Standard Model Higgs Search at CMS

Josh Bendavid (Massachusetts Institute of Technology) for the CMS Collaboration

Mar 2, 2012 Les Rencontres de Physique de la Valle d'Aoste

Higgs Production and Decay at the LHC

- Direct Searches before LHC: 95% exclusion for $m_h <$ 114.4 GeV (LEP), and 156 $< m_h <$ 176 GeV (Tevatron)
- ullet Indirect constraints from Electroweak data: $m_h < 169$ GeV (Gfitter)
- Low mass region is the most interesting for a Standard Model Higgs

The CMS Detector

Higgs Searches at CMS

 \bullet Full range of Higgs decay channels have been analyzed with full 2011 dataset (4.6-4.8 fb⁻¹) and submitted for publication

Channel	Mass	Mass	Ref
	Range (GeV)	Resolution	
$H \rightarrow \gamma \gamma$	110-150	1-3%	arXiv:1202.1487
H o au au	110-145	20%	arXiv:1202.4083
$H o bar{b}$	110-135	10%	arXiv:1202.4195
$H o WW o 2\ell 2 u$	110-600	20%	arXiv:1202.1489
$H o ZZ o 4\ell$	110-600	1-2%	arXiv:1202.1997
$H ightarrow ZZ ightarrow 2\ell 2 u$	250-600,	7%	arXiv:1202.3478
$H ightarrow ZZ ightarrow 2\ell 2q$	130-164, 200-600	3%	arXiv:1202.1416
$H ightarrow ZZ ightarrow 2\ell 2 au$	190-600	10-15%	arXiv:1202.1487
Combination	110-600	1-20%	arXiv:1202.3617

• Search for a narrow mass peak in $H \to \gamma \gamma$ and $H \to ZZ \to 4\ell$ channels, search for a broader excess in the other channels, due to the presence of jets or neutrinos in the final state

$H \rightarrow ZZ \rightarrow 2\ell 2\nu$

Event Selection:

- Two opposite-charge, same-flavour leptons with $p_T > 20$ GeV consistent with Z mass
- $p_T^{\ell\ell} > 55$ GeV, $\not\!\!E_T > 70/80$ GeV, Veto events where $\not\!\!E_T$ is aligned with nearest jet
- b-tag, soft muon, third lepton vetoes

Background Estimation:

- Z+jets ∉_T mis-measurement from γ+jet events re-weighted to Z kinematics
- Non-Z backgrounds $(t\bar{t},WW,tW,$ etc.) estimated from opposite-flavour events and $m_{\ell\ell}$ sidebands
- ullet Non-resonant ZZ/WZ backgrounds estimated from Monte Carlo

$H \rightarrow ZZ \rightarrow 2\ell 2\nu$ Results

- Final results from binned likelihood fit to M_T distribution (shown here for $m_h = 300 \text{GeV}$ selection)
- No significant excess observed, 95% C.L exclusion for $270 < m_h < 440 \text{ GeV}$

$H \rightarrow ZZ \rightarrow 2\ell 2q$

- Two opposite-charge, same-flavour leptons consistent with Z mass
- Two anti- k_T 0.5 particle flow jets in Z peak with $p_T > 30$ GeV, within tracking acceptance
- Analysis divided in 0/1/2 b-tag event categories
- Use of quark-gluon discriminant based on jet shape/constituents
- Additional use of angular likelihood discriminant at high mass
- Dominant Z+jets background estimated from m_{ii} sidebands

$H \rightarrow ZZ \rightarrow 2\ell 2q$ Results

 Sensitivity approaching SM cross-section in high mass region

H o au au

- Events selected in $e\tau_h$, $\mu\tau_h$ and $e\mu$ final states, with 20(17)/10 GeV electron (muon) p_T threshold, and 20 GeV hadronic tau p_T threshold
- au au mass reconstructed using kinematic fit of visible products and $\not\!\!E_T$ with likelihood constraints on decay kinematics
- $Z \to \tau \tau$ background estimated from $Z \to \mu \mu$ events in data with μ replaced by simulated τ
- W + jets and multijet background estimated from high transverse mass and same-sign control regions
- Events divided in 3 categories: di-jet VBF tagged, boosted (leading jet $p_T > 150$ GeV), remaining 0/1 jet events

SM $H \rightarrow \tau \tau$ Results

- Final results extracted from binned likelihood fit to $m_{\tau\tau}$ distribution
- Expected exclusion limit $\sim 3 \times \sigma_{SM}$ at low mass

$H \rightarrow bb$

- ullet H o bb has high branching ratios but huge QCD backgrounds
- To achieve reasonable S/B, select $W/Z + H \rightarrow \ell \nu \ \ell \ell \ \nu \nu$ events with significant W/Z boost
- Require two central b-tagged jets (p_T threshold dependent on final state)
- MVA (mass-dependent) trained on dijet and W/Z kinematics, Cut and Count analysis on MVA output
- Background yields scaled from inverted b-tagging (W/Z+light flavour), tighter b-tagging plus extra jets (tī), low p_T^{W/Z}(W/Z+bb̄)

$H \rightarrow bb$ Results

 \bullet Expected 95% exclusion of $\sim 3\times$ Standard Model cross section in low mass region

$H \rightarrow ZZ \rightarrow 4\ell$

- "Golden channel" Narrow mass peak on small background
- Select 4 leptons of appropriate charge and flavour combinations with $50 < m_{Z1} < 120$ GeV, $12 < m_{Z2} < 120$ GeV
- Electron acceptance: $|\eta| <$ 2.5, $p_T >$ 7 GeV, Muon acceptance: $|\eta| <$ 2.4, $p_T >$ 5 GeV
- Irreducible $ZZ o 4\ell$ continuum background estimated from MC
- Reducible $Z+b\bar{b}$ and $t\bar{t}$ backgrounds estimated from Z + same-sign dilepton sample, with fake rates from Z + loose ℓ sample

$H \rightarrow ZZ \rightarrow 4\ell$ Results

 Results extracted from unbinned maximum likelihood fit to m_{4ℓ} distribution

Largest observed excesses:

- 119.5 GeV: **Global: 1.6** σ, (Local: 2.5 σ)
- 320.0 GeV: Global: 1.0 σ,
 (Local: 2.0 σ)

 95% C.L. exclusion for 134-158, 180-305, 340-465 GeV

$\overline{H \rightarrow WW \rightarrow 2\ell 2\nu}$

WW-level Event Selection:

- Two opposite charge leptons with 20/10 (15) GeV p_T threshold for opposite-flavour (same flavour) events
- Events further divided into 0-jet, 1-jet, di-jet VBF tagged categories
- N_{Vtx}-dependent cut on projected ∉_T variable wrt nearest lepton (Minimum of global ∉_T and vtx-associated charged particle ∉_T)
- Soft-muon and b-tag veto (also on soft jets in 0-jet bin), third lepton veto, Z-mass veto for same-flavour pairs

$\overline{H \rightarrow WW \rightarrow 2\ell 2\nu}$

Background Estimation:

- W+jets background estimated from $\ell+$ loose ℓ sample, fake rates estimated from dijet sample
- t\(\bar{t}\) background estimated from b-tagged events, tagging efficiency from double-b-tag sample
- $W\gamma^*$ estimated from three-lepton control sample
- $Z \rightarrow \ell\ell$ estimated from yield in Z-peak
- $Z \rightarrow \tau \tau$ estimated from embedded sample
- Small $W\gamma$ contribution estimated from simulation, cross-checked in same-sign events
- WW background estimated from high $m_{\ell\ell}$ control region (cut-based selection shown)

$H \rightarrow WW \rightarrow 2\ell 2\nu$: MVA Results

- ullet BDT trained on lepton and $otin _{\mathcal{T}}$ kinematics to distinguish H o WW from WW
- Results extracted from binned likelihood fit of BDT output
- 95% C.L. exclusion for $129 < m_h < 270 \text{ GeV}$
- Small excess at low mass

$H o\gamma\gamma$

- Select two photons with $p_T>m_{\gamma\gamma}/3(4)$ with appropriate selection on shower shape and isolation
- Multivariate energy corrections for local and global electromagnetic cluster containment (Resolution and energy scale corrections from $Z \to ee$)
- ullet Primary vertex selection ambiguous in high pileup" combine information on track recoil against di-photon system with conversion pointing where available (correct vertex in $\sim 83\%$ of events)

$H \rightarrow \gamma \gamma$

- Separate event class for di-jet VBF-tagged events
- Remaining events further subdivided into 4 event classes according to photon rapidity and shower shape (converted vs unconverted)
- Mass resolution and S/B varies significantly as a function of event class
- Background modelled directly from data using polynomial forms
- Bias estimated from alternate background forms, at least 5 times smaller than statistical uncertainty of background fit

$H \rightarrow \gamma \gamma$ Results

- Excess at 124 GeV with contribution from VBF-tagged and non-VBF-tagged events
- Global significance 1.8 σ , (Local significance 3.1 σ)
- 95% C.L. exclusion for $128 < m_h < 132 \text{ GeV}$
- "More data are required to ascertain the origin of this excess."

Combined Results

- ullet 95% C.L. exclusion for 127 $< m_h <$ 600 GeV
- 99% C.L. exclusion for 129 < m_h < 525 GeV
- Largest excess at 124 GeV dominated by $H \to \gamma \gamma$, smaller excess at 119.5 GeV by $H \to ZZ \to 4\ell$ with smaller contribution from $H \to WW$
- Global significance: 1.5 σ in 110-600 GeV, (2.1 σ in 110-145 GeV), (Local significance: 3.1 σ)

Combined Results

Conclusions

- Full 2011 CMS dataset $(4.6-4.8fb^{-1})$ analysed in a broad range of Higgs decay channels
- Standard model Higgs excluded at 95% C.L. for $127 < m_h < 600 \text{ GeV}$
- Modest excess at \sim 124 GeV mainly from $H \to \gamma \gamma$: Global significance: 1.5 σ (or 2.1 σ optimistically), (Local significance 3.1 σ)
- If the Standard Model Higgs exists, its mass is very likely between 114.4 and 127 GeV
- "More data are required to ascertain the origin of the observed excess."

Backup: $H \rightarrow ZZ \rightarrow 2\ell 2\tau$

• Reconstructing one of the Z's in $\tau\tau$ decays (both leptonic and hadronically decaying taus) adds some branching ratio at high mass

Backup: $H \rightarrow \gamma \gamma$ Best Fit Cross-Sections

Backup: $H \rightarrow \gamma \gamma$ Event Classes

	Both photons in barrel		One or both in endcap		Dijet
	$R_9^{\min} > 0.94$	$R_9^{\min} < 0.94$	$R_9^{\min} > 0.94$	$R_9^{\min} < 0.94$	tag
SM signal expected	25.2 (33.5%)	26.6 (35.3%)	9.5 (12.6%)	11.4 (14.9%)	2.8 (3.7%)
Data (events/GeV)	97.5 (22.8%)	143.4 (33.6%)	76.7 (17.9%)	107.4 (25.1%)	2.3 (0.5%)
$\sigma_{\rm eff}$ (GeV)	1.39	1.84	2.76	3.19	1.71
FWHM/2.35 (GeV)	1.19	1.53	2.81	3.18	1.37

- Mass resolution and S/B varies significantly across event classes
- Mass resolution has some contribution from primary vertex selection ($\sim 17\%$ of events with incorrect primary vertex)

Backup: $H \rightarrow \gamma \gamma$ Resolution from $Z \rightarrow ee$

(f) Barrel-Barrel Unconverted

- (g) Barrel-Endcap Unconverted
- Monte Carlo \rightarrow data resolution smearing factor determined from $Z \rightarrow ee$ events
- Additional smearing on the Monte Carlo is relatively small in the barrel, larger in the endcap

Backup: $H \rightarrow \gamma \gamma$ VBF-tagged Event Display

- γ_1 : $p_T = 193.9$ GeV, $\eta = -0.405$
- γ_1 : $p_T = 78.0 \text{ GeV}$, $\eta = 0.037$
- Jet 1: $p_T = 288.8 \text{ GeV}, \eta =$ -2.022

- $m_{\gamma\gamma} = 121.9 \text{ GeV}$
- $m_{ii} = 1460 \text{ GeV}$
- $\Delta \eta_i j = 3.882 \rightarrow 4 = 4 = 4$ **CMS Higgs Results**

Backup: Combination: Limits by Channel

Backup: Combination: Limits by Channel

