CKMfitter update: CP-violation in the Standard Model and beyond

Sébastien Descotes-Genon

Laboratoire de Physique Théorique
CNRS \& Université Paris-Sud 11, 91405 Orsay, France
4th workshop on flavour physics (Capri)
11 June 2012

CP-violation : the four parameters

In SM weak charged transitions mix quarks of different generations
Encoded in unitary CKM matrix $V_{C K M}$
$(\bar{\rho} \cdot \overline{\mathrm{n}})$

- 3 generations $\Longrightarrow 1$ phase, only source of CP-violation in SM
- Wolfenstein parametrisation, defined to hold to all orders in λ and rephasing invariant
$\lambda^{2}=\frac{\left|V_{u s}\right|^{2}}{\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}}$
$A^{2} \lambda^{4}=\frac{\left|V_{c b}\right|^{2}}{\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}}$

$$
\bar{\rho}+i \bar{\eta}=-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}
$$

$\Longrightarrow 4$ parameters describing the CKM matrix, to extract from data under the SM hypothesis

The inputs

CKM matrix within a frequentist framework ($\simeq \chi^{2}$ minimum) + specific scheme for theory errors (Rfit)
data $=$ weak \otimes QCD $\quad \Longrightarrow$ Need for hadronic inputs (often lattice)

$\left\|V_{u d}\right\|$	superallowed β decays	PRC79, 055502 (2009)
$V_{u s}$ \|	$K_{\text {e3 }}$ (Flavianet)	$f_{+}(0)=0.963 \pm 0.003 \pm 0.005$
	$K \rightarrow \ell \nu, \tau \rightarrow K \nu_{\tau}$	$f_{K}=156.3 \pm 0.3 \pm 1.9 \mathrm{GeV}$
$\left\|V_{u s} / V_{u d}\right\|$	$K \rightarrow \ell \nu / \pi \rightarrow \ell \nu, \tau \rightarrow K \nu_{\tau} / \tau \rightarrow \pi \nu_{\tau}$	$f_{K} / f_{\pi}=1.198 \pm 0.002 \pm 0.010$
ϵ_{K}	PDG 08	$\hat{B}_{K}=0.733 \pm 0.003 \pm 0.036$
$\left\|V_{u b}\right\|$	inclusive and exclusive	$\left\|V_{u b}\right\| \cdot 10^{3}=3.92 \pm 0.09 \pm 0.45$
$V_{c b} \mid$	inclusive and exclusive	$\left\|V_{c b}\right\| \cdot 10^{3}=40.89 \pm 0.38 \pm 0.59$
Δm_{d}	last WA $B_{d}-\bar{B}_{d}$ mixing	$B_{B_{s}} / B_{B_{d}}=1.024 \pm 0.013 \pm 0.015$
Δm_{s}	last WA $B_{s}-\bar{B}_{s}$ mixing	$B_{B_{s}}=1.291 \pm 0.025 \pm 0.035$
β	last WA $J / \psi K^{(*)}$	
α	last WA $\pi \pi, \rho \pi, \rho \rho$	isospin
γ	last WA $B \rightarrow D^{(*)} K^{(*)}$	GLW/ADS/GGSZ
$B \rightarrow \tau \nu$	$(1.68 \pm 0.31) \cdot 10^{-4}$	$\begin{aligned} & f_{B_{s}} / f_{B_{d}}=1.218 \pm 0.008 \pm 0.033 \\ & f_{B_{s}}=229 \pm 2 \pm 6 \mathrm{MeV} \end{aligned}$

The global fit

$$
\begin{gathered}
\left|V_{u d}\right|,\left|V_{u s}\right| \\
\left|V_{c b}\right|,\left|V_{u b}\right| S L \\
B \rightarrow \tau \nu \\
\Delta m_{d}, \Delta m_{s} \\
\epsilon_{K} \\
\sin 2 \beta \\
\alpha \\
\gamma \\
A=0.812_{-0.022}^{+0.015} \\
\lambda=0.2254_{-0.0010}^{+0.00010} \\
\bar{\rho}=0.145_{-0.027}^{+0.027} \\
\bar{\eta}=0.343_{-0.015}^{+0.015} \\
(68 \% \mathrm{CL})
\end{gathered}
$$

- Improved treatment of nuisance (hadronic) parameters
- Update in ADS inputs from Belle and CDF (2011)
- Inclusion of ADS from LHCb (2012)

Summer 10
$\gamma[$ comb $]=\left(71_{-25}^{+21}\right)^{\circ}$
$\gamma[\mathrm{fit}]=\left(67.2_{-3.9}^{+3.9}\right)^{\circ}$

Summer 11
$\gamma[$ comb $]=\left(68_{-11}^{+10}\right)^{\circ}$
$\gamma[\mathrm{fit}]=\left(67.3_{-3.5}^{+4.2}\right)^{\circ}$

Winter 12
$\gamma[$ comb $]=\left(66_{-12}^{+12}\right)^{\circ}$
$\gamma[\mathrm{fit}]=\left(67.1_{-4.3}^{+4.3}\right)^{\circ}$

$K-\bar{K}$ mixing in the SM

Impact of the statistical treatment of theoretical inputs on ϵ_{K}

$$
\kappa_{\epsilon},\left|V_{c b}\right|, \hat{B}_{K}, \eta_{c t, c c, t}, \bar{m}_{c, t}
$$

- Gaussian error: 1.6σ discrepancy
- Rfit error: no discrepancy

$B_{s} \rightarrow \mu \mu$ in SM

- Prediction: $\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)=\left(3.64_{-0.32}^{+0.21}\right) \cdot 10^{-9}$
- 95% CL bounds: $<4.5 \cdot 10^{-9}$ [LHCb] and $7.7 \cdot 10^{-9}$ [CMS]
[see R. Fleischer's talk]

Predictions for $\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)$

$\operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\tau_{B_{s}} \frac{G_{F}^{2}}{\pi}\left(\frac{\alpha}{4 \pi \sin ^{2} \theta_{W}}\right)^{2} f_{B_{s}}^{2} m_{B_{s}} m_{\mu}^{2} \sqrt{1-\frac{4 m_{\mu}^{2}}{m_{B_{s}}^{2}}}\left|V_{t b}^{*} V_{t s}\right|^{2} \eta_{Y}^{2} Y^{2}\left(x_{t}\right)$
$f_{B_{s}}$ constrained indirectly by Δm_{s} and $B_{B_{s}}$ (both precisely known)

$$
\frac{\operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}{\Delta m_{s}}=\eta_{Y}^{2} \frac{6 \pi}{\eta_{B}}\left(\frac{\alpha}{4 \pi \sin ^{2} \theta_{W}}\right)^{2} \frac{m_{\mu}^{2}}{m_{W}^{2}} \frac{\tau_{B_{s}}}{\hat{B}_{B_{s}}} \frac{Y^{2}\left(x_{t}\right)}{S\left(x_{t}\right)} \Delta M_{s}
$$

Inserting our Summer 11 best-fit values for the inputs and comparing with [Buras et al 10]

Value	$\frac{C K M}{\text { fitter }}$	Buras et al. 10
$\hat{B}_{B_{s}}$	1.248	1.33
$\bar{m}_{t}\left(\bar{m}_{t}\right)(\mathrm{GeV})$	164.8	163.5
$\Delta m_{s}\left(\mathrm{ps}^{-1}\right)$	17.73	17.77
$\tau_{B_{s}}(\mathrm{ps})$	1.472	1.425
$\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)$	$3.6 \cdot 10^{-9}$	$3.2 \cdot 10^{-9}$

Another unitarity triangle

SM mechanism for CP-violation encoded in CKM matrix describes efficiently B_{d} and B_{s} systems ?

Not exactly:

- $\sin (2 \beta)$ vs $B \rightarrow \tau \nu$
- $A_{S L}$
- $\left(\beta_{s}, \Delta \Gamma_{s}\right)(?)$
discrepancies which could be related to meson mixing

$\sin (2 \beta)$ vs $B \rightarrow \tau \nu$

Global fit $\chi_{\text {min }}^{2}$ drops by 2.8σ if $\sin 2 \beta_{c \bar{c}}$ or $B \rightarrow \tau \nu$ removed

Issue not only the value of $f_{B_{d}}$ since 2.9σ discrepancy from

$$
\frac{\operatorname{Br}(B \rightarrow \tau \nu)}{\Delta m_{d}}=\frac{3 \pi}{4} \frac{m_{\tau}^{2} \tau_{B}}{m_{W}^{2} \eta_{B} S\left[x_{t}\right]}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} \frac{\sin ^{2} \beta}{\sin ^{2}(\alpha+\beta)} \frac{1}{\left|V_{u d}\right|^{2} B_{B_{d}}}
$$

$\sin (2 \beta)$ vs $B \rightarrow \tau \nu$

Possible explanations for this discrepancy

- $\operatorname{Br}(B \rightarrow \tau \nu)$ measurement incorrect (2.6 σ) ?
- Correlated error in lattice values for $f_{B_{d}}(2.6 \sigma)$ and $B_{B_{d}}(2.7 \sigma)$?
- NP in decay (not 2HDMII [O. Deschamps et al. 10, Babar 12]) ?
- New physics in mixing?

$A_{S L}$

- Same-sign dimuon charge asymmetry yields $A_{S L}$

DØ, CDF

$$
(-8.5 \pm 2.8) \cdot 10^{-3}[2010] \rightarrow(-7.4 \pm 1.9) \cdot 10^{-3}[2011]
$$

- Linear comb. of semileptonic (flavour specific) asym. for $B_{d, s}$ $a_{S L}^{q}=\frac{\Gamma\left(\bar{B}_{q}(t) \rightarrow \ell^{+} \nu X\right)-\Gamma\left(B_{q}(t) \rightarrow \ell^{-} \nu X\right)}{\Gamma\left(\bar{B}_{q}(t) \rightarrow \ell^{+} \nu X\right)+\Gamma\left(B_{q}(t) \rightarrow \ell^{-} \nu X\right)} \neq 0 \Longrightarrow \mathrm{CPV}$ in mixing
- Discrepancy from SM expectation $A_{S L}=-(0.20 \pm 0.03) \cdot 10^{-3}$
[Lenz, Nierste 11]

$\phi_{B S}$

Angular analysis of $B_{s} \rightarrow J / \psi \phi$ to measure ($\phi_{B s}, \Delta \Gamma_{B s}$) In SM, $\phi_{B s} \rightarrow-2 \beta_{s}=2 \cdot \arg \left(V_{c s} V_{c b}^{*} / V_{t s} V_{t b}^{*}\right)=-2.1^{\circ} \pm 0.1^{\circ}$

- $2010 \mathrm{CDF} / \mathrm{D} \varnothing \phi_{B s} \in\left[-67.6^{\circ},-30.9^{\circ}\right] U\left[-148.9^{\circ},-111.1^{\circ}\right]$

$\phi_{B s}$

Angular analysis of $B_{s} \rightarrow J / \psi \phi$ to measure $\left(\phi_{B s}, \Delta \Gamma_{B s}\right)$
In SM, $\phi_{B s} \rightarrow-2 \beta_{s}=2 \cdot \arg \left(V_{c s} V_{c b}^{*} / V_{t s} V_{t b}^{*}\right)=-2.1^{\circ} \pm 0.1^{\circ}$

- 2011 a series of results dominated by LHCb
- $D \varnothing\left(6.1 \mathrm{fb}^{-1}\right): \phi_{B S}=-43.5^{\circ}{ }_{-20.6^{\circ}}^{21 . .^{\circ}} \pm 1.2^{\circ}$
- CDF $\left(5.2 \mathrm{fb}^{-1}\right): \phi_{B s} \in\left[-59.6^{\circ},-2.3^{\circ}\right]$
- LHCb $J / \psi f_{0}\left(0.4 \mathrm{fb}^{-1}\right): \phi_{B s}=-25.2^{\circ} \pm 25.2^{\circ} \pm 1.2^{\circ}$
- LHCb $J / \psi \phi\left(0.4 \mathrm{fb}^{-1}\right): \phi_{B s}=8.6^{\circ} \pm 10.3^{\circ} \pm 3.4^{\circ}$

$\phi_{B s}$

Angular analysis of $B_{s} \rightarrow J / \psi \phi$ to measure $\left(\phi_{B s}, \Delta \Gamma_{B s}\right)$ In SM, $\phi_{B s} \rightarrow-2 \beta_{s}=2 \cdot \arg \left(V_{c s} V_{c b}^{*} / V_{t s} V_{t b}^{*}\right)=-2.1^{\circ} \pm 0.1^{\circ}$

- 2012 updates
- $\mathrm{D} \varnothing\left(8.0 \mathrm{fb}^{-1}\right): \phi_{B S}=-32^{\circ}{ }_{-21^{\circ}}{ }^{\circ}$
- CDF (9.6 fb ${ }^{-1}$): $\phi_{B s} \in\left[-34^{\circ},-7^{\circ}\right]$
- LHCb $J / \psi \phi\left(1 \mathrm{fb}^{-1}\right): \phi_{B s}=-0.1^{\circ} \pm 5.8^{\circ} \pm 1.5^{\circ}$
- LHCb $J / \psi K^{+} K^{-}\left(1 \mathrm{fb}^{-1}\right): \Delta \Gamma_{s}>0$
- here: combine available LHCb and CDF $\left(\phi_{B s}, \Delta \Gamma_{s}\right)$ likelihoods [LHCb: $0.4 \mathrm{fb}^{-1}$ (2011) and $1 \mathrm{fb}^{-1}$ (2012), CDF: $5.2 \mathrm{fb}^{-1}$]

$B-\bar{B}$ system

$$
i \frac{d}{d t}\binom{\left|B_{q}(t)\right\rangle}{\left|\bar{B}_{q}(t)\right\rangle}=\left(M^{q}-\frac{i}{2} \Gamma^{q}\right)\binom{\left|B_{q}(t)\right\rangle}{\left|\bar{B}_{q}(t)\right\rangle}
$$

- Non-hermitian Hamiltonian (only 2 states) but M and Γ hermitian
- Mixing due to non-diagonal terms $M_{12}^{q}-i \Gamma_{12}^{q} / 2$
\Longrightarrow Diagonalisation: physical $\left|B_{H, L}^{q}\right\rangle=p\left|B_{q}\right\rangle \mp q\left|\bar{B}_{q}\right\rangle$ of masses $M_{H, L}^{q}$, widths $\Gamma_{H, L}^{q}$

In terms of $M_{12}^{q},\left|\Gamma_{12}^{q}\right|$ and $\phi_{q}=\arg \left(-\frac{M_{12}^{q}}{\Gamma_{12}^{q}}\right) \quad$ [using $\left.\left|\Gamma_{12}^{q}\right| \ll\left|M_{12}^{q}\right|\right]$

- Mass difference $\Delta m_{q}=M_{H}^{q}-M_{L}^{q} \simeq 2\left|M_{12}^{q}\right|$
- Width difference $\Delta \Gamma_{q}=\Gamma_{L}^{q}-\Gamma_{H}^{q} \simeq 2\left|\Gamma_{12}^{q}\right| \cos \left(\phi_{q}\right)$
- $a_{S L}^{q}=\frac{\Gamma\left(\bar{B}_{q}(t) \rightarrow \ell^{+} \nu X\right)-\Gamma\left(B_{q}(t) \rightarrow \ell^{-} \nu X\right)}{\Gamma\left(\bar{B}_{q}(t) \rightarrow \ell^{+} \nu X\right)+\Gamma\left(B_{q}(t) \rightarrow \ell^{-} \nu X\right)} \simeq \frac{\left|\Gamma_{12}^{q}\right|}{\left|M_{12}^{q}\right|} \sin \phi_{q} \simeq \frac{\Delta \Gamma_{q}}{\Delta m_{q}} \tan \phi_{q}$
- Phase from mixing in time-dep CP analyses

$$
q / p \simeq-M_{12}^{q *} /\left|M_{12}^{q}\right|=-e^{-i \phi_{B_{q}}}
$$

Computing neutral mixing in SM at NLO

Eff. Hamiltonian integrating out heavy W, Z, t

$$
A_{\Delta B=2}=\langle\bar{B}| \mathcal{H}_{\mathrm{eff}}^{\Delta B=2}|B\rangle-\frac{1}{2} \int d^{4} x d^{4} y\langle\bar{B}| T \mathcal{H}_{\mathrm{eff}}^{\Delta B=1}(x) \mathcal{H}_{\mathrm{eff}}^{\Delta B=1}(y)|B\rangle
$$

- M_{12}^{q} dominated by dispersive part of top boxes
[Re[loops]]
- related to heavy virtual states $(t \bar{t} . .$.
- one operator at LO: $Q=\bar{q}_{L} \gamma_{\mu} b_{L} \bar{q}_{L} \gamma^{\mu} b_{L}$
- $\arg \left(M_{12}^{q}\right)$ CKM phase: $\phi_{B_{d}}=2 \beta, \phi_{B_{s}}=-2 \beta_{s}$
- Γ_{12}^{q} dominated by absorptive part of charm boxes
[Im[loops]]
[Beneke et al 1996-03, Ciuchini et al. 03]
- common B and \bar{B} decay channels into final states with $c \bar{C}$ pair
- non local contribution, computed assuming quark-hadron duality and expanded in $1 / m_{b}$ and α_{s} series of local operators
- two operators at LO: Q and $\tilde{Q}_{S}=\bar{q}_{L}^{\alpha} b_{R}^{\beta} \bar{q}_{L}^{\beta} b_{R}^{\alpha}$

Uncertainties

Choice of operators Q and \tilde{Q}_{S} important to compute Γ_{12} depending mainly on Q, taming $1 / m_{b}$-corrections

[Nierste and Lenz 2006]

- B and \tilde{B}_{S} normalised contrib. from Q and \tilde{Q}_{S} (bag params.)
- $m_{b}^{\text {pow }}, B_{1 / m_{b}}$
$1 / m_{b}$-suppressed, unknown contrib.
- μ renormalisation scale $O\left(m_{b}\right)$

$$
\begin{aligned}
\Delta \Gamma_{s} & =f\left[f_{B s}, B, \tilde{B}_{S} ; \mu, m_{b}^{p o w}, B_{1 / m_{b}} \ldots\right] \\
\Delta \Gamma_{s} / \Delta m_{s} & =f\left[\tilde{B}_{S} / B ; B_{1 / m_{b}}, m_{b}^{p o w}, \mu, \bar{m}_{c} \ldots\right] \\
a_{S L}^{s} & =f\left[\tilde{B}_{S} / B ;\left|V_{u b} / V_{c b}\right|, \gamma, \mu, \bar{m}_{c}, B_{1 / m_{b}} \ldots\right]
\end{aligned}
$$

New Physics in $\Delta F=2$

- M_{12} dominated by (virtual) top boxes
[affected by NP, e.g., if heavy new particles in the box]
- Γ_{12} dominated by tree decays into (real) charm states
[affected by NP if changes in (constrained) tree-level decays]
- Tree level (4 diff flavours) processes not affected by New Physics

Model-independent parametrisation under the assumption that NP only changes modulus and phase of M_{12}^{d} and M_{12}^{s}

$$
M_{12}^{q}=\left(M_{12}^{q}\right)_{S M} \times \Delta_{q} \quad \Delta_{q}=\left|\Delta_{q}\right| e^{i \phi_{q}^{\Delta}}
$$

affects $\Delta m_{q}\left(\leftrightarrow\left|\Delta_{q}\right|\right), a_{S L}^{q}\left(\leftrightarrow \Delta_{q}\right), \Delta \Gamma_{q}$ and $\phi_{B_{q}}\left(\leftrightarrow \phi_{q}^{\Delta}\right)$
[A. Lenz et al., Phys.Rev. D83 (2011) 036004 and arXiv:1203.0238]
$\Longrightarrow 3$ scenarios, focus on Sc. I where Δ_{d} and Δ_{s} independent

Fixing the CKM part

Observables not affected by NP, used to fix CKM :

$$
\left|V_{u d}\right|,\left|V_{u s}\right|,\left|V_{u b}\right|,\left|V_{c b}\right|, \gamma \text { and } \gamma(\alpha) \equiv \pi-\alpha-\beta\left(\phi_{B_{d}}\right. \text { cancels) }
$$

Observables affected by NP, used to determine Δ_{d}, Δ_{s}

- Neutral-meson oscillation $\Delta m_{d, s}$
- Lifetime difference $\Delta \Gamma_{d, s}$
- Time-dep asymmetries related to $\phi_{B_{d}}=2 \beta+\phi_{d}^{\Delta}$, $\phi_{B_{s}}=-2 \beta_{s}+\phi_{s}^{\Delta}$
- Semileptonic asymmetries $a_{S L}^{d}, a_{S L}^{S}, A_{S L}$
- $\alpha=\pi-\beta-\gamma-\phi_{d}^{\Delta} / 2$ (interference between decay and mixing)

Some of the theoretical inputs

- $B_{d}, B_{s}, f_{B_{d}}, f_{B_{d}}$ parameters
our average of unquenched 2 and $2+1$ lattice estimates
- Bag parameters for scalar operators from quenched lattice QCD [Becirevic et al. 02, updated expected from several lattice collaborations: preliminary results from HPQCD, ongoing work from MILC and ETMC]

$$
\tilde{B}_{S}^{\prime s}\left(m_{b}\right) / \tilde{B}_{S}^{\prime d}\left(m_{b}\right)=1.00 \pm 0.03 \quad \tilde{B}_{S}^{\prime s}\left(m_{b}\right)=1.40 \pm 0.13
$$

- $1 / m_{b}$ suppressed operators: bag parameters (vacuum insertion approximation) and power correction scale

$$
B_{R i}\left(m_{b}\right)=1.0 \pm 0.5 \quad m_{b}^{\text {pow }}=4.70 \pm 0.10 \mathrm{GeV}
$$

- charm mass from $\sigma\left(e^{+} e^{-} \rightarrow c \bar{c}\right)$ sum rules to 3- and 4-loops
[Steinhauser, Kühn 01-04, Jamin, Hoang 04, Dehnadi et al 11]

$$
\bar{m}_{c}\left(\bar{m}_{c}\right)=1.286 \pm 0.013 \pm 0.040 \mathrm{GeV}
$$

B_{d} mixing (2010)

[Constraints @ 68\% CL]

- Dominant constraint from β and Δm_{d} (2 rings from 2 sol for UT apex)
- Discrepancy from $\operatorname{Br}(B \rightarrow \tau \nu)$ shifts β constraint from real axis
- Disagreement with SM driven in same dir by $\operatorname{Br}(B \rightarrow \tau \nu)$ and $A_{S L}$

2D SM hypothesis $\left(\Delta_{d}=1+i \cdot 0\right): 2.7 \sigma$

B_{d} mixing (2011)

[Constraints @ 68\% CL]

- Dominant constraint from β and Δm_{d}
- Discrepancy from $\operatorname{Br}(B \rightarrow \tau \nu)$ shifts β constraint from real axis
- Disagreement with SM driven in same dir by $\operatorname{Br}(B \rightarrow \tau \nu)$ and $A_{S L}$
- Improvement of γ, and thus contraint from

$$
\alpha=\pi-\beta-\gamma-\phi_{d}^{\Delta} / 2
$$

2D SM hypothesis $\left(\Delta_{d}=1+i \cdot 0\right): 3.2 \sigma$

B_{d} mixing (2012)

[Constraints @ 68\% CL]

- Dominant constraint from β and Δm_{d}
- Discrepancy from $\operatorname{Br}(B \rightarrow \tau \nu)$ shifts β constraint from real axis
- Disagreement with SM driven in same dir by $\operatorname{Br}(B \rightarrow \tau \nu)$ and $A_{S L}$
- New results on γ and $\alpha=\pi-\beta-\gamma-\phi_{d}^{\Delta} / 2$

2D SM hypothesis $\left(\Delta_{d}=1+i \cdot 0\right): 3.0 \sigma$

B_{s} mixing (2010)

[Constraints @ 68\% CL]

- Dominant constraints from Δm_{s} and ϕ_{s}
- Disagreement with SM driven by ϕ_{s} and $A_{S L}$
- In the same direction as for B_{d} mixing

2D SM hypothesis $\left(\Delta_{s}=1+i \cdot 0\right): 2.7 \sigma$

B_{s} mixing (2011)

[Constraints @ 68\% CL]

- Dominant constraints from Δm_{s} and ϕ_{s}
- Disagreement with SM driven by $A_{S L}$ alone
- and in mild disagreement with ϕ_{s}, which favours SM situation

2D SM hypothesis $\left(\Delta_{s}=1+i \cdot 0\right): 0.8 \sigma$

B_{s} mixing (2012)

[Constraints @ 68\% CL]

- Dominant constraints from Δm_{s} and ϕ_{s}
- Disagreement with SM driven by $A_{S L}$ alone
- and in disagreement with ϕ_{s}, which favours SM situation
- but still room for NP

$$
\phi_{s}^{\Delta}=\left(0_{-18}^{+18}\right)^{\circ} \text { at } 3 \sigma
$$

- $\Delta \Gamma_{s}>0$ kills 2nd sol

2D SM hypothesis $\left(\Delta_{s}=1+i \cdot 0\right): 0.0 \sigma$

Prediction for $\phi_{s}(2010)$

$$
\phi_{s}^{\Delta}-2 \beta_{s}=\left(-127_{-17}^{+13}\right)^{\circ} \quad \text { or } \quad\left(-58_{-13}^{+17}\right)^{\circ}
$$

Prediction for $\phi_{s}(2011)$

Prediction for ϕ_{s} (2012)

$$
\phi_{s}^{\Delta}-2 \beta_{s}=\left(-57_{-7}^{+11}\right)^{\circ}
$$

Prediction for $A_{S L}(2012)$

$$
A_{S L}=\left(-15.6_{-3.9}^{+9.2}\right) \cdot 10^{-4}
$$

A few predictions for Scenario I

Quantity	1σ	3σ
$\operatorname{Re}\left(\Delta_{d}\right)$	$0.823_{-0.095}^{+0.143}$	$0.82_{-0.20}^{+0.54}$
$\operatorname{Im}\left(\Delta_{d}\right)$	-0.199 ${ }_{-0.048}^{+0.062}$	-0.20 $0_{-0.19}^{+0.18}$
$\left\|\Delta_{d}\right\|$	$0.866_{-0.11}^{+0.14}$	$0.86{ }_{-0.22}^{+0.55}$
ϕ_{d}^{Δ} [deg]	-13.4 $4_{-2.0}^{+3.3}$	-13.4-6.0 ${ }^{+12.1}$
$\operatorname{Re}\left(\Delta_{s}\right)$	$0.9655_{-0.078}^{+0.133}$	$0.97{ }_{-0.13}^{+0.30}$
$\operatorname{Im}\left(\Delta_{s}\right)$	$-0.00{ }_{-0.10}^{+0.10}$	$-0.00_{-0.32}^{+0.32}$
$\left\|\Delta_{s}\right\|$	0.977 ${ }_{-0.090}^{+0.121}$	$0.988_{-0.15}^{+0.292}$
ϕ_{s}^{Δ} [deg]	$-0.1_{-6.1}^{+6.1}$	$-0_{-18}^{+18 .}$.
$\phi_{d}^{\Delta}+2 \beta$ [deg] (!)	$17_{-13}^{+12 .}$	$17_{-55}{ }^{+40}$.
$\phi_{s}^{\Delta}-2 \beta_{s}$ [deg] (!)	$-56.8 .7 .0$	-57. ${ }_{-20}+6$.
$A_{S L}\left[10^{-4}\right]$ (!)	-15.6-3.9	-16_{-12}^{+19}
$a_{S L}^{s}-a_{S L}^{d}\left[10^{-4}\right]$	$33.6{ }_{-8.2}^{+7.9}$	34_{-32}^{+24}
$a_{S L}^{d}\left[10^{-4}\right]$ (!)	-33.2 ${ }_{-4.1}^{+6.6}$	-33_{-13}^{+25}
$a_{S L}^{s}\left[10^{-4}\right]$ (!)	$0.4{ }_{-6.3}^{+6.4 .}$	0_{-21}^{+20}
$\Delta \Gamma_{d}\left[\mathrm{ps}^{-1}\right]$	$0.00480_{-0.00129}^{+0.00070}$	$0.0048_{-0.0031}^{+0.0020}$
$\Delta \Gamma_{s}\left[\mathrm{ps}^{-1}\right]$	$0.104_{-0.016}^{+0.017}$	$0.104_{-0.041}^{+0.052}$
$B \rightarrow \tau \nu\left[10^{-4}\right](!)$	$1.341_{-0.232}^{+0.064}$	$1.34_{-0.73}^{+0.201}$

(!): prediction made without including measurement

Role of measurements

Pull: deviation between meas. and prediction (w/o meas.) in a model

Quantity	SM	Sc. I	- If given the possibility,
$\phi_{d}^{\Delta}+2 \beta$	2.7σ	2.1 σ	Sc. I tries to
$\phi_{s}^{\Delta}-2 \beta_{S}$	0.3σ	2.7σ	accomodate data by
$A_{S L}$	3.7σ	3.0	modifying ϕ_{s} or $A_{S L}$
$a_{S L}^{d}$	0.9σ	0.3σ	- Sc. I not able to
$a_{S L}^{s}$	0.2σ	0.2σ	accomodate
$\Delta \Gamma_{s}$	0.0σ	0.4σ	$\phi_{s}^{\Delta}-2 \beta_{S}$ and $A_{S L}$ at
$\operatorname{Br}(B \rightarrow \tau \nu)$	2.8σ	1.1 σ	the same time
$\operatorname{Br}(B \rightarrow \tau \nu), A_{S L}$	4.3σ	2.8σ	- but can accomodate
$\phi_{s}^{\Delta}-2 \beta_{s}, A_{S L}$	3.3σ	2.7σ	one of the two and
$\operatorname{Br}(B \rightarrow \tau \nu), \phi_{s}^{\Delta}-2 \beta_{s}, A_{S L}$	4.0σ	2.4σ	$\operatorname{Br}(B \rightarrow \tau \nu)$

4D SM hypothesis $\left(\Delta_{d}=\Delta_{s}=1+i \cdot 0\right): 2.4 \sigma$

New physics also in $\Gamma_{12}^{s} ?$

$$
\Delta m_{s}=2\left|M_{12}^{s}\right| \quad \Delta \Gamma_{s}=2\left|\Gamma_{12}^{s}\right| \cos \left(\phi_{s}\right) \quad a_{S L}^{s}=\frac{\Gamma_{12}^{s}}{M_{12}^{s}} \sin \left(\phi_{s}\right)
$$

Could solve $A_{S L}$, but $\Delta \Gamma_{s}$ deviates w.r.t. SM and $\Delta B=1$ modified

$\Gamma_{12}^{q}, M_{12}^{q}$

Inclusive

$\tau\left(B_{s}\right) / \tau\left(B_{d}\right)$

Change in Cabibbo Favoured $b \rightarrow c \bar{c} s$ or new decay mode affects

- Inclusive B_{d} and B^{+}quantities
- Γ_{s} and thus $\tau\left(B_{s}\right) / \tau\left(B_{d}\right)$
- M_{12}^{s} (same box diagrams with same particles as Γ_{12}^{s}), thus Δm_{s}
(all in agreement with SM)
No model-independent way of connecting $\Gamma_{12}^{s}, \Gamma_{11}^{s}, M_{12}^{s}$

New physics also in Γ_{12}^{d} ?

$$
\Delta m_{d}=2\left|M_{12}^{d}\right| \quad \Delta \Gamma_{d}=2\left|\Gamma_{12}^{d}\right| \cos \left(\phi_{d}\right) \quad a_{S L}^{d}=\frac{\Gamma_{12}^{d}}{M_{12}^{d}} \sin \left(\phi_{d}\right)
$$

Could solve $A_{S L}$, with deviation of $\Delta \Gamma_{d}$ w.r.t. SM (but not measured)

$\Gamma_{12}^{q}, M_{12}^{q}$

Inclusive

$\tau\left(B_{s}\right) / \tau\left(B_{d}\right)$

Change in Cabibbo Suppressed $b \rightarrow c \bar{c} d$ modes would

- barely affect inclusive B_{d} and B^{+}quantities
- barely affect Γ_{d} and thus $\tau\left(B_{s}\right) / \tau\left(B_{d}\right)$
- impact M_{12}^{d} (same box diag with same particles as Γ_{12}^{d}), thus Δm_{d} \Longrightarrow evaded via chirality suppression (?)
NP in $b \rightarrow c \bar{c} d$ interesting: to be checked through $a_{d}^{S L}$, non-lept ?

A fourth scenario

Extending Sc. I to allow NP in Γ_{12}^{q} parametrised by

$$
\delta_{q}=\frac{\Gamma_{12}^{q} / M_{12}^{q}}{\operatorname{Re}\left(\Gamma_{12}^{S M, q} / M_{12}^{S M, q}\right)} \quad \operatorname{Re} \delta_{q}, \operatorname{Im} \delta_{q} \leftrightarrow \frac{\Delta \Gamma_{q} / \Delta m_{q}}{\Delta \Gamma_{q}^{S M} / \Delta M_{q}^{S M}}, \frac{-a_{S L}^{q}}{\Delta \Gamma_{q}^{S M} / \Delta M_{q}^{S M}}
$$

8 D SM hyp $\left(\Delta_{d, s}=1+i \cdot 0, \delta_{d}=1+0.097 i, \delta_{s}=1-0.0057 i\right): 2.6 \sigma$ Sc. IV with $\delta_{s}=\delta_{s}^{S M}$ needs "too" large $\operatorname{Im} \delta_{d}=1.60_{-0.76}^{+1.02}\left[a_{S L}^{d} \simeq A_{S L}\right]$

Conclusions

Interesting recent data concerning neutral meson mixing

- Discrepancy in SM for $\operatorname{Br}(B \rightarrow \tau \nu)$ vs $\sin 2 \beta$ [new $B \rightarrow \tau \nu$ (Belle)]
- Discrepancy in SM for $A_{S L}$
- $\left(\beta_{s}, \Delta \Gamma_{s}\right)$ [separate $a_{S L}^{d}$ and $a_{S L}^{s}$ (LHCb)]
[more from LHCb ?]
Scenarios of NP in $\Delta F=2$
- Still room for sizeable NP contribution in B_{s} system at 3σ
- Conflict between current $A_{S L}$ and ϕ_{s} not solved by NP in M_{12} only
- Could be solved by NP in Γ_{12}^{q}, however related also to $\Delta F=1$
- NP in Γ_{12}^{s} affects other SM-compatible observables in mixing $\left(\Delta m_{s}, \Delta \Gamma_{s}, \Gamma_{s}\right)$ as well as in $b \rightarrow s$ decays
- NP in Γ_{12}^{d} more interesting since Cabibbo suppression helps for many constraints, to be checked with $a_{S L}^{d}$ and non-leptonic decays

More

CKM
 fitter

CKMFITTER

CKMfitter global fit results as of Moriond 12:

- Woffenstein parameters - UT angles and sides - UTs, angle and apex - CKM elements - Theory parameters - Rave branching fractions $(\mathrm{B} \rightarrow\|\mathrm{N}, \mathrm{B} \rightarrow\|)$			
For a more extensive discussion, please read the summary of inputs and resuls,			
Wollenstein parameters and Jariskog invariant:			
Observable	Central $\pm 1 \sigma$	$\pm 2 \sigma$	± 30
A	0.812 [+0.015-0.022]	$0.812[+0.025-0.031]$	0.812 [$+0.035-0.0399]$
	$\begin{aligned} & 0.22543[+0.00059 \text { - } \\ & 0.00095] \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2254[+0.0010- \\ & 0.0019] \end{aligned}$	$\begin{aligned} & 0.2254[+0.0013- \\ & 0.0027] \\ & \hline \end{aligned}$
pbar	$0.145[+0.027-0.027]$	$0.145[+0.046-0.040]$	0.145[+0.057-0.050]
nbar	0.343 [+0.015-0.015]	0.343 [$+0.030-0.026]$	0.343 [+0.044-0.035]
$\sqrt{110^{-6} 9}$	[2.96[+0.18-0.14]	[2.96[+0.32-0.99]	[2.96[+0.46-0.23]

Observable	$\underset{a}{\text { Central } \pm 1}$	± 20	± 30
$\sin 2 \pi$	$\begin{aligned} & -0.04[+0.15 \\ & -0.15] \end{aligned}$	-0.04 [$+0.222-0.241$	-0.04 [+0.27-0.30]
$\sin 2 a$ (meas. not in the fit)	$\begin{aligned} & -0.206 \\ & {[+0.195-} \\ & 0.074] \end{aligned}$	-0.21 [$+0.39-0.12]$	-0.21 [+0.44-0.17]
$\sin 2 \beta$	$\left[\begin{array}{l} 0.691 \\ {[+0.020-} \\ 0.020] \end{array}\right.$	0.6911 [$+0.040-0.034]$	0.691 [$+0.060-0.047]$
$\begin{aligned} & \sin 2 \beta \text { (mass. } \\ & \text { not in the fit) } \end{aligned}$	$\begin{aligned} & 0.820 \\ & {\left[\begin{array}{l} {[-0.024-} \\ 0.028] \end{array}\right.} \\ & \hline \end{aligned}$	0.820 [$+0.037-0.088]$	0.820 [+0.049-0.159]
a [deg]	$\left[\begin{array}{l} 91.1[+4.3- \\ 4.3] \end{array}\right.$	91.1 [+7.1-6.2]	91.1 [$+8.8 .8-7.8$]
a [deg] (meas. not in the fit)	$\begin{aligned} & 95.9[+2.2- \\ & 5.6] \end{aligned}$	96.9 [+3.6 -10.9]	96.9 [$+5.0-12.8]$
$\begin{aligned} & \begin{array}{l} \text { a [deg] [(dir. } \\ \text { meas.) } \end{array} \\ & \hline \hline \end{aligned}$	$\begin{aligned} & 88.7[+4.6- \\ & 4.2] \\ & = \end{aligned}$	$\begin{aligned} & 68.7[+9.4-8.5] \mid 178.4[+2.0- \\ & 5.7]\|-1.8\|+7.1-5.5] \\ & \hline \end{aligned}$	$\begin{aligned} & 89[+21-13]\|\mid 178.4[+2.4- \\ & 14.0] \mid 1-2[+14-14] \end{aligned}$
β [deg]	$\begin{aligned} & 21.85[+0.80 \\ & -0.77] \\ & \hline \end{aligned}$	$21.9[+1.6$-1.3]	21.9[+2.5-1.8]
$\begin{aligned} & \begin{array}{l} \text { B (deg] (meas } \\ \text { not in the fit) } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 27.5 \text { [}+1.2-1 . \\ & 1.4)^{2} \\ & \hline \end{aligned}$	$27.5[+1.9-3.9]$	$27.5[+2.6-6.8$]
$\begin{aligned} & \begin{array}{l} \text { [deg] (dir. } \\ \text { mess.) } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 21.38[+0.79 \\ & -0.77] \end{aligned}$	$21.4[+1.6$-1.5]	21.4 [+2.4-2.3]
V [deg]	$\begin{aligned} & 67.1[+4.3- \\ & 4.3] \end{aligned}$	67.1 [+6.1 -7.0]	87.1 [+7.7 .6 -8.6]
$\mathrm{V} \text { [deg] (meas. }$ $\text { not in the } \mathrm{fit})$	$\left[\begin{array}{l} 67.2[+4.4- \\ 4.6] \end{array}\right.$	87.2[+6.1-7.2]	87.2 [+7.6 -8.7]

More plots and results available on http://ckmfitter.in2p3.fr

J. Charles, Theory

O. Deschamps, LHCb SDG, Theory
R. Itoh, Belle
H. Lacker, ATLAS/BaBar
A. Menzel, ATLAS
S. Monteil, LHCb
V. Niess, LHCb
J. Ocariz, ATLAS/BaBar
J. Orloff, Theory
S. T'Jampens, LHCb
V. Tisserand, BaBar/LHCb
K. Trabelsi, Belle

Back-up

- LHCb results for $C(\pi \pi)$ and $S(\pi \pi)$ presented at Moriond 2012
- Belle results for $\operatorname{Br}(\pi \pi)$ and $\operatorname{Br}\left(\pi^{+} \pi^{0}\right)$ presented at EPS2011

Summer 11

$$
\begin{gathered}
\alpha[\mathrm{comb}]=\left(89.0_{-4.2}^{+4.4}\right)^{\circ} \\
\alpha[\mathrm{fit}]=\left(90.9_{-4.1}^{+3+5}\right)^{\circ}
\end{gathered}
$$

Winter 12
$\alpha[$ comb $]=\left(88.7_{-4.2}^{+4.6}\right)^{\circ}$
$\alpha[\mathrm{fit}]=\left(91.1_{-4.3}^{+4.3}\right)^{\circ}$

Three discrepancies in 2010

- $B \rightarrow \tau \nu$ vs $\sin 2 \beta$
- β_{S} from $B_{S} \rightarrow J / \psi \phi$ and $\tau_{F S}$ (null test)
- $A_{S L}$ (null test)

Linear comb of $a_{S L}^{d}$ and $a_{S L}^{S}$
[pre-ICHEP10 $\left(\beta_{s}, \Delta \Gamma_{s}\right)$, since no CDF/DØ updated average]

Two discrepancies in 2011

- $B \rightarrow \tau \nu$ vs $\sin 2 \beta$
- β_{S} from $B_{s} \rightarrow J / \psi \phi$ and $\tau_{F S}$ (null test)
- $A_{S L}$ (null test)
$\left[\operatorname{CDF}\left(5.2 \mathrm{fb}^{-1}\right) / \mathrm{LHCb}\left(0.4 \mathrm{fb}^{-1}\right)\left(\beta_{s}, \Delta \Gamma_{s}\right)\right.$ average from $\left.B_{s} \rightarrow J / \psi \phi\right]$

Two discrepancies in 2012

$\left(\Delta \Gamma_{s}, \phi_{s}\right)$

Linear comb of $a_{S L}^{d}$ and $a_{S L}^{s}$

- $B \rightarrow \tau \nu$ vs $\sin 2 \beta$
- β_{S} from $B_{s} \rightarrow J / \psi \phi$ and $\tau_{F S}$ (null test)
- $A_{S L}$ (null test)
$\left[\operatorname{CDF}\left(5.2 \mathrm{fb}^{-1}\right) / \mathrm{LHCb}\left(1 \mathrm{fb}^{-1}\right)\left(\beta_{s}, \Delta \Gamma_{s}\right)\right.$ average from $\left.B_{s} \rightarrow J / \psi \phi\right]$

Measurement of $\Delta \Gamma_{s}>0$

Two solutions for $\left(\phi_{s}, \Delta \Gamma_{s}\right)$ from $B_{s} \rightarrow J \Psi \phi$

- Sol I: $\phi_{s} \simeq 0,\left|B_{s L(H)}\right\rangle$ almost aligned with $C P=+1(-1), \Delta \Gamma_{s}>0$
- Sol II: $\phi_{s} \simeq \pi,\left|B_{S L(H)}\right\rangle$ almost aligned with $C P=-1(+1), \Delta \Gamma_{s}<0$

$$
B_{s}^{0} \rightarrow J / \Psi K^{+} K^{-}
$$

[LHCb 12]

- P-wave final state superposition of $C P=+1$ and $C P=-1$
- S-wave final state $C P=-1$
- Interference between S - and P-wave, with $\delta_{S}-\delta_{P}$ expected to decrease rapidly around ϕ
\Longrightarrow Sol I is preferred

Tagged vs untagged analyses for B_{s} decays

- Theoretical branching ratios computed at $t=0$ (no B_{s} mixing)
- Untagged analyses with single decay time $t \in[0, \infty[$
[LHCb]

$$
\begin{gathered}
\left\langle\Gamma_{\text {untagged }}(t)\right\rangle_{C P}=\frac{1}{2}\left[\Gamma_{\text {untagged }}(B(t) \rightarrow f)+\Gamma_{\text {untagged }}(\bar{B}(t) \rightarrow f)\right] \\
\propto \frac{\left|A_{f}\right|^{2}+\left|\bar{A}_{f}\right|^{2}}{2} e^{-\Gamma t} \times\left[\cosh \frac{\Delta \Gamma t}{2}+A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma t}{2}\right]
\end{gathered}
$$

- Entangled pairs with 2 decay times $t_{C P}$ and $t_{\text {tag }}$
[B-factories]

$$
\begin{aligned}
\Gamma_{\text {tagged }}(B(t) & \rightarrow f) \text { from } \Gamma_{\text {untagged }}(B(t) \rightarrow f) \text { with } \\
\quad \exp (-\Gamma t) & \left.\rightarrow \exp (-\Gamma|t|) \quad t=t_{C P}-t_{\text {tag }} \in\right]-\infty, \infty[
\end{aligned}
$$

[BaBar Physics Book, SDG et al 11, De Bruyn et al 12]

$$
\begin{aligned}
& \int_{-\infty}^{+\infty}\left\langle\Gamma_{\text {tagged }}(B(t) \rightarrow f)\right\rangle_{C P}=\operatorname{Br}\left(B_{s} \rightarrow f\right)_{\text {theo }} \frac{1}{1-y_{s}^{2}} \quad y_{s}=\frac{\Delta \Gamma_{s}}{2 \Gamma_{s}} \\
& \int_{0}^{\infty}\left\langle\Gamma_{\text {untagged }}(B(t) \rightarrow f)_{C P}\right\rangle=\operatorname{Br}\left(B_{s} \rightarrow f\right)_{\text {theo }} \frac{1+y_{s} A_{\Delta \Gamma}}{1-y_{s}^{2}}
\end{aligned}
$$

What $\operatorname{Br}\left(B_{s} \rightarrow f\right)$ means

- Theoretically: CP-average at fixed $t=0$
- Experimentally: CP-average integrated over t (including mixing)
$O\left(\Delta \Gamma_{s} / \Gamma_{s}\right)$ difference
[SDG et al 11, De Bruyn et al 12]
- Tagged analyses with entangled pairs @ B-factories

$$
\operatorname{Br}\left(B_{s} \rightarrow f\right)_{\text {theo }}=\left(1-y_{s}^{2}\right) \operatorname{Br}\left(B_{s} \rightarrow f\right)_{\text {exp,tag }} \quad y_{s}=\frac{\Delta \Gamma_{s}}{2 \Gamma_{s}}
$$

- Untagged analyses @ LHCb

$$
\begin{aligned}
& \operatorname{Br}\left(B_{s} \rightarrow f\right)_{\text {theo }}=\frac{1-y_{s}^{2}}{1+A_{\Delta \Gamma}^{f} y_{s}} \operatorname{Br}\left(B_{s} \rightarrow f\right)_{\text {exp,untag }} \\
& \Gamma\left(B_{s}(t) \rightarrow f\right)+\Gamma\left(\bar{B}_{s}(t) \rightarrow f\right)=e^{-\Gamma_{H} t / 2}\left(1+A_{\Delta \Gamma}^{f}\right)+e^{-\Gamma_{L} t / 2}\left(1-A_{\Delta \Gamma}^{f}\right)
\end{aligned}
$$

For SM $B_{s} \rightarrow \mu \mu, A_{\Delta \Gamma}^{f}=1$ enhances the effect
[De Bruyn et al 12]

$$
\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)_{\text {theo }} \simeq 0.91 \cdot \operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)_{\text {exp,untag }}
$$

bringing exp. bounds on $\operatorname{Br}\left(B_{s} \rightarrow \mu \mu\right)$ closer to theoretical predictions

Three different NP scenarios for eff. Hamiltonian

- Minimal Flavour Violat. with small bottom Yukawa coupling (sc II)

$$
H^{|\Delta B|=2}=\left(V_{t q}^{*} V_{t b}\right)^{2} C Q+\text { h.c. } \quad C \text { real }
$$

$\Delta_{d}=\Delta_{s}$ real, related to K-meson mixing

- MFV with large bottom Yukawa coupling (sc III)

$$
H^{|\Delta B|=2}=\left(V_{t q}^{*} V_{t b}\right)^{2}\left[C Q+C_{S} Q_{S}+\tilde{C}_{S} \tilde{Q}_{S}\right]+\text { h.c. }
$$

$\Delta_{d}=\Delta_{s}$ complex, unrelated to K-meson mixing

- Non Minimal Flavour Violation (sc I)

$$
H^{|\Delta B|=2}=\left(V_{t q}^{*} V_{t b}\right)^{2} C_{q} Q+\text { h.c. }
$$

Δ_{d}, Δ_{s} complex independent, unrelated to K-meson mixing
\Longrightarrow Will focus mainly on the latter scenario in the following

Scenario II (2012)

$$
\Delta=0.920_{-0.039}^{+0.120}
$$

Scenario III (in 2010)

[Constraints @ 68\% CL]

- Minimal Flavour Violation with large bottom Yukawa coupling
- $\Delta_{d}=\Delta_{s}=\Delta$ complex
- All three discrepancies in the same direction

2D SM hypothesis $(\Delta=1+i \cdot 0): 3.3 \sigma$

Scenario III (in 2011)

[Constraints @ 68\% CL]

- Minimal Flavour Violation with large bottom Yukawa coupling
- $\Delta_{d}=\Delta_{s}=\Delta$ complex
- discrepancy among data more acute in this scenario: $A_{S L}$ in one direction, $B_{s} \rightarrow J / \psi \phi$ in another, with $\sin (2 \beta)$ standing in the middle

2D SM hypothesis $(\Delta=1+i \cdot 0): 2.7 \sigma$

Scenario III (in 2012)

[Constraints @ 68\% CL]

- Minimal Flavour Violation with large bottom Yukawa coupling
- $\Delta_{d}=\Delta_{s}=\Delta$ complex
- discrepancy among data more acute in this scenario: $A_{S L}$ in one direction, $B_{s} \rightarrow J / \psi \phi$ in another, with $\sin (2 \beta)$ standing in the middle

2D SM hypothesis $(\Delta=1+i \cdot 0): 2.1 \sigma$

Measurement of $\Delta \Gamma_{s}>0$

Two solutions for $\left(\phi_{s}, \Delta \Gamma_{s}\right)$ from $B_{s} \rightarrow J \Psi \phi$

- Sol I: $\phi_{s} \simeq 0,\left|B_{s L(H)}\right\rangle$ almost aligned with $C P=+1(-1), \Delta \Gamma_{s}>0$
- Sol II: $\phi_{s} \simeq \pi,\left|B_{S L(H)}\right\rangle$ almost aligned with $C P=-1(+1), \Delta \Gamma_{s}<0$

$$
B_{s}^{0} \rightarrow J / \Psi K^{+} K^{-}
$$

[LHCb 12]

- P-wave final state superposition of $C P=+1$ and $C P=-1$
- S-wave final state $C P=-1$
- Interference between S - and P-wave, with $\delta_{S}-\delta_{P}$ expected to decrease rapidly around ϕ
\Longrightarrow Sol I is preferred

Example of $N P$ in Γ_{12}^{s}

- $\tau \bar{\tau}$ intermediate states due to $\mathrm{NP}(\bar{b} s)(\bar{\tau} \tau)$ operators, chirality suppression to tame contribution to M_{12}^{S}
- Eff. Hamiltonian analysis of $b \rightarrow \boldsymbol{s} \gamma, b \rightarrow s \ell^{+} \ell^{-}, b \rightarrow \boldsymbol{s} \gamma \gamma$ room for scalar or vector ops. able to enhance $\left|\Gamma_{12}^{s}\right|$ by $30-40 \%$

[Haisch, Bobeth 11]
- But M_{12}^{s} and Γ_{12}^{s} correlated in specific models (e.g., $S U(2)$ singlet scalar leptoquark) making it difficult to accomodate all data
- General problem for $\left(M_{12}^{s}\right)_{N P} /\left(\Gamma_{12}^{s}\right)_{N P}$ real, linking $\Delta m_{s}, \Delta \Gamma_{s}, a_{S L}^{s}$ [weakest Δm_{s} constraint if light NP scale or GIM-like mechanism]

Lattice : Averages

Consistent averages of lattice results for hadronic quantities needed
$\Longrightarrow \quad$ we perform our own averages

- Collecting lattice results
- only unquenched results with 2 or 2+1 dynamical fermions
- papers and proceedings (but not preliminary results)
- Splitting error estimates into stat and syst
- Stat : essentially related to size of gauge conf
- Syst : fermion action, $a \rightarrow 0, L \rightarrow \infty$, mass extrapolations... added linearly when error budget available
- Potential problems
- proceedings not always followed by peer-reviewed papers
- some syst estimates controversial within lattice community (staggered action, extrapolations...)

Lattice : Averaging procedure

"Educated Rfit" used to combine the results, with different treament of statistical and systematic errors

- product of (Gaussian + Rfit) likelihoods for central value
- product of Gaussian (stat) likelihoods for stat uncertainty
- syst uncertainty of the combination
= the one of the most precise method
Conservative, algorithmic procedure with internal logic for syst
- the present state of art cannot allow us to reach a better theoretical accuracy than the best of all estimates (combining 2 methods with similar syst does not reduce the intrinsic uncertainty encoded as a systematic)
- best estimate should not be penalized by less precise methods (opposed, e.g., to combined syst = dispersion of central values)

Lattice : Our average for $B_{K}^{\overline{M S S}}(2 \mathrm{GeV})$

Reference	N_{f}	Mean	Stat	Syst
JLQCD08	2	0.537	0.004	0.072
ETMC10	2	0.532	0.019	0.026
HPQCD/UKQCD06	$2+1$	0.618	0.018	0.179
ALVdW09	$2+1$	0.527	0.006	0.035
RBC/UKQCD10	$2+1$	0.549	0.005	0.038
SWME11	$2+1$	0.530	0.003	0.052
Our average		0.534	0.002	0.026
Our average for \hat{B}_{K}		0.732	0.003	0.036

- Other values proposed: 0.767 ± 0.010 (latticeaverages.org) 0.738 ± 0.020 (FLAG), 0.731 ± 0.035 (UTfit)...
- Method used for B_{d} and B_{s} decay constants, bag parameters, form factors. . .

Lattice : Our average for \hat{B}_{s}

Reference	N_{f}	Mean	Stat	Syst
JLQCD03	2	1.299	0.034	${ }_{-0.087}^{+0.122}$
HPQCD06	$2+1$	1.187	0.086	0.108
HPQCD09	$2+1$	1.322	0.040	0.035
Our average		1.291	0.025	0.035

Consistency of the KM mechanism

Validity of Kobayashi-Maskawa picture of $C P$ violation

$V_{u b}$ inclusive and exclusive

Two ways of getting $\left|V_{u b}\right|$:

- Inclusive : $b \rightarrow u \ell \nu+$ Operator Product Expansion
- Exclusive : $B \rightarrow \pi \ell \nu+$ Form factors
$\left|V_{u b}\right|_{\text {inc }}=4.32_{-0.24}^{+0.21} \pm 0.45$
$\left|V_{u b}\right|_{\text {exc }}=3.51 \pm 0.10 \pm 0.46$
$\left|V_{u b}\right|_{\text {ave }}=3.92 \pm 0.09 \pm 0.45$
with all values $\times 10^{-3}$

Discrepancy depends on statistical treatment:

- discrepancy solved once systematics combined in Educated Rfit
- same problem for $\left|V_{c b}\right|$

Interesting penguin-mediated decays

Penguin-mediated decays provide way to check "NP in $\Delta F=2$ " hyp.
[SDG, Matias, Virto 2011]
Consider tree and penguin decomposition of $B_{Q} \rightarrow K^{0} \bar{K}^{0}(Q=d$, s)
$\bar{A} \equiv A\left(\bar{B}_{Q} \rightarrow K^{0} \bar{K}^{0}\right)=V_{u b} V_{u q}^{*} T+V_{c b} V_{c q}^{*} P$
$A \equiv A\left(B_{Q} \rightarrow K^{0} \bar{K}^{0}\right)=V_{u b}^{*} V_{u q} T+V_{c b}^{*} V_{c q} P$

$$
b \rightarrow q(=Q)
$$

Only penguin diagrams no contrib. from W-exch. $\left(O_{1,2}\right)$
Difference between tree and penguin from u, c, t quarks in loop
$\Longrightarrow \delta=T-P$ dominated by short-distance physics computed fairly accurately within QCD factorisation (exp. in $\alpha_{s}, 1 / m_{b}$)

$$
\begin{aligned}
\delta\left(B_{d} \rightarrow K^{0} \bar{K}^{0}\right) & =(1.09 \pm 0.43) \cdot 10^{-7}+i(-3.02 \pm 0.97) \cdot 10^{-7} \mathrm{GeV} \\
\delta\left(B_{s} \rightarrow K^{0} \bar{K}^{0}\right) & =(1.03 \pm 0.41) \cdot 10^{-7}+i(-2.85 \pm 0.93) \cdot 10^{-7} \mathrm{GeV}
\end{aligned}
$$

Various penguin-mediated modes of interest

Channel	$\|\delta\|\left(10^{-7} \mathrm{GeV}\right)$
$B_{d} \rightarrow K K$	(3.23 ± 1.16)
$B_{s} \rightarrow \bar{K} K$	(3.05 ± 1.11)
$B_{d} \rightarrow K \phi$	(2.32 ± 1.00)
$B_{d} \rightarrow K \bar{K}^{*}$	(2.29 ± 0.93)
$B_{d} \rightarrow K^{*} \bar{K}$	(0.41 ± 0.60)
$B_{s} \rightarrow \bar{K} K^{*}$	(2.16 ± 0.89)
$B_{s} \rightarrow \bar{K}^{*} K$	(0.36 ± 0.53)
$B_{d} \rightarrow K^{*} \bar{K}^{*}$	(1.85 ± 0.93)
$B_{s} \rightarrow \bar{K}^{*} K^{*}$	(1.62 ± 0.81)
$B_{d} \rightarrow K^{*} \phi$	(1.92 ± 1.03)
$B_{s} \rightarrow \phi K^{*}$	(1.87 ± 0.94)
$B_{s} \rightarrow \phi \phi$	(3.86 ± 2.09)

- Penguin modes for B_{Q} decaying through $b \rightarrow q$ transition $(Q, q=d, s)$
- For VV modes, only observables for a longitudinally polarised final states (transverse polar. are $1 / m_{b}$-suppressed, only modelled in QCD factorisation)
- Which requires one to translate measurements into "longitudinal observables" (BR, asymmetries)

Relating $\delta=T-P$ and observables

In terms of $A \equiv A\left(B_{Q} \rightarrow M_{1} M_{2}\right)$ and $\bar{A} \equiv A\left(\bar{B}_{Q} \rightarrow M_{1} M_{2}\right)$

- $b \rightarrow q$ penguin mediated decay into state of CP-parity η_{f}
- $B R=g_{p s}\left(|A|^{2}+|\bar{A}|^{2}\right) / 2$ with $g_{p s}$ phase space factor
- 3 CP asymmetries with $A_{\text {dir }}^{2}+A_{\text {mix }}^{2}+A_{\Delta \Gamma}^{2}=1$

$$
A_{\mathrm{dir}} \equiv \frac{|A|^{2}-|\bar{A}|^{2}}{|A|^{2}+|\bar{A}|^{2}} \quad A_{\text {mix }}+i A_{\Delta \Gamma} \equiv-2 \eta_{f} \frac{e^{-i \phi_{B_{Q}}} A^{*} \bar{A}}{|A|^{2}+|\bar{A}|^{2}}
$$

Assuming NP affects only phase in B_{Q} mixing ($\left.\Delta_{Q}=e^{i \phi_{Q}}\right)$
$2 g_{p s}|\delta|^{2}\left|V_{c b} V_{c q}^{*}\right|^{2} \sin ^{2} \beta_{q}=B R\left(1-\eta_{f} \sin \Phi_{Q q} A_{\text {mix }}+\eta_{f} \cos \Phi_{Q q} A_{\Delta \Gamma}\right)$

- $\Phi_{Q q}=2 \beta_{Q}-2 \beta_{q}+\phi_{Q}^{\mathrm{NP}}$

$$
\left(\phi_{d}^{\mathrm{NP}}=\phi_{d}^{\Delta}, \phi_{s}^{\mathrm{NP}}=-\phi_{s}^{\Delta}\right)
$$

- Constraint on $A_{\text {dir }}$ (near zero) for a solution $\phi_{Q}^{N P}$ to exist
- Determine ϕ_{Q}^{NP} from $|\delta|, B R, A_{\text {mix }}$ (and CKM from tree decays)

Illustration for two measured modes

$$
B_{d} \rightarrow \phi K_{s}
$$

$$
B_{d} \rightarrow \phi K^{*}
$$

- 1σ range for $\left(A_{\text {mix }}, A_{\Delta \Gamma}= \pm \sqrt{1-A_{\text {mix }}^{2}-A_{\text {dir }}^{2}}\right)$ in grey box
- $\phi_{d}^{N P}\left(\phi K_{S}\right)=-0.36 \pm 0.22 \mathrm{rad}, \phi_{d}^{N P}\left(\phi K^{*}\right)=0.33 \pm 0.90 \mathrm{rad}$

