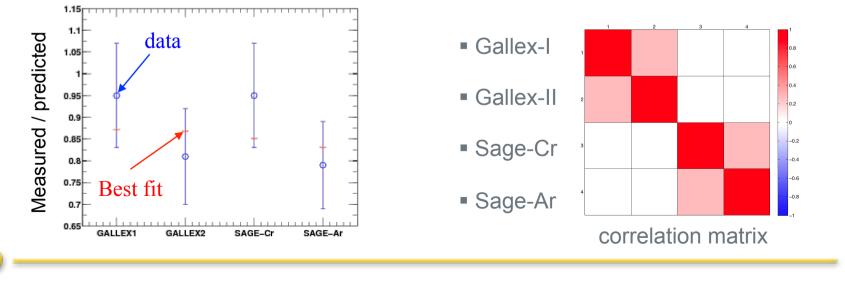

Large errors, but a striking pattern is seen by eye ?

Our ILL re-analysis (reproduce no-oscillation claim)

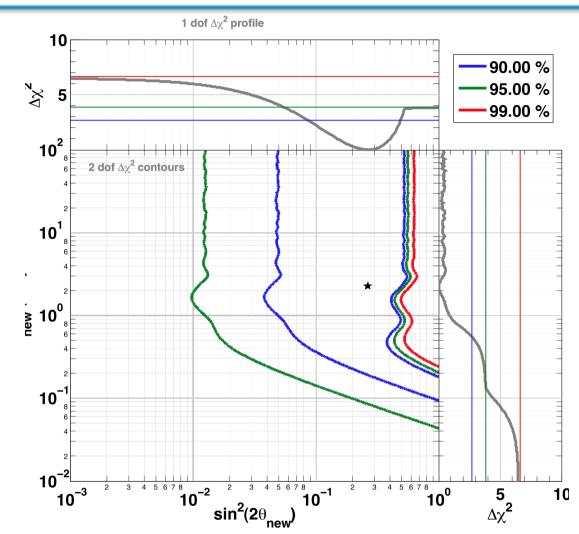

- 1981: Try to reproduce published contour
- \blacksquare 1995: Reproduce claim that global fit disfavors oscillation at 2σ
- How ? We add uncorrelated systematic in each bin until it's large enough
 Needed error : 11%, uncorrelated, in each bin.

Spectral shape analysis of Bugey-3

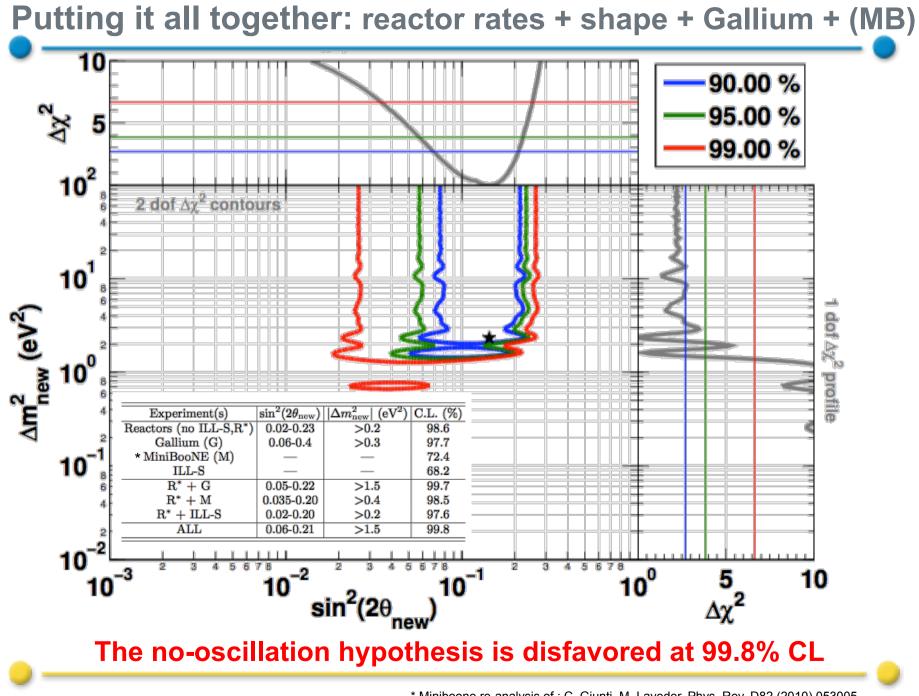
Combined Reactor Rate+Shape contours


The Gallium Neutrino Anomaly

Based on PRD82 053005 (2010)


See C. Giunti's talk

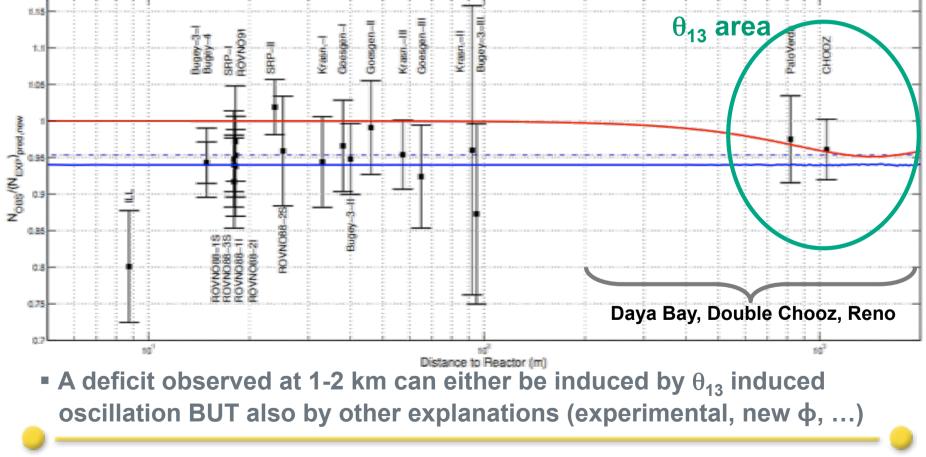
The Gallium anomaly


- 4 calibration runs with intense MCi neutrino sources:
 - 2 runs at Gallex with a ⁵¹Cr source (750 keV v_e emitter)
 - I run at SAGE with a ⁵¹Cr source
 - 1 run at SAGE with a 37 Ar source (810 keV v_e emitter)
 - All observed a deficit of neutrino interactions compared to the expected activity. Hint of oscillation ?
- Our analysis for Gallex & Sage:
 - Monte Carlo computing mean path lengths of neutrinos in Gallium tanks
 - **NEW** : Correlate the 2 Gallex runs together & the 2 SAGE runs together

The Gallium anomaly

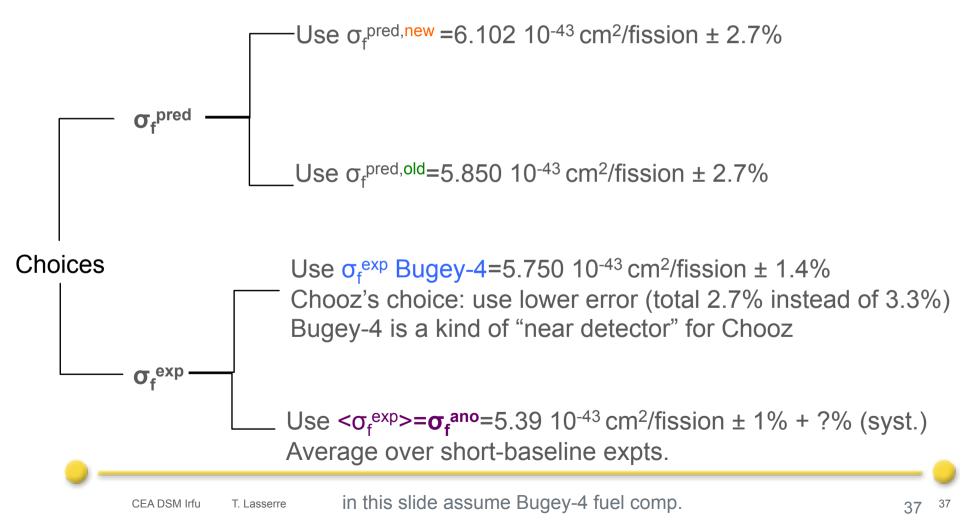
- Effect reported in C. Giunti & M. Laveder in PRD82 053005 (2010)
- Significance reduced by additional correlations in our analysis
- No-oscillation hypothesis disfavored at 97.7% C.L.

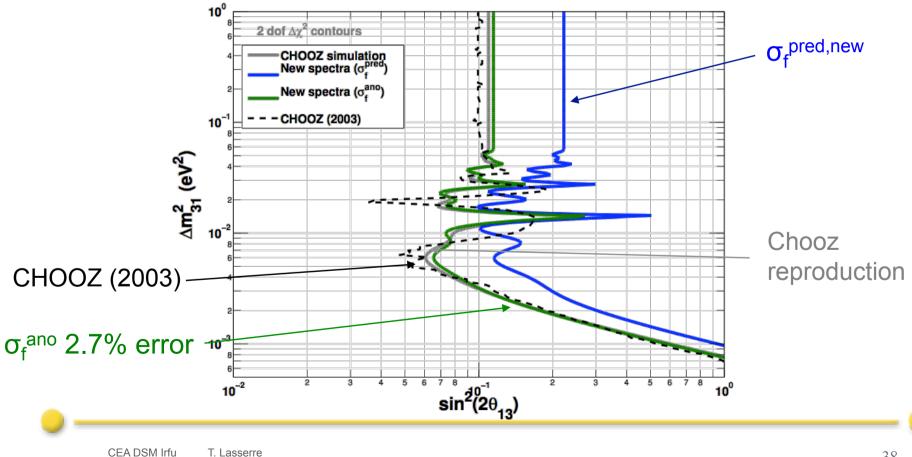
34


Implication for θ_{13}

Implication for θ_{13} at 1-2 km baselines

• The choice of normalization is crucial for reactor experiments looking for θ_{13} without near detector

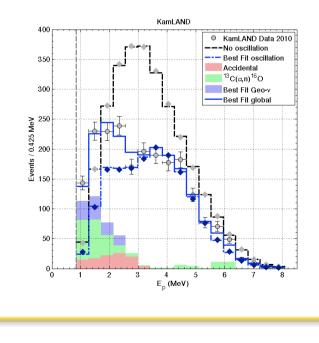

$\sigma_{f}^{\text{pred,new}}$: new prediction of the antineutrino fluxes

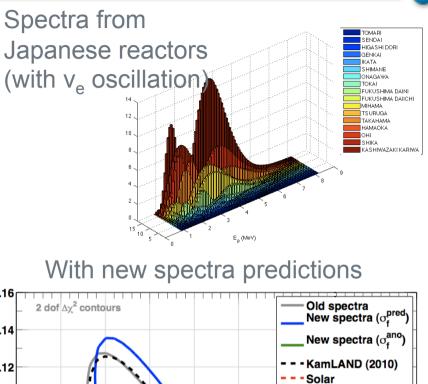

The Normalization Dilemma

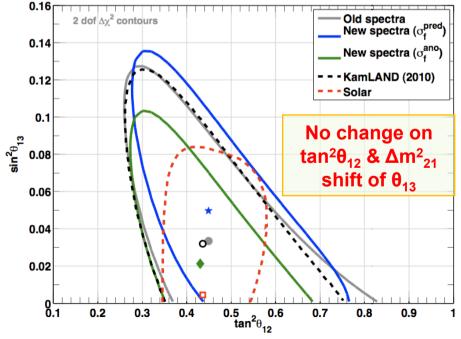
- Experiments with baselines > 500 m
- How do you normalize the expected flux, knowing the fuel composition?
- If near + far detector, not an issue anymore

CHOOZ reanalysis

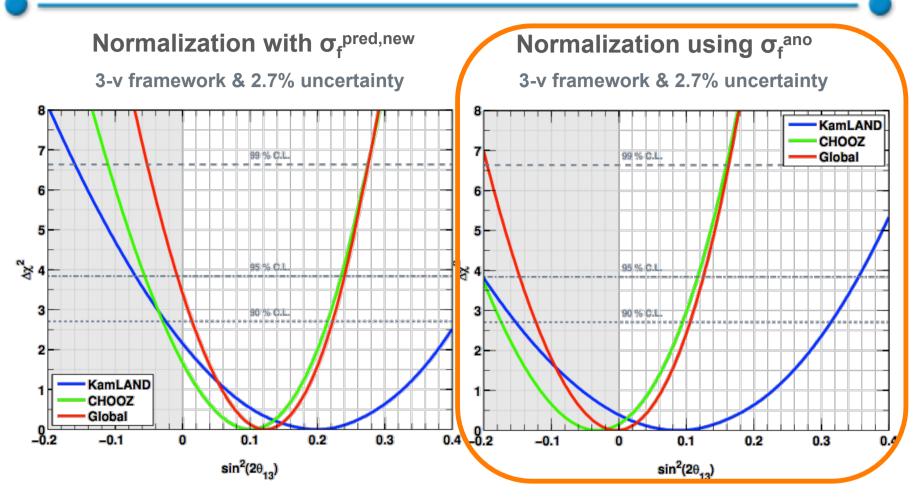
- The choice of σ_f changes the limit on θ_{13}
- Chooz original choice was σ_f^{exp} from Bugey-4 with low error
- If $\sigma_f^{\text{pred,new}}$ is used, limit is worse by factor of 2
- If σ_f^{ano} is used with 2.7%, we obtain the original limit
 - \rightarrow But which error should we associate to σ_{f}^{ano} (burnup up error?)

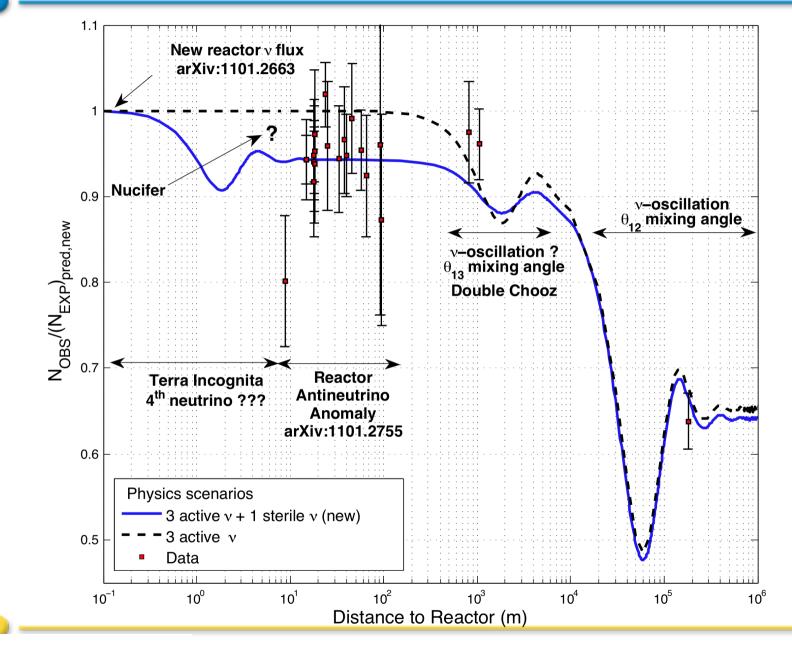

Reanalysis of KamLAND's 2010 results

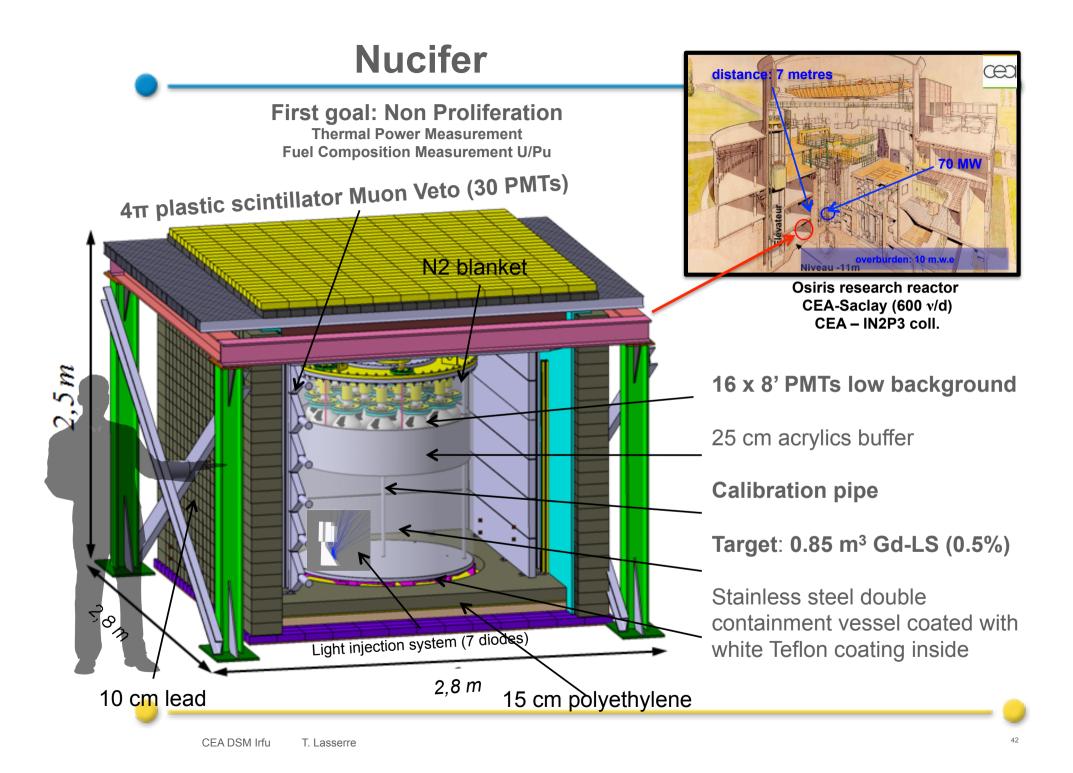

arXiv:1009.4771v2 [hep-ex]


Systematics

	Detector-related (%)		Reactor-related (%)	
$\overline{\Delta m^2_{21}}$	Energy scale	1.8 / 1.8	$\overline{\nu}_e$ -spectra [31]	0.6/0.6
Rate	Fiducial volume	1.8/2.5	$\overline{\nu}_e$ -spectra	2.4/2.4
	Energy scale	1.1 / 1.3	Reactor power	2.1 / 2.1
	$L_{cut}(E_{\rm p})$ eff.	0.7 / 0.8	Fuel composition	1.0 / 1.0
	Cross section	0.2/0.2	Long-lived nuclei	0.3 / 0.4
	Total	2.3/3.0	Total	3.3/3.4


Reproduced KamLAND spectra within 1% in [1-6] MeV range

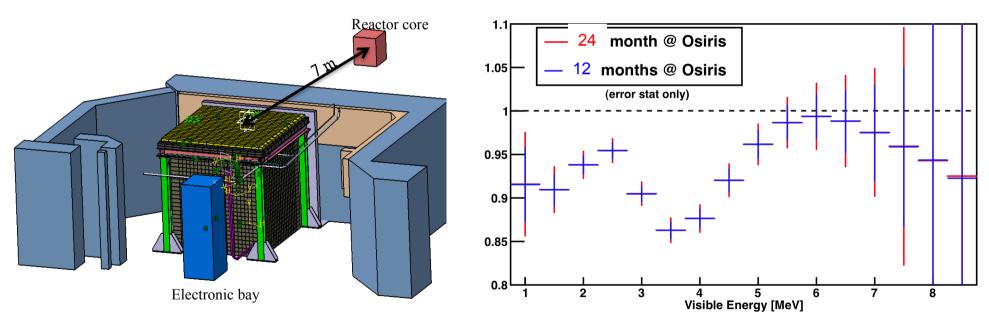

CHOOZ and KamLAND combined limit on θ_{13}

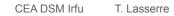


Our interpretation (different from Arxiv:1103:0734 for KamLAND-σ_f^{pred,new}, T. Schewtz's talk)

- No hint on θ_{13} >0 from reactor experiments : sin²(2 θ_{13})<0.11 (90%C.L., 1dof)
- CHOOZ 90 % CL limit stays identical to Eur. Phys. J. C27, 331-374 (2003)
- Multi-detector experiments are not affected

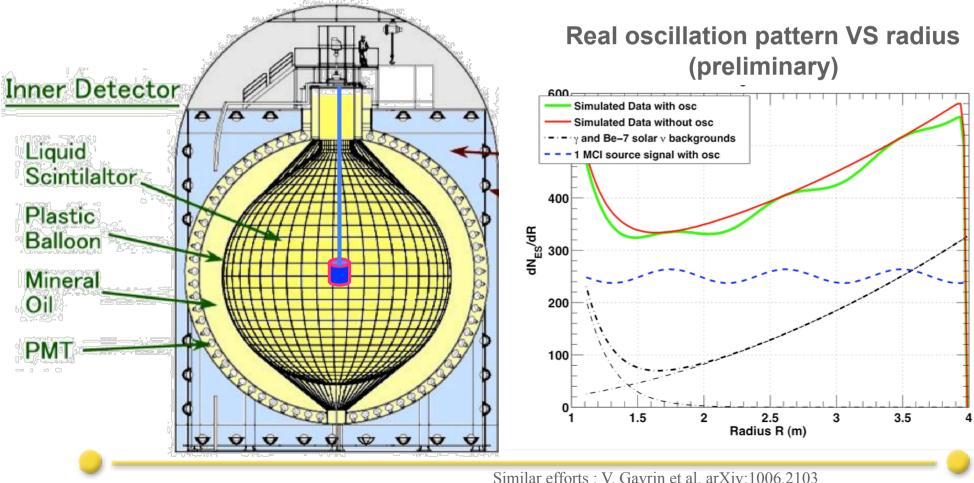
Need for new experimental inputs !





NUCIFER in Saclay

- Osiris-Saclay: Core Size: 57x57x60 cm
- Nucifer Detector Size : 1.2x0.7m (850I)
- Baseline distribution
 - <L>=7.0 m, σ =0.3 m \rightarrow eV² oscillations are not washed out
- Folding Nucifer Geant4 Monte Carlo detector response
- Δm² = 2.4 eV² & sin²(2θ)=0.15
- No backgrounds. Thus to be taken with a grain of salt ...



Such pattern could not be seen at Bugey-3 (extended core & 14 m baselin

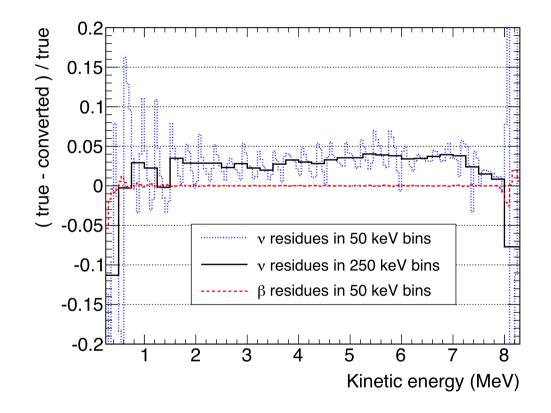
Mci ⁵¹Cr/³⁷Ar Experiment Concept


- A strong 1 Mci v source in the middle of a large LS detector
- Elastic scattering on electrons (few 1000 evts, 150 days, >250 keV)
- A good resolution in position (20 cm)

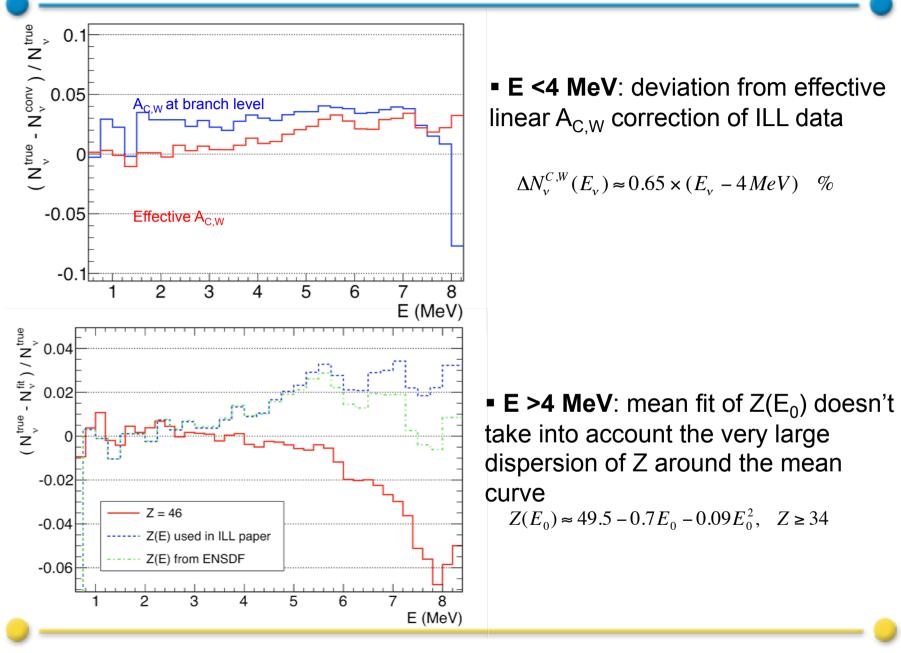
CEA DSM Irfu T. Lasserre

Similar efforts : V. Gavrin et al. arXiv:1006.2103 R. Raghavan et al. PRD 75, 093006; M.Wurm/S.Schoenert

Promising experimental prospect testing the RAA!



Backup


Consistency Check

Stringent test

- Define "true" e⁻ and v spectra from reduced set of well-known ENSDF branches.
- Apply exact same ILL conversion procedure to true e⁻ spectrum.
- 3. Compare converted v spectrum to the true one.
- 4. 'old' effective method bias is confirmed

Origin of the 3% shift

