First Observation of Single Top Quark Production

- 1. Single Top Physics
- 2. Samples, Event Selection and Analysis Strategy
- 3. DØ's Results
- 4. CDF's Results
- 5. Conclusion

Gustavo Otero y Garzón, University of Buenos Aires for the DØ and CDF Collaborations

Les Rencontres de Physique de la Vallée d'Aoste March 1-7, 2009, La Thuile, Italy

Disclaimer

- You are about to see very recent results
 - DØ submitted its latest result to PRL yesterday (arXiv:0903.0850 [hep-ex])
 - CDF also submitted its latest result to PRL yesterday (arXiv:0903.0885 [hep-ex])

I had a chance to see this a few hours ago for the first time so bear with your speaker...

Single Top quark production. Why do we care?

- The top quark has been discovered in 1995 by CDF and DØ through strong interactions at the Tevatron
- Electroweak production predicted by the Standard Model but not observed yet
- The measurement of the cross section is a test of the SM
- Dominant production channels at the Tevatron:

s-channel (tb)

$$\sigma_{\text{NLO}}$$
 = 0.88 \pm 0.11 pb (m_t = 175 GeV)[†] σ_{NLO} = 1.12 \pm 0.05 pb (m_t = 170 GeV)[‡]

t-channel (tqb)

$$\sigma_{\text{NLO}}$$
 = 1.98 \pm 0.25 pb (m_t = 175 GeV)[†] σ_{NLO} = 2.34 \pm 0.13 pb (m_t = 170 GeV)[‡]

- Study of the Wtb coupling
 - Direct | V_{tb}| measurement
 - Unitarity test of CKM matrix
 - Anomalous Wtb couplings
- Measurement of top quark properties (polarization, lifetime, mass, ...)
- Chance to explore New Physics (different model sensitivities for s and t)

Signal and Background Samples

- Single Top signal
 - CompHEP SingleTop MadEvent

W+Jets

- Dominant and most difficult background
- Shapes from ALPGEN
- Normalization and Heavy Flavor fractions from data

t-tbar

- ALPGEN
- Normalized to $\sigma_{NNLO} = 6.8 pb$

Multijets

- Misidentified lepton, from data
- Other minor backgrounds
 - Z+jets (ALPGEN)
 - Diboson (PYTHIA)

Single Top Event Selection

- Crucial to maximize the signal acceptance
- Basic event signature (e or μ)
 - Single lepton / lepton+jets / MET triggers
 - One high p_⊤ lepton
 - MET
 - 2 4 high E_T jets
 - At least one b-tagged jet
- Expect ~ 50 signal events per fb⁻¹
 - S:B ~ 1:20 after b-tagging
 - Signal acceptances range from 2 to 4%

Data-MC agreement

Analysis Strategy

Discriminating variables

Signal Likelihood

Statistical Analysis

Event kinematics
Object kinematics
econstructed masses
Angular correlations

Classifiers

- Likelihood Function (LF)
- Neural Network (NN)
- Bayesian Neural Networks(BNN)
- Boosted Decision Trees (BDT)
- Matrix Element (ME)

Build Bayesian posterior probability density to measure cross section

- Shape normalization and systematics treated as nuisance parameters
- Correlations between uncertainties properly accounted for
- Flat prior in signal cross section

Decision Tree and Matrix Elements Analyses

Decision Trees:

- Single Top signal samples trained against background samples from a large number of input variables
- Sort events by output purity
- Used misclassified events to create series of boosted trees

Matrix Elements:

- Use parton level matrix elements [s, t, Wbb, Wcg, Wgg, ttbar, DØ also added (2Jet: tt, WW, WZ, ggg; 3Jet: Wugg)]
- Look at 2 and 3 jet events
- integrate to calculate event probability densities for signal and background

Likelihood Functions and Neural Networks

Likelihood Function (CDF):

Multivariate likelihood function combines 7(10) sensitive variables into a single discriminant for events with 2(3) jets

Neural Networks:

- **CDF: Build 4 separate neural** networks including btagNN, kinematic variables and angular distributions
- D0: build a Bayesian Neural **Network by tuning parameters** and averaging hundreds of networks

New analysis from CDF

- Brand new MET + Jets analysis
 - Use discarded events from previous analyses
 - Orthogonal sample compared to other analyses (undetected leptons or hadronically decacying τ from W)
 - Split in 3 samples using 2 b-taggers
 - Separate signal from background with the aid of a dedicated NN

DØ's Results

New result based on 2.3 fb⁻¹

arXiv:0903.0850 [hep-ex]

Selection Improvements

- 2.6 times more data
 - 2.3 fb⁻¹ of Runll data (0.9fb⁻¹ in previous analyses)
- 18% acceptance gain compared to 2007 PRL analysis
 - increased logical OR of many trigger conditions
 - Second leading jet p_T > 15 GeV (20 GeV)
 |jet 1η| < 3.4 (2.5)
 - Muon p_T > 15 GeV (18 GeV)
 - Looser b-tagging for events with 2 tags
 - Added topological cuts to reduce background
- Improvement in background modeling
 - top MC samples @ m_t = 170 GeV
 - Theoretical W-Z+jets K factors
 - Wbb/Wcc SF derived from untagged and tagged 2-jet samples.
 - Reweight ALPGEN jet quantities
 - Improved multijet background modeling

Event Yields in 2.3 fb ⁻¹ of DØ Data				
Source 2 jets 3 jets 4 jets				
s-channel tb	62 ± 9	24 ± 4	7 ± 2	
t-channel tqb	77 ± 10	39 ± 6	14 ± 3	
W+bb	678 ± 104	254 ± 39	73 ± 11	
W+cc	303 ± 48	130 ± 21	42 ± 7	
W+cj	435 ± 27	113 ± 7	24 ± 2	
W+jj	413 ± 26	140 ± 9	41 ± 3	
Z+ jets	141 ± 33	54 ± 14	17 ± 5	
Dibosons	89 ± 11	32 ± 5	9 ± 2	
$t\bar{t} \rightarrow \ell\ell$	149 ± 23	105 ± 16	32 ± 6	
$t\bar{t} \rightarrow \ell + \text{jets}$	72 ± 13	331 ± 51	452 ± 66	
Multijets	196 ± 50	73 ± 17	30 ± 6	
Total prediction	2,615 ± 192	1,294 ± 107	742 ± 80	
Data	2,579	1,216	724	

Expected and Observed Results

	BNN		BDT		ME	
	Exp.	Obs.	Ехр.	Obs.	Ехр.	Obs.
σ(s+t)[pb]	3.6+1.00.9	4.7+1.2	3.6+1.00.9	3.7+1.00.8	3.6+1.1 -1.0	4.3+1.0
significance	4.1	5.2	4.3	4.6	4.1	5.0

Combination

- Three MV analyses give consistent results and are not fully correlated
- Use BNN, BDT and ME discriminant outputs to build a second layer combination BNN discriminant
- Cross checked with a BLUE method combination

$$\sigma$$
(s+t) = 3.94 \pm 0.88 pb

with 5.0 σ significance

$$|V_{tb}f_1^L| = 1.07^{+0.12}_{-0.12}$$

 $0.78 < |V_{tb}| < 1 @ 95\%$ CL assuming $f_1^L = 1$

CDF's Results

New result based on 3.2 fb⁻¹

arXiv:0903.0855 [hep-ex]

Combination

 Combined results using evolved NEAT (Neuro Evolution of Argumenting Topologies) taking the output of different multivariate analyses as inputs

Results

	CDF (3.2 fb $^{-1}$)		
	Ехр.	Obs.	
ME	4.9	4.3	
BDT	5.2	3.5	
NN	5.2	3.5	
LF	4.0	2.4	
E _r +jets	1.4	2.1	
Comb	5.9	5.0	

Comb	Lum. (fb $^{-1}$)	Exp. sign.	Obs. sign.	σ (pb)	$ V_{tb} $
•	3.2	5.9σ	5.0σ	$2.3^{+0.6}_{-0.5}$	$0.91 \pm 0.11 (exp) \pm 0.07 (th)$

Direct Measurement of $|V_{tb}|$

- Calculate posterior probability density for $|V_{tb}|^2$
 - proportional to the single top cross section
- Assume Standard Model production
 - Pure V-A and CP conserving interaction (f₁^R = f₂^L = f₂^R = 0)
 - $|V_{td}|^2 + |V_{ts}|^2 << |V_{tb}|^2$
 - Additional theoretical errors (top mass, scale, PDF, etc...)
- Measurement does not assume 3 generations or unitarity

$$|V_{tb} f_1^L| = 1.07^{+0.12}_{-0.12}$$

 $0.78 < |V_{tb}| < 1 @ 95\% CL$ assuming $f_1^L = 1$

$$|V_{tb} f_1^L| = 0.91 \pm 0.11 (exp) \pm (th)$$

Conclusion

- **DØ and CDF published 3** evidence in 2007 and 2008 respectively
- Thanks to the efforts of plenty of people at Fermilab we are pleased to announce a major Tevatron accomplishment

Single top production observation at DØ & CDF!

- Both DØ and CDF announce here for the first time 5σ observation in their latest results recently submitted to PRL
- Precise direct measurement of |V_{tb}|
- Results are in agreement with SM

Conclusion

- **DØ and CDF published 3** evidence in 2007 and 2008 respectively
- Thanks to the efforts of plenty of people at Fermilab we are pleased to announce a major Tevatron accomplishment

Single top production observation at DØ & CDF!

Both DØ and CDF announce here for the first time 5σ observation in

bmitted to PRL

of |*V_{tb}*| SM

their latestPrecise dirResults ar

Conclusion

- DØ and CDF published 3σ evidence in 2007 and 2008 respectively
- Thanks to the efforts of plenty of people at Fermilab we are pleased to announce a major Tevatron accomplishment

Single top production observation at DØ & CDF!

Both DØ and CDF announce here for the first time 5σ observation in

Back up slides

Systematic Uncertainties				
Components for normalization				
Integrated luminosity	6.1%			
tt cross section	12.7%			
Z+jets and dibosons cross section	5.8%			
Branching fractions	1.5%			
Parton distribution functions (signal only)	3.0%			
Triggers	5.0%			
Instantaneous luminosity reweighting	1.0%			
Primary vertex selection	1.4%			
Lepton identification	2.5%			
Jet fragmentation	(0.7-4.0)%			
Initial-state and final-state radiation	(0.6–12.6)%			
b-jet fragmentation	2.0%			
Jet reconstruction and identification	1.0%			
Jet energy resolution	4.0%			
W+jets and Z+jets heavy flavor correction	13.7%			
Multijets normalization to data	(30–54)%			
Monte Carlo and multijets statistics	(0.5–16)%			
Components for normalization and shape				
Jet energy scale for signal	(1.1–13.1)%			
Jet energy scale for total background	(0.1–2.1)%			
b tagging for single-tagged	(2.1–7.0)%			
b tagging for double-tagged	(9.0–11.4)%			
Component for shape only				
ALPGEN reweighting	_			

Systematic Uncertainties

Systematic	Rate	Shape
Jet energy scale	016%	✓
Initial state radiation	011%	\checkmark
Final state radiation	015%	✓
Parton distribution functions	23%	✓
Monte Carlo generator	15%	
Event detection efficiency	09%	
Luminosity	6%	_
NN flavor separator		✓
Mistag model		✓
Non-W model		✓
ALPGEN Q^2		✓
MC Modeling ($\Delta R, \eta(j_2)$)		✓
$Wb\bar{b}$ + $Wc\bar{c}$ normalization	30%	
Wc normalization	30%	_
Mistag normalization	1729%	_
Top Mass - top-pair normalization	23%	✓

Event Yields

Process	$\ell + \not\!\!E_T + \text{jets}$	$E_T + jets$
s-channel signal	77.3 ± 11.2	29.6 ± 3.7
t-channel signal	113.8 ± 16.9	34.5 ± 6.1
W + HF	$1551.0 \;\pm\; 472.3$	304.4 ± 115.5
$t \bar{t}$	686.1 ± 99.4	184.5 ± 30.2
Z+jets	52.1 ± 8.0	128.6 ± 53.7
Diboson	118.4 ± 12.2	42.1 ± 6.7
QCD+mistags	777.9 ± 103.7	679.4 ± 27.9
Total prediction	3376.5 ± 504.9	1404 ± 172
Observed	3315	1411

Significance

- Quantify the "excess in data over background"
- p-value: assuming a null hypothesis, what's the probability to get a value equal or greater than the value observed
- Used a large ensemble of zero-signal pseudo-datasets, each corresponding to 2.3 fb⁻¹ of data without signal
- Measure cross section for each pseudo-experiment in the same way we measure in our real data
- Measure the fraction of zero-signal datasets in which we derive at least the SM cross section (expected significance), or at least the observed cross section (observed significance)

Cross Checks

Cross Checks

Multivariate Analyses

- Three improved MVA methods
 - Boosted Decision Trees (BDT)
 - Improved tuning of parameters
 - Added object and top reconstruction variables
 - Bayesian Neural Networks (BNN)
 - First two improvements as BDT
 - Use RuleFitJF to select highest ranked variables
 - Matrix Elements (ME)
 - Added MEs (2Jet: tt, WW, WZ, ggg; 3Jet: Wugg)
 - Split sample in low and high HT

Multivariate Analyses

