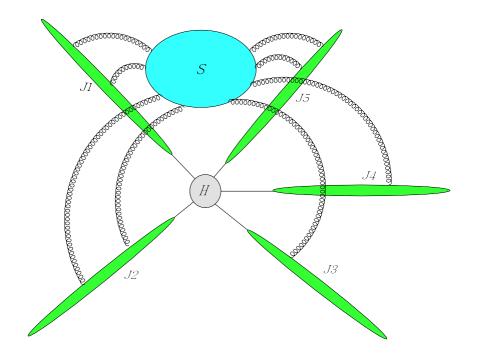
XXIII Rencontres de Physique de La Vallée d'Aoste

Infrared singularities in QCD amplitudes

Einan Gardi (Edinburgh)

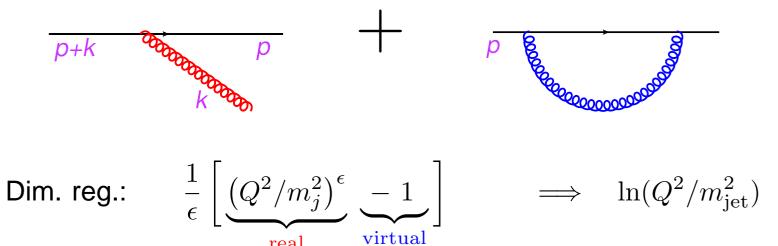


Based on a recent paper with Lorenzo Magnea: Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes,

[arXiv:0901.1091] to appear in JHEP.

Why study infrared singularities?

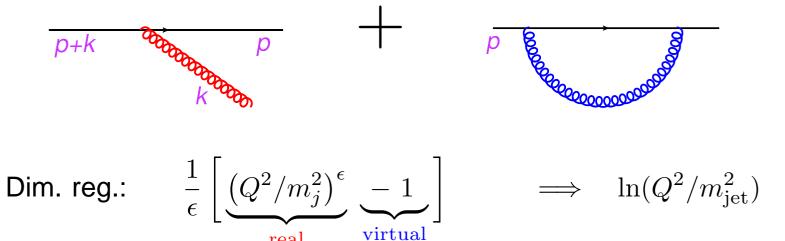
Cross sections are finite only upon summing real and virtual contributions



- cross sections calculations:
 - For general kinematics (and cuts!) phase—space integration must be done numerically. ⇒ need to know the singularities before we start the calculation.
 - It is possible: the singular terms are universal.
 - At one loop we have general algorithms, allowing to determine and subtract the singularities for general kinematics. Example: dipole subtraction [Catani Seymour (1996)].
 - Such are needed in multi-loop calculations.

Why study infrared singularities? (II) resummation

Cross sections are finite only upon summing real and virtual contributions



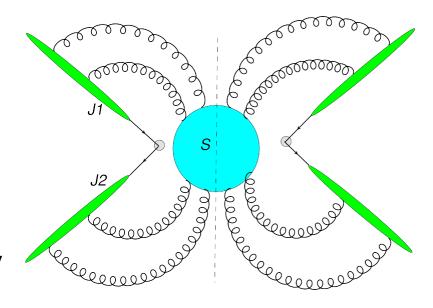
- cross sections calculations.
- Pesummation: The logarithms are often large, and they spoil the convergence of the expansion in α_s .

But, knowing the singularity structure, they can be resummed to all orders: they exponentiate:

- parton showers
- dedicated precision calculations

Factorization in a two-jet process

- Sudakov resummation in inclusive cross sections is well understood
- Soft and Jet sub-processes are incoherent ⇒ factorization
- Each sub-process is associated with
 - a single scale
 - a unique anomalous dimension a function of the running coupling only
 - the overlap: the cusp anomalous dimension γ_K



$$\operatorname{Sud}(m^{2}, N) = \exp \left\{ C_{R} \int_{0}^{1} \frac{dr}{r} \left[\underbrace{(1-r)^{N-1}}_{\text{real}} \underbrace{-1}_{\text{virtual}} \right] R(m^{2}, r) \right\},$$

$$C_{R} \frac{R(m^{2}, r)}{r} = -\frac{1}{r} \left[\int_{r^{2}m^{2}}^{rm^{2}} \frac{dk^{2}}{k^{2}} \gamma_{K} \left(\alpha_{s}(k^{2}) \right) + 2\mathcal{B} \left(\alpha_{s}(rm^{2}) \right) - 2\mathcal{D} \left(\alpha_{s}(r^{2}m^{2}) \right) \right]$$

Resummation: Example 1 — Higgs production at the LHC

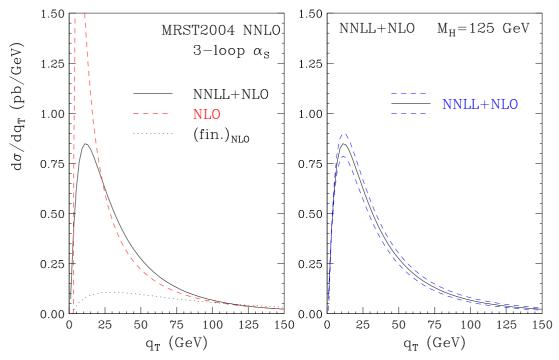
The main Higgs production channel: $gg \longrightarrow H+X$ gluon density \Longrightarrow Higgs production occurs near partonic threshold:

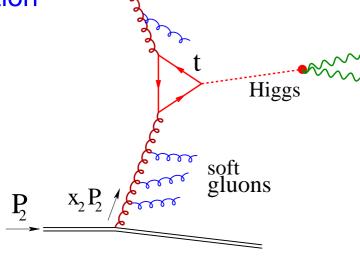
the total energy of gluons in the final state:

$$E_X = (\hat{s} - m_H^2)/2m_H \to 0$$

multiple soft gluon emission --> resummation

Higgs P_T distribution [Bozzi et al. '05]

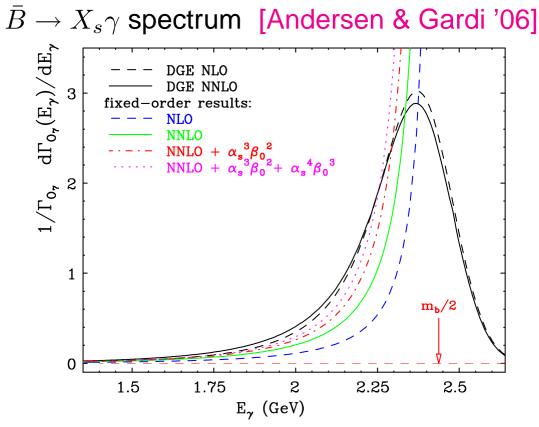




Resummation: Example 2 — precision flavour physics

Inclusive decay spectra in the B factories: $\bar{B} \to X_s \gamma$, $\bar{B} \to X_u l \nu$, . . . — Gambino's talk tomorrow.

Resummation: Korchemsky Sterman; Bauer Fleming Pirjol Stewart (SCET); Lange Neubert Paz; Andersen Gardi, Aglietti et al., ...

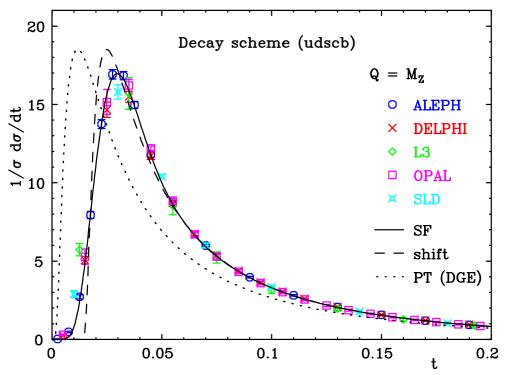


- $\bar{B} \to X_s \gamma$ branching fraction bounds on new physics
- ullet precise determination of $|V_{ub}|$!

Resummation: Example 3 — jet cross sections

Jets in $e^+e^- \rightarrow \text{hadrons}$ — extensively studied at LEP [Catani Trentadue Turnock Webber (92); Korchsmsky Sterman (95); Dokshitzer Webber (95), Dokshitzer Marchesini Webber (96), ...]

thrust distribution [Gardi & Rathsman '02]



- Determination of the strong coupling
- Quantitative understanding hadronization corrections

Factorization of a multi-leg amplitude

Fixed-angle scattering amplitude in a massless gauge theory ($p_i^2 = 0$)

Mueller (81)

Sen (83)

Botts Sterman (89)

Kidonakis Oderda Sterman (98)

Catani (98)

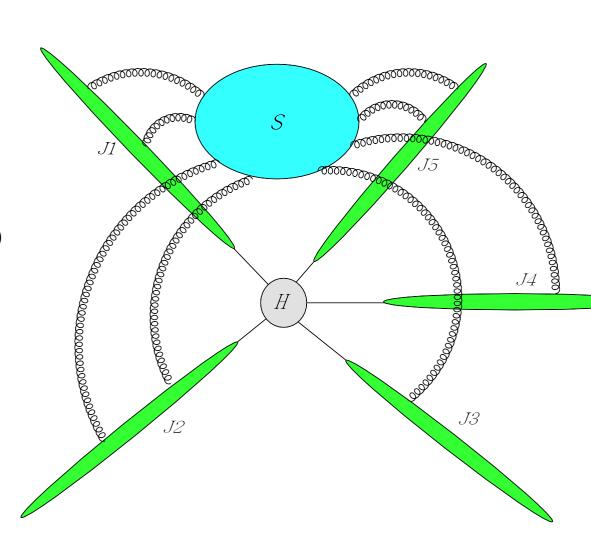
Tejeda-Yeomans Sterman (02)

Kosower (03)

Aybat Dixon Sterman (06)

Becher Neubert (09)

Gardi Magnea (09)



Eikonal approximation

Eikonal Feynman rules

p+k cooooo p

gluon emission in the limit $k \to 0$:

$$\bar{u}(p)\left(-\mathrm{i}g_sT^{(a)}\gamma^{\mu}\right)\frac{i(\not p+\not k+m)}{(p+k)^2-m^2+\mathrm{i}\varepsilon} \longrightarrow \bar{u}(p)g_sT^{(a)}\frac{p^{\mu}}{p\cdot k+\mathrm{i}\varepsilon}$$

- ▶ Valid when all momentum components of k are small (not valid when k is collinear to p but hard)
- Only the direction and the colour charge of the emitter are important. Rescaling invariance: $\beta \propto p$

$$g_s T^{(a)} \frac{p^{\mu}}{p \cdot k + i\varepsilon} = g_s T^{(a)} \frac{\beta^{\mu}}{\beta \cdot k + i\varepsilon}$$

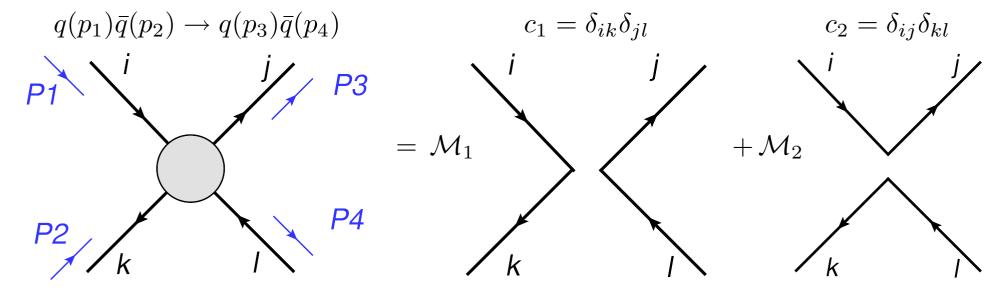
Equivalent to radiation off a Wilson line along the quark trajectory:

$$P\exp\left\{ig_s \int_0^\infty d\lambda \beta \cdot A(\lambda \beta)\right\}$$

Colour flow

Decompose the amplitude in a colour basis (independent colour tensors with the index structure of the external partons):

Example:



In general:

$$\mathcal{M}_{\{\alpha_i\}} (p_i/\mu, \epsilon) = \sum_{L=1}^{n_{\text{rep}}} \mathcal{M}_L (p_i/\mu, \epsilon) (c_L)_{\{\alpha_i\}}$$

 n_{rep} is the number of elements in the basis (number of irreducible representations that can be constructed with the given external particles).

Factorization of a multi-leg amplitude

- All singularities are in S, J_i/\mathcal{J}_i .
- <u>colour:</u>
 - \mathcal{S} is a matrix acting on H
- kinematics:
 - S depends on all velocities;
 - J_i/\mathcal{J}_i depends on a single p_i

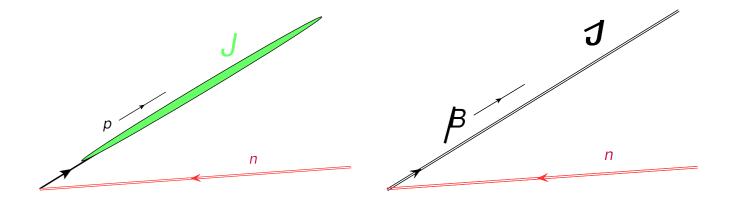
$$\mathcal{M}_{N}\left(p_{i}/\mu, \boldsymbol{\epsilon}\right) = \sum_{L} \mathcal{S}_{NL}\left(\beta_{i} \cdot \beta_{j}, \boldsymbol{\epsilon}\right) H_{L}\left(\frac{2p_{i} \cdot p_{j}}{\mu^{2}}, \frac{(2p_{i} \cdot n_{i})^{2}}{n_{i}^{2}\mu^{2}}\right)$$

$$\times \prod_{i=1}^{n} J_{i}\left(\frac{(2p_{i} \cdot n_{i})^{2}}{n_{i}^{2}\mu^{2}}, \boldsymbol{\epsilon}\right) \middle/ \mathcal{J}_{i}\left(\frac{2(\beta_{i} \cdot n_{i})^{2}}{n_{i}^{2}}, \boldsymbol{\epsilon}\right)$$

To avoid double counting of the soft-collinear region: \mathcal{J}_i removes from J_i its eikonal part, which is already taken into account in \mathcal{S} .

The jet function: definition

- Introduce auxiliary vectors n_i ($n_i^2 \neq 0$) to separate collinear regions. Intuitive picture: jet i contains gluons (k) such that: $k \cdot p_i < n_i \cdot p_i$
- ightharpoonup Define a gauge-invariant jet using a Wilson line along a ray n_i .



partonic jet:
$$\overline{u}(p) J\left(\frac{(2p\cdot n)^2}{n^2\mu^2}, \epsilon\right) = \langle p \,|\, \overline{\psi}(0) \,\Phi_n(0, -\infty) \,|0\rangle$$

where
$$\Phi_n(\lambda_2, \lambda_1) = P \exp \left[ig \int_{\lambda_1}^{\lambda_2} d\lambda \, n \cdot A(\lambda n) \right]$$

eikonal jet:
$$\mathcal{J}\left(\frac{2(\beta\cdot n)^2}{n^2},\epsilon\right) \,=\, \langle 0|\,\Phi_{\beta}(\infty,0)\,\Phi_n(0,-\infty)\,|0\rangle$$

The eikonal jet and the cusp anomaly

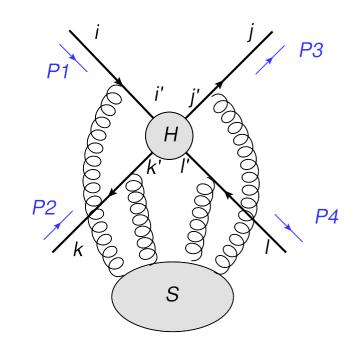
 \mathcal{J} doesn't depend on any kinematic scale; radiative corrections — only due to renormalization.

- ightharpoonup multiplicatively renormalizable \Longrightarrow evolution \Longrightarrow exponentiation.
- Overlapping soft and collinear singularities
 - double poles
 - single poles that carry $(\beta \cdot n)^2/n^2$ dependence, violating classical rescaling symmetry wrt β . This is the cusp anomaly!

$$\mathcal{J}_i\left(\frac{2(\beta\cdot n)^2}{n^2},\epsilon\right) = \exp\left\{\int_0^{\mu^2} \frac{d\lambda^2}{\lambda^2} \left[\frac{1}{4}\delta_{\mathcal{J}_i}\left(\alpha_s(\lambda^2,\epsilon)\right) - \frac{1}{8}\gamma_K^{(i)}\left(\alpha_s(\lambda^2,\epsilon)\right) \ln\left(\frac{2(\beta\cdot n)^2\mu^2}{n^2\lambda^2}\right)\right]\right\}$$

The double poles as well as the entire kinematic dependence of the simple poles are governed by $\gamma_K^{(i)}$! [EG & Magnea (09)]

The soft function S



Definition:

$$(c_N)_{ijkl} S_{NL} (\beta_a \cdot \beta_b, \alpha_s(\mu^2), \epsilon) =$$

$$\sum_{i'j'k'l'} \langle 0 | \Phi_{-\beta_2}^{k,k'}(0,\infty) \Phi_{\beta_1}^{i,i'}(\infty,0) \Phi_{\beta_3}^{j,j'}(0,\infty) \Phi_{-\beta_4}^{l,l'}(\infty,0) | 0 \rangle (c_L)_{i'j'k'l'}$$

multiplicatively renormalizable \Longrightarrow matrix evolution equation:

$$\mu \frac{d}{d\mu} \mathcal{S}_{JL} \left(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon \right) =$$

$$- \sum_{N} \left[\mathbf{\Gamma}_{\mathcal{S}} \right]_{JN} \left(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon \right) \, \mathcal{S}_{NL} \left(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon \right)$$

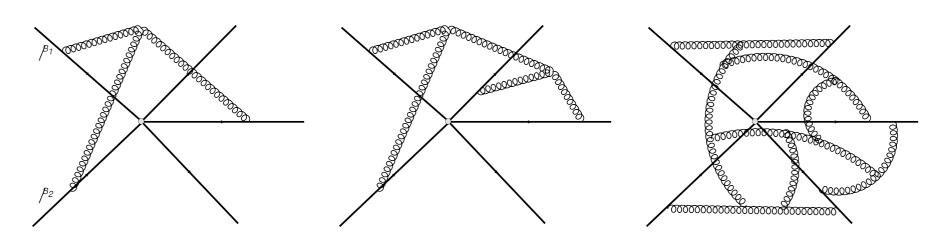
The soft function S

Evolution \Longrightarrow Exponentiation:

$$S\left(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon\right) = P \exp\left\{-\frac{1}{2} \int_0^{\mu^2} \frac{d\lambda^2}{\lambda^2} \mathbf{\Gamma}_{\mathcal{S}}\left(\beta_i \cdot \beta_j, \alpha_s(\lambda^2, \epsilon), \epsilon\right)\right\}$$

 $\Gamma_{\mathcal{S}}$ is a matrix of anomalous dimensions.

• A priori, Γ_S can be very complicated: at each order in α_s it may contain new colour structures and kinematic dependence corresponding to sums of webs:



• In fact $\Gamma^{\mathcal{S}}$ is (much?) simpler.

The soft anomalous dimension $\Gamma_{\mathcal{S}}$ at two loops

Remarkable discovery: [Aybat Dixon Sterman (06)] For any multi-leg amplitude:

$$\mathbf{\Gamma}_{\mathcal{S}}^{(2)} = \frac{K}{2} \mathbf{\Gamma}_{\mathcal{S}}^{(1)}$$

where
$$\Gamma_{\mathcal{S}} = \sum_{n=1}^{\infty} \Gamma_{\mathcal{S}}^{(n)} \left(\frac{\alpha_s(\mu)}{\pi} \right)^n$$
 and $K = \left(\frac{67}{18} - \zeta(2) \right) C_A - \frac{10}{9} T_F N_f$.

so at two loops: no new colour matrices, no new kinematic dependence...

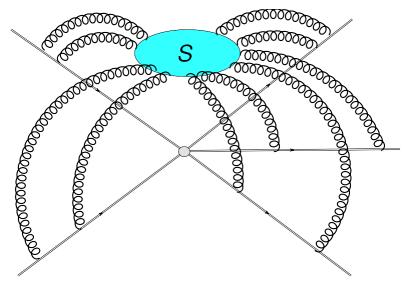
- why?
- where is K coming from?

 This is the famous coefficient of the cusp anomalous dimension $\gamma_K^{(i)}$ [Korchemsky Radyushkin (87), Kodaira Trentadue (82),...]:

$$\gamma_K^{(i)} = 2C_i \frac{\alpha_s}{\pi} + KC_i \left(\frac{\alpha_s}{\pi}\right)^2 + \cdots$$

very suggestive... does this extend to higher orders?

The soft function S



$$\mu \frac{d}{d\mu} \mathcal{S}_{JL} \left(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon \right) =$$

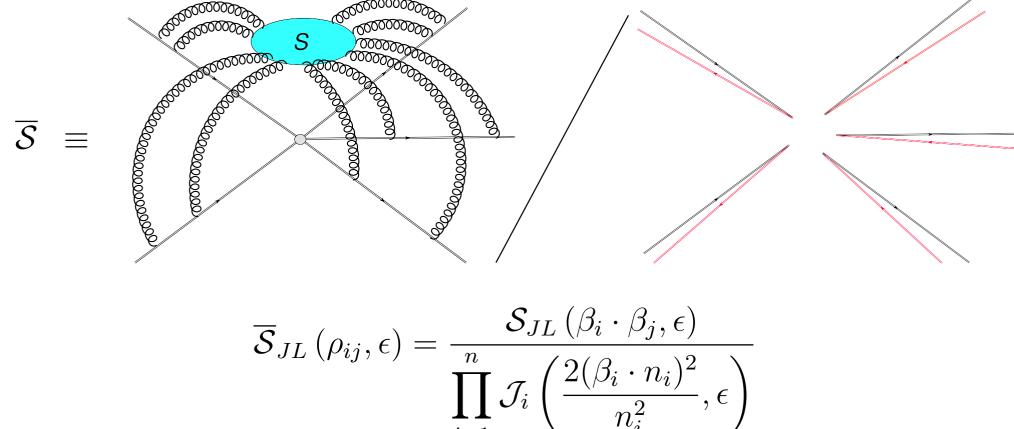
$$- \sum_{N} \left[\mathbf{\Gamma}_{\mathcal{S}} \right]_{JN} \left(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon \right) \mathcal{S}_{NL} \left(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon \right)$$

 $\Gamma_{\mathcal{S}}$ has cusp singularities, and therefore, similarly to $\gamma_{\mathcal{J}}$

- ullet it has poles in ϵ (\mathcal{S} itself has double poles).
- lacksquare it is not invariant with respect to $\beta_i \longrightarrow \kappa_i \beta_i$

Both these issues can be 'fixed' by dividing by appropriate eikonal jets...

The reduced soft function \overline{S}

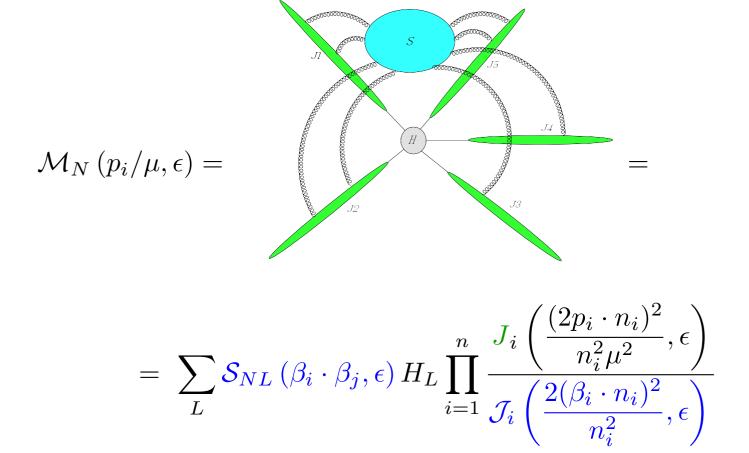


$$\overline{\mathcal{S}}$$
 does not suffer from the cusp anomaly, and must therefore respect rescaling $\beta_i \longrightarrow \kappa_i \beta_i$:

$$\implies \overline{\mathcal{S}}$$
 depends only on

$$\rho_{ij} \equiv \frac{(\beta_i \cdot \beta_j)^2}{\left[2(\beta_i \cdot n_i)^2 / n_i^2\right] \left[2(\beta_j \cdot n_j)^2 / n_j^2\right]}$$

Factorization in terms of the reduced soft function $\overline{\mathcal{S}}$



$$= \sum_{L} \overline{S}_{NL} (\rho_{ij}, \epsilon) H_{L} \prod_{i=1}^{n} J_{i} \left(\frac{(2p_{i} \cdot n_{i})^{2}}{n_{i}^{2} \mu^{2}}, \epsilon \right)$$

- \overline{S} has only single poles due to large-angle soft gluons.
- lacksquare much like $\mathcal M$ cannot depend on the normalization of the velocities!

The equations for $\Gamma^{\overline{S}}$

Factorization + rescaling invariance imply:

 $\Gamma^{\overline{S}}$ for any multi-leg amplitude, in any colour basis, obeys:

$$\sum_{i \neq i} \frac{\partial}{\partial \ln(\rho_{ij})} \mathbf{\Gamma}^{\overline{S}} (\rho_{ij}, \alpha_s) = \frac{1}{4} \gamma_K^{(i)} (\alpha_s) , \qquad \forall i$$

[Gardi Magnea (09)]

This is true to all orders, as well as at strong coupling.

- We have related the soft anomalous dimension of a general multi-leg amplitude to the cusp anomalous dimension.
- Intriguing relation between kinematics and colour.

Solving for $\Gamma^{\overline{S}}$

$$\sum_{j \neq i} \frac{\partial}{\partial \ln(\rho_{ij})} \mathbf{\Gamma}^{\overline{\mathcal{S}}} \left(\rho_{ij}, \alpha_s \right) = \frac{1}{4} \gamma_K^{(i)} \left(\alpha_s \right) , \qquad \forall i$$

Does this set of differential equations have a unique solution?

- For two or three legs yes! Then $\Gamma^{\overline{S}}$ can be written in terms of γ_K , with explicitly determined kinematic dependence.
- For four or more legs no: functions of conformal cross ratios

$$\rho_{ijkl} \equiv \frac{(\beta_i \cdot \beta_j)(\beta_k \cdot \beta_l)}{(\beta_i \cdot \beta_k)(\beta_j \cdot \beta_l)} = \left(\frac{\rho_{ij} \rho_{kl}}{\rho_{ik} \rho_{jl}}\right)^{1/2}$$

satisfy the homogeneous equation.

Yet, it has a simple all-order solution (minimal solution)

The sum-over-dipoles formula

 $\gamma_K^{(i)}$ admits quadratic Casimir scaling ($C_i \equiv T_i \cdot T_i$) (at least to 3 loops):

$$\gamma_K^{(i)} = 2C_i \frac{\alpha_s}{\pi} + KC_i \left(\frac{\alpha_s}{\pi}\right)^2 + K^{(2)}C_i \left(\frac{\alpha_s}{\pi}\right)^3 + \dots = C_i \widehat{\gamma}_K \left(\alpha_s\right) + \underbrace{\widetilde{\gamma}_K^{(i)}\left(\alpha_s\right)}_{\text{Higher Casimirs}}$$

The equations:
$$\sum_{j \neq i} \frac{\partial}{\partial \ln(\rho_{ij})} \Gamma_{\text{Q.C.}}^{\overline{S}} \left(\rho_{ij}, \alpha_s\right) = \frac{1}{4} \mathbf{T}_i \cdot \mathbf{T}_i \, \widehat{\gamma}_K \left(\alpha_s\right) \,, \qquad \forall i$$

are solved by the sum-over-dipoles formula [Gardi Magnea (09)]:

$$\Gamma_{\mathbf{Q.C.}}^{\overline{S}}(\rho_{ij}, \alpha_s) = -\frac{1}{8} \widehat{\gamma}_K(\alpha_s) \sum_{i \neq j} \ln(\rho_{ij}) \, \mathrm{T}_i \cdot \mathrm{T}_j + \frac{1}{2} \widehat{\delta}_{\overline{S}}(\alpha_s) \sum_{i=1}^n \mathrm{T}_i \cdot \mathrm{T}_i,$$

- Generalises the two loop result to all orders (minimal solution!)
- Kinematics and colour are directly correlated.

The same formula was simultaneously proposed by Becher and Neubert.

Conclusions

- Detailed understanding of infrared singularities in QCD amplitudes is needed for cross section calculations and for resummation.
- Recent progress:
 - Remarkable simplicity at two loops now better understood.
 - A completely general constraint was derived based on factorization and rescaling symmetry.
 It relates soft singularities in any amplitude, and any loop order, to the cusp anomalous dimension.
 - An all-loop sum-over-dipoles formula naturally emerges as a minimal solution.
- Several research avenues have opened up. The full beauty of gauge theory amplitudes is not yet revealed...

Beyond the minimal solution

Corrections to the sum-over-dipoles formula are of two kinds

• terms that are induced by higher Casimir contributions to γ_K — they may appear starting at four loops and must satisfy the equations

$$\sum_{j \neq i} \frac{\partial}{\partial \ln(\rho_{ij})} \Gamma_{\mathsf{H.C.}}^{\overline{\mathcal{S}}} \left(\rho_{ij}, \alpha_s\right) = \frac{1}{4} \, \widetilde{\gamma}_K^{(i)} \left(\alpha_s\right) \,, \qquad \forall i,$$

solutions of the homogeneous equations

$$\sum_{j \neq i} \frac{\partial}{\partial \ln(\rho_{ij})} \Gamma^{\overline{S}} (\rho_{ij}, \alpha_s) = 0 \qquad \forall i$$

namely, functions of conformal cross ratios. These may appear starting at three loops, four legs.

Absence of
$$\hat{\mathbf{H}}_{[\mathrm{f}]}^{(2)} = \sum_{j,k,l} \sum_{a,b,c} \mathrm{i} \, f_{abc} \, \mathrm{T}_j^a \mathrm{T}_k^b \mathrm{T}_l^c \, \ln \left(\rho_{ijkl} \right) \, \ln \left(\rho_{iklj} \right) \, \ln \left(\rho_{iljk} \right)$$

at the two-loops $\Gamma^{\overline{\mathcal{S}}}$ supports the minimal solution!