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Classical field theory: Scalar field
• A classical field theory for a massless scalar field is given by

2φ+ λφ3 = j
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Classical field theory: Scalar field
• A classical field theory for a massless scalar field is given by

2φ+ λφ3 = j

• The homogeneous equation can be solved exactly by

φ = µ
(

2

λ

)

1
4

sn(p · x+ θ, i)

being sn an elliptic Jacobi function and µ and θ two constant. This solution
holds provided the following dispersion relation holds

p2 = µ2

√

λ

2

so this solution represents a free massive solution notwithstanding we started
from a massless theory.
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Classical field theory: Scalar field
• A classical field theory for a massless scalar field is given by

2φ+ λφ3 = j

• The homogeneous equation can be solved exactly by

φ = µ
(

2

λ

)

1
4

sn(p · x+ θ, i)

being sn an elliptic Jacobi function and µ and θ two constant. This solution
holds provided the following dispersion relation holds

p2 = µ2

√

λ

2

so this solution represents a free massive solution notwithstanding we started
from a massless theory.

• Mass arises from the nonlinearities when λ is taken to be finite rather than
going to zero.
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Classical field theory: Scalar field
• When there is a current we ask for a solution in the limit λ → ∞ as our aim is to

understand a strong coupling limit. So, we check a solution

φ = κ

∫

d4x′G(x− x′)j(x′) + δφ

being δφ all higher order corrections.
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Classical field theory: Scalar field
• When there is a current we ask for a solution in the limit λ → ∞ as our aim is to

understand a strong coupling limit. So, we check a solution

φ = κ

∫

d4x′G(x− x′)j(x′) + δφ

being δφ all higher order corrections.

• One can prove that this is indeed so provided

δφ = κ2λ

∫

d4x′d4x′′G(x− x′)[G(x′ − x′′)]3j(x′) +O(j(x)3)

with the identification κ = µ, the same of the exact solution, and
2G(x− x′) + λ[G(x− x′)]3 = µ−1δ4(x− x′).
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Classical field theory: Scalar field
• When there is a current we ask for a solution in the limit λ → ∞ as our aim is to

understand a strong coupling limit. So, we check a solution

φ = κ

∫

d4x′G(x− x′)j(x′) + δφ

being δφ all higher order corrections.

• One can prove that this is indeed so provided

δφ = κ2λ

∫

d4x′d4x′′G(x− x′)[G(x′ − x′′)]3j(x′) +O(j(x)3)

with the identification κ = µ, the same of the exact solution, and
2G(x− x′) + λ[G(x− x′)]3 = µ−1δ4(x− x′).

• This implies that the corresponding quantum field theory, in a very strong
coupling limit, takes a Gaussian form and is trivial (triviality of the scalar field
theory in the infrared limit).
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Classical field theory: Scalar field
• When there is a current we ask for a solution in the limit λ → ∞ as our aim is to

understand a strong coupling limit. So, we check a solution

φ = κ

∫

d4x′G(x− x′)j(x′) + δφ

being δφ all higher order corrections.

• One can prove that this is indeed so provided

δφ = κ2λ

∫

d4x′d4x′′G(x− x′)[G(x′ − x′′)]3j(x′) +O(j(x)3)

with the identification κ = µ, the same of the exact solution, and
2G(x− x′) + λ[G(x− x′)]3 = µ−1δ4(x− x′).

• This implies that the corresponding quantum field theory, in a very strong
coupling limit, takes a Gaussian form and is trivial (triviality of the scalar field
theory in the infrared limit).

• All we need now is to find the exact form of the propagator G(x− x′) and we
have completely solved the classical theory for the scalar field in a strong
coupling limit.
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Classical field theory: Scalar field
• In order to solve the equation

2G(x− x′) + λ[G(x− x′)]3 = µ−1δ4(x− x′)

we can start from the d = 1 + 0 case ∂2t G0(t− t′) + λ[G0(t− t′)]3 = µ2δ(t− t′).
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Classical field theory: Scalar field
• In order to solve the equation

2G(x− x′) + λ[G(x− x′)]3 = µ−1δ4(x− x′)

we can start from the d = 1 + 0 case ∂2t G0(t− t′) + λ[G0(t− t′)]3 = µ2δ(t− t′).

• It is straightforwardly obtained the Fourier transformed solution

G0(ω) =

∞
∑

n=0

(2n+ 1)
π2

K2(i)

(−1)ne−(n+ 1
2 )π

1 + e−(2n+1)π

1

ω2 −m2
n + iǫ

being mn = (2n+ 1) π
2K(i)

(

λ
2

)

1
4 µ and K(i) ≈ 1.3111028777 an elliptic integral.
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Classical field theory: Scalar field
• In order to solve the equation

2G(x− x′) + λ[G(x− x′)]3 = µ−1δ4(x− x′)

we can start from the d = 1 + 0 case ∂2t G0(t− t′) + λ[G0(t− t′)]3 = µ2δ(t− t′).

• It is straightforwardly obtained the Fourier transformed solution

G0(ω) =

∞
∑

n=0

(2n+ 1)
π2

K2(i)

(−1)ne−(n+ 1
2 )π

1 + e−(2n+1)π

1

ω2 −m2
n + iǫ

being mn = (2n+ 1) π
2K(i)

(

λ
2

)

1
4 µ and K(i) ≈ 1.3111028777 an elliptic integral.

• We are able to recover the fully covariant propagator by boosting from the rest
reference frame obtaining finally

G(p) =

∞
∑

n=0

(2n+ 1)
π2

K2(i)

(−1)ne−(n+ 1
2 )π

1 + e−(2n+1)π

1

p2 −m2
n + iǫ

.

This shows that our solution given above indeed represents a strong coupling
expansion being meaningful for λ → ∞.
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Classical field theory: Yang-Mills field (1)
• A classical field theory for the Yang-Mills field is given by

∂µ∂µA
a
ν−

(

1− 1
ξ

)

∂ν(∂
µAa

µ)+gfabcAbµ(∂µA
c
ν−∂νA

c
µ)+gfabc∂µ(Ab

µA
c
ν)+g2fabcfcdeAbµAd

µA
e
ν=−jaν .
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Classical field theory: Yang-Mills field (1)
• A classical field theory for the Yang-Mills field is given by

∂µ∂µA
a
ν−

(

1− 1
ξ

)

∂ν(∂
µAa

µ)+gfabcAbµ(∂µA
c
ν−∂νA

c
µ)+gfabc∂µ(Ab

µA
c
ν)+g2fabcfcdeAbµAd

µA
e
ν=−jaν .

• For the homogeneous equation, we want to study it in the formal limit g → ∞.
We note that a class of exact solutions exists if we take the potential Aa

µ just
depending on time, after a proper selection of the components [see Smilga
(2001)]. These solutions are the same of the scalar field when spatial
coordinates are set to zero (rest frame).
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Classical field theory: Yang-Mills field (1)
• A classical field theory for the Yang-Mills field is given by

∂µ∂µA
a
ν−

(

1− 1
ξ

)

∂ν(∂
µAa

µ)+gfabcAbµ(∂µA
c
ν−∂νA

c
µ)+gfabc∂µ(Ab

µA
c
ν)+g2fabcfcdeAbµAd

µA
e
ν=−jaν .

• For the homogeneous equation, we want to study it in the formal limit g → ∞.
We note that a class of exact solutions exists if we take the potential Aa

µ just
depending on time, after a proper selection of the components [see Smilga
(2001)]. These solutions are the same of the scalar field when spatial
coordinates are set to zero (rest frame).

• Differently from the scalar field, we cannot just boost away these solutions to
get a general solution to Yang-Mills equations due to gauge symmetry. But we
can try to find a set of similar solutions with the proviso of a gauge choice.
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Classical field theory: Yang-Mills field (1)
• A classical field theory for the Yang-Mills field is given by

∂µ∂µA
a
ν−

(

1− 1
ξ

)

∂ν(∂
µAa

µ)+gfabcAbµ(∂µA
c
ν−∂νA

c
µ)+gfabc∂µ(Ab

µA
c
ν)+g2fabcfcdeAbµAd

µA
e
ν=−jaν .

• For the homogeneous equation, we want to study it in the formal limit g → ∞.
We note that a class of exact solutions exists if we take the potential Aa

µ just
depending on time, after a proper selection of the components [see Smilga
(2001)]. These solutions are the same of the scalar field when spatial
coordinates are set to zero (rest frame).

• Differently from the scalar field, we cannot just boost away these solutions to
get a general solution to Yang-Mills equations due to gauge symmetry. But we
can try to find a set of similar solutions with the proviso of a gauge choice.

• This kind of solutions will permit us to prove that a set of them exists supporting
a trivial infrared fixed point to build on a quantum field theory.
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Classical field theory: Yang-Mills field (2)
• Exactly as in the case of the scalar field we assume the following solution to

our field equations

Aa
µ = κ

∫

d4x′Dab
µν(x− x′)jbν(x′) + δAa

µ
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Classical field theory: Yang-Mills field (2)
• Exactly as in the case of the scalar field we assume the following solution to

our field equations

Aa
µ = κ

∫

d4x′Dab
µν(x− x′)jbν(x′) + δAa

µ

• Also in this case, apart from a possible correction, this boils down to an
expansion in powers of the currents as already guessed in the ’80 [R. T. Cahill
and C. D. Roberts (1985)].
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• Also in this case, apart from a possible correction, this boils down to an
expansion in powers of the currents as already guessed in the ’80 [R. T. Cahill
and C. D. Roberts (1985)].

• This implies that the corresponding quantum theory, in a very strong coupling
limit, takes a Gaussian form and is trivial.
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Classical field theory: Yang-Mills field (2)
• Exactly as in the case of the scalar field we assume the following solution to

our field equations

Aa
µ = κ

∫

d4x′Dab
µν(x− x′)jbν(x′) + δAa

µ

• Also in this case, apart from a possible correction, this boils down to an
expansion in powers of the currents as already guessed in the ’80 [R. T. Cahill
and C. D. Roberts (1985)].

• This implies that the corresponding quantum theory, in a very strong coupling
limit, takes a Gaussian form and is trivial.

• The crucial point, as already pointed out in the eighties [T. Goldman and R. W.
Haymaker (1981), T. Cahill and C. D. Roberts (1985)], is the exact
determination of the gluon propagator in the low-energy limit. This will
determine completely low-energy physics for strong interactions
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Classical field theory: Yang-Mills field (3)
• The question to ask is: Does a set of classical solutions exist for Yang-Mills

equations supporting a trivial infrared fixed point for the corresponding
quantum theory?
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Classical field theory: Yang-Mills field (3)
• The question to ask is: Does a set of classical solutions exist for Yang-Mills

equations supporting a trivial infrared fixed point for the corresponding
quantum theory?

• The answer is yes! These solutions are instantons in the form Aa
µ = ηaµφ with

ηaµ a set of constants and φ a scalar field.

Low-energy QCD from first principles – p. 8/24



Classical field theory: Yang-Mills field (3)
• The question to ask is: Does a set of classical solutions exist for Yang-Mills

equations supporting a trivial infrared fixed point for the corresponding
quantum theory?

• The answer is yes! These solutions are instantons in the form Aa
µ = ηaµφ with

ηaµ a set of constants and φ a scalar field.

• By direct substitution into Yang-Mills equations one recovers the equation for φ
that is

∂µ∂µφ− 1

N2 − 1

(

1− 1

ξ

)

(ηa · ∂)2φ+Ng2φ3 = −jφ

being jφ = ηaµj
µa and use has been made of the formula ηνaηaν = N2 − 1.
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Classical field theory: Yang-Mills field (3)
• The question to ask is: Does a set of classical solutions exist for Yang-Mills

equations supporting a trivial infrared fixed point for the corresponding
quantum theory?

• The answer is yes! These solutions are instantons in the form Aa
µ = ηaµφ with

ηaµ a set of constants and φ a scalar field.

• By direct substitution into Yang-Mills equations one recovers the equation for φ
that is

∂µ∂µφ− 1

N2 − 1

(

1− 1

ξ

)

(ηa · ∂)2φ+Ng2φ3 = −jφ

being jφ = ηaµj
µa and use has been made of the formula ηνaηaν = N2 − 1.

• In the Landau gauge (Lorenz gauge classically) this equation is exactly that of
the scalar field given before and we get again a current expansion also for the
scalar field.
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Classical field theory: Yang-Mills field (3)
• The question to ask is: Does a set of classical solutions exist for Yang-Mills

equations supporting a trivial infrared fixed point for the corresponding
quantum theory?

• The answer is yes! These solutions are instantons in the form Aa
µ = ηaµφ with

ηaµ a set of constants and φ a scalar field.

• By direct substitution into Yang-Mills equations one recovers the equation for φ
that is

∂µ∂µφ− 1

N2 − 1

(

1− 1

ξ

)

(ηa · ∂)2φ+Ng2φ3 = −jφ

being jφ = ηaµj
µa and use has been made of the formula ηνaηaν = N2 − 1.

• In the Landau gauge (Lorenz gauge classically) this equation is exactly that of
the scalar field given before and we get again a current expansion also for the
scalar field.

• So, a set of solutions of the Yang-Mills equations exists supporting a trivial
infrared fixed point. Our aim is to study the theory in this case.

Low-energy QCD from first principles – p. 8/24



Yang-Mills-Green function
• The instanton solutions given above permit us to write down immediately the

propagator for the Yang-Mills equations in the Landau gauge for SU(N) being
exactly the same given for the scalar field:

∆ab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

being
Bn=(2n+1) π2

K2(i)

(−1)n+1e
−(n+1

2
)π

1+e−(2n+1)π

and

mn=(2n+1) π
2K(i)

(

Ng2

2

) 1
4
Λ
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Yang-Mills-Green function
• The instanton solutions given above permit us to write down immediately the

propagator for the Yang-Mills equations in the Landau gauge for SU(N) being
exactly the same given for the scalar field:

∆ab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

being
Bn=(2n+1) π2

K2(i)

(−1)n+1e
−(n+1

2
)π

1+e−(2n+1)π

and

mn=(2n+1) π
2K(i)

(

Ng2

2

) 1
4
Λ

• The constant Λ must be the same constant that appears in the ultraviolet limit
by dimensional transmutation, here arises as an integration constant [M.
Frasca, arXiv:1007.4479v2 [hep-ph]].
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Yang-Mills-Green function
• The instanton solutions given above permit us to write down immediately the

propagator for the Yang-Mills equations in the Landau gauge for SU(N) being
exactly the same given for the scalar field:

∆ab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
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)

being
Bn=(2n+1) π2

K2(i)

(−1)n+1e
−(n+1

2
)π

1+e−(2n+1)π

and

mn=(2n+1) π
2K(i)

(

Ng2

2

) 1
4
Λ

• The constant Λ must be the same constant that appears in the ultraviolet limit
by dimensional transmutation, here arises as an integration constant [M.
Frasca, arXiv:1007.4479v2 [hep-ph]].

• This is the propagator of a massive field theory but the mass poles arise
dynamically from the non-linearities in the equations of motion. At this stage
we are working classically yet.
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Lattice computations
• Lattice computations support the existence of a trivial infrared fixed point for

Yang-Mills theory.
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Lattice computations
• Lattice computations support the existence of a trivial infrared fixed point for

Yang-Mills theory.

• One has for the running coupling [I. L. Bogolubsky, E. M. Ilgenfritz, M.
Muller-Preussker, A. Sternbeck, PLB676, 69 (2009)]:
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Lattice computations
• Lattice computations support the existence of a trivial infrared fixed point for

Yang-Mills theory.

• One has for the running coupling [I. L. Bogolubsky, E. M. Ilgenfritz, M.
Muller-Preussker, A. Sternbeck, PLB676, 69 (2009)]:

• A similar result was also obtained by Boucaud et al. [“The strong coupling
constant at small momentum as an instanton detector “, JHEP 0304, 005
(2003)] again with lattice computations.
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Quantum field theory: Scalar field (1)
• We can formulate a quantum field theory for the scalar field starting from the

generating functional

Z[j] =

∫

[dφ] exp

[

i

∫

d4x

(

1

2
(∂φ)2 − λ

4
φ4 + jφ

)]

.
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Quantum field theory: Scalar field (1)
• We can formulate a quantum field theory for the scalar field starting from the

generating functional

Z[j] =

∫

[dφ] exp

[

i

∫

d4x

(

1

2
(∂φ)2 − λ

4
φ4 + jφ

)]

.

• We can rescale the space-time variable as x →
√
λx and rewrite the functional

as

Z[j] =

∫

[dφ] exp

[

i
1

λ

∫

d4x
(

1

2
(∂φ)2 − 1

4
φ4 +

1

λ
jφ

)

]

.

Then we can seek for a solution series as φ =
∑

∞

n=0 λ
−nφn and rescale the

current j → j/λ being this arbitrary.
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Quantum field theory: Scalar field (1)
• We can formulate a quantum field theory for the scalar field starting from the

generating functional

Z[j] =

∫

[dφ] exp

[

i

∫

d4x

(

1

2
(∂φ)2 − λ

4
φ4 + jφ

)]

.

• We can rescale the space-time variable as x →
√
λx and rewrite the functional

as

Z[j] =

∫

[dφ] exp

[

i
1

λ

∫

d4x
(

1

2
(∂φ)2 − 1

4
φ4 +

1

λ
jφ

)

]

.

Then we can seek for a solution series as φ =
∑

∞

n=0 λ
−nφn and rescale the

current j → j/λ being this arbitrary.

• It is not difficult to see that the leading order correction can be computed
solving the classical equation

2φ0 + φ3
0 = j

that we already know how to manage. This is completely consistent with our
preceding formulation [M. Frasca (2006)] but now all is fully covariant. We are
just using our ability to solve the classical theory.
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Quantum field theory: Scalar field (2)
• Using the approximation holding at strong coupling

φ0 = µ

∫

d4xG(x− x′)j(x′) + . . .

it is not difficult to write the generating functional at the leading order in a
Gaussian form

Z0[j] = exp

[

i

2

∫

d4x′d4x′′j(x′)G(x′ − x′′)j(x′′)

]

.
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Quantum field theory: Scalar field (2)
• Using the approximation holding at strong coupling

φ0 = µ

∫

d4xG(x− x′)j(x′) + . . .

it is not difficult to write the generating functional at the leading order in a
Gaussian form

Z0[j] = exp

[

i

2

∫

d4x′d4x′′j(x′)G(x′ − x′′)j(x′′)

]

.

• This conclusion is really important: It says that the scalar field theory in d=3+1
is trivial in the infrared limit!
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Quantum field theory: Scalar field (2)
• Using the approximation holding at strong coupling

φ0 = µ

∫

d4xG(x− x′)j(x′) + . . .

it is not difficult to write the generating functional at the leading order in a
Gaussian form

Z0[j] = exp

[

i

2

∫

d4x′d4x′′j(x′)G(x′ − x′′)j(x′′)

]

.

• This conclusion is really important: It says that the scalar field theory in d=3+1
is trivial in the infrared limit!

• This functional describes a set of free particles with a mass spectrum

mn = (2n+ 1)
π

2K(i)

(

λ

2

)
1
4

µ

that are the poles of the propagator, the one of the classical theory.
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Quantum field theory: Yang-Mills field (1)
• We now use the mapping theorem fixing the form of the propagator in the

infrared, e.g. in the Landau gauge, as

Dab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

but this can be recomputed in any gauge by the classical equations with the
mapping theorem.
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Quantum field theory: Yang-Mills field (1)
• We now use the mapping theorem fixing the form of the propagator in the

infrared, e.g. in the Landau gauge, as

Dab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

but this can be recomputed in any gauge by the classical equations with the
mapping theorem.

• The next step is to use the approximation that holds in a strong coupling limit

Aa
µ=Λ

∫

d4x′Dab
µν(x−x′)jbν(x′)+O

(

1√
Ng

)

+O(j3)
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Quantum field theory: Yang-Mills field (1)
• We now use the mapping theorem fixing the form of the propagator in the

infrared, e.g. in the Landau gauge, as

Dab
µν(p)=δab

(

ηµν−
pµpν

p2

)

∑∞
n=0

Bn
p2−m2

n+iǫ
+O

(

1√
Ng

)

but this can be recomputed in any gauge by the classical equations with the
mapping theorem.

• The next step is to use the approximation that holds in a strong coupling limit

Aa
µ=Λ

∫

d4x′Dab
µν(x−x′)jbν(x′)+O

(

1√
Ng

)

+O(j3)

• and we note that, in this approximation, the ghost field just decouples and
becomes free and one finally has at the leading order

Z0[j]=N exp[ i2
∫

d4x′d4x′′jaµ(x′)Dab
µν(x

′
−x′′)jbν(x′′)].

This functional describes free massive glueballs that are the proper states in
the infrared limit. Yang-Mills theory is trivial in the limit of the coupling going to
infinity and we expect the running coupling to go to zero lowering energies.
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Quantum field theory: Yang-Mills field (2)
• Now, we can take a look at the ghost part of the action. We just note that, for

this particular form of the propagator, inserting our approximation into the
action produces an action for a free ghost field.
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this particular form of the propagator, inserting our approximation into the
action produces an action for a free ghost field.

• Indeed, we will have

Sg = −
∫

d4x

[

c̄a∂µ∂
µca +O

(

1√
Ng

)

+O
(

j3
)
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• Now, we can take a look at the ghost part of the action. We just note that, for

this particular form of the propagator, inserting our approximation into the
action produces an action for a free ghost field.

• Indeed, we will have

Sg = −
∫

d4x

[

c̄a∂µ∂
µca +O

(

1√
Ng

)

+O
(

j3
)

]

• A ghost propagator can be written down as

Gab(p) = − δab
p2 + iǫ

+O

(

1√
Ng

)

.
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Quantum field theory: Yang-Mills field (2)
• Now, we can take a look at the ghost part of the action. We just note that, for

this particular form of the propagator, inserting our approximation into the
action produces an action for a free ghost field.

• Indeed, we will have

Sg = −
∫

d4x

[

c̄a∂µ∂
µca +O

(

1√
Ng

)

+O
(

j3
)

]

• A ghost propagator can be written down as

Gab(p) = − δab
p2 + iǫ

+O

(

1√
Ng

)

.

• Our conclusion is that, in a strong coupling expansion 1/
√
Ng, we get the so

called decoupling solution.

Low-energy QCD from first principles – p. 14/24



Quantum field theory: Yang-Mills field (3)

A direct comparison of our results with numerical Dyson-Schwinger equations
gives the following:
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Fit ap4+bp2+c

that is strikingly good (ref. A. Aguilar, A. Natale, JHEP 0408, 057 (2004)).
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QCD at the infrared limit (1)
• When use is made of the infrared fixed point result, QCD action can be written

down quite easily.
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QCD at the infrared limit (1)
• When use is made of the infrared fixed point result, QCD action can be written

down quite easily.

• Indeed, we will have for the gluon field

Sgf =
1

2

∫

d4x′d4x′′
[

jµa(x′)Dab
µν(x

′ − x′′)jνb(x′′) +O

(

1√
Ng

)

+O
(

j3
)

]
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QCD at the infrared limit (1)
• When use is made of the infrared fixed point result, QCD action can be written

down quite easily.

• Indeed, we will have for the gluon field

Sgf =
1

2

∫

d4x′d4x′′
[

jµa(x′)Dab
µν(x

′ − x′′)jνb(x′′) +O

(

1√
Ng

)

+O
(

j3
)

]

• and for the quark fields

Sq =
∑

q

∫

d4xq̄(x)

[

i/∂ −mq − gγµ
λa

2

∫

d4x′Dab
µν(x− x′)jνb(x′)

−g2γµ
λa

2

∫

d4x′Dab
µν(x− x′)

∑

q′

q̄′(x′)
λb

2
γνq′(x′) +O

(

1√
Ng

)

+O
(

j3
)



 q(x)
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QCD at the infrared limit (1)
• When use is made of the infrared fixed point result, QCD action can be written

down quite easily.

• Indeed, we will have for the gluon field

Sgf =
1

2

∫

d4x′d4x′′
[

jµa(x′)Dab
µν(x

′ − x′′)jνb(x′′) +O

(

1√
Ng

)

+O
(

j3
)

]

• and for the quark fields

Sq =
∑

q

∫

d4xq̄(x)

[

i/∂ −mq − gγµ
λa

2

∫

d4x′Dab
µν(x− x′)jνb(x′)

−g2γµ
λa

2

∫

d4x′Dab
µν(x− x′)

∑

q′

q̄′(x′)
λb

2
γνq′(x′) +O

(

1√
Ng

)

+O
(

j3
)



 q(x)

• We recognize here an explicit Yukawa interaction and a Nambu-Jona-Lasinio
non-local term. Already at this stage we are able to recognize that NJL is the
proper low-energy limit for QCD at zero temperature.
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QCD at the infrared limit (2)

• Now we operate the Smilga’s choice ηaµη
b
ν = δab(ηµν − pµpν/p

2) for the Landau
gauge.
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• Now we operate the Smilga’s choice ηaµη
b
ν = δab(ηµν − pµpν/p

2) for the Landau
gauge.

• We are left with the infrared limit QCD using conservation of currents

Sgf =
1

2

∫
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• Now we operate the Smilga’s choice ηaµη
b
ν = δab(ηµν − pµpν/p

2) for the Landau
gauge.

• We are left with the infrared limit QCD using conservation of currents

Sgf =
1

2

∫

d4x′d4x′′
[

jaµ(x
′)∆(x′ − x′′)jµa(x′′) +O

(

1√
Ng

)

+O
(

j3
)

]

• and for the quark fields

Sq =
∑

q

∫

d4xq̄(x)

[

i/∂ −mq − gγµ
λa

2

∫

d4x′∆(x− x′)jaµ(x
′)

−g2γµ
λa

2

∫

d4x′∆(x− x′)
∑

q′

q̄′(x′)
λa

2
γµq

′(x′) +O

(

1√
Ng

)

+O
(

j3
)



 q(x)

• We want to give explicitly the contributions from gluon resonances. In order to
do this, we introduce the bosonic currents jaµ(x) = ηaµj(x) with the current j(x)
that of the gluonic excitations after mapping.

Low-energy QCD from first principles – p. 17/24



QCD at the infrared limit (3)

• Using the relation ηaµη
µa = 3(N2

c − 1) we get in the end

Sgf =
3

2
(N2

c − 1)

∫

d4x′d4x′′
[

j(x′)∆(x′ − x′′)j(x′′) +O

(

1√
Ng

)

+O
(

j3
)

]
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• Using the relation ηaµη
µa = 3(N2

c − 1) we get in the end

Sgf =
3

2
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∫
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• and for the quark fields

Sq =
∑
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∫

d4xq̄(x)

[

i/∂ −mq − gηaµγ
µ λa

2

∫
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−g2γµ
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∫

d4x′∆(x− x′)
∑
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q̄′(x′)
λa

2
γµq

′(x′) +O

(

1√
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)

+O
(

j3
)



 q(x)

• Now, we recognize that the propagator is just a sum of Yukawa propagators
weighted by exponential damping terms. So, we introduce the σ field and
truncate at the first excitation. This is a somewhat rough approximation but will
be helpful in the following analysis.

Low-energy QCD from first principles – p. 18/24



QCD at the infrared limit (3)

• Using the relation ηaµη
µa = 3(N2

c − 1) we get in the end

Sgf =
3

2
(N2

c − 1)

∫

d4x′d4x′′
[

j(x′)∆(x′ − x′′)j(x′′) +O

(

1√
Ng

)

+O
(

j3
)

]
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∫
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∫
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∑
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q̄′(x′)
λa

2
γµq

′(x′) +O

(

1√
Ng

)

+O
(

j3
)



 q(x)

• Now, we recognize that the propagator is just a sum of Yukawa propagators
weighted by exponential damping terms. So, we introduce the σ field and
truncate at the first excitation. This is a somewhat rough approximation but will
be helpful in the following analysis.

• This means the we can write the bosonic currents contribution as coming from
a boson field and written down as σ(x) =

√

3(N2
c − 1)/B0

∫

d4x′∆(x− x′)j(x′).
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QCD at the infrared limit (4)
• So, the model we consider for our finite temperature analysis, directly derived

from QCD, is [Weise et al., Phys. Rev. D79, 014022 (2009), arXiv:0810.1099v2 [hep-ph]]

Sσ =

∫

d4x
[

1

2
(∂σ)2 − 1

2
m2

0σ
2
]
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• So, the model we consider for our finite temperature analysis, directly derived

from QCD, is [Weise et al., Phys. Rev. D79, 014022 (2009), arXiv:0810.1099v2 [hep-ph]]

Sσ =

∫

d4x
[

1

2
(∂σ)2 − 1

2
m2

0σ
2
]

• and for the quark fields

Sq =
∑

q

∫

d4xq̄(x)

[

i/∂ −mq − g

√

B0

3(N2
c − 1)

ηaµγ
µ λa

2
σ(x)

−g2γµ
λa

2

∫

d4x′∆(x− x′)
∑

q′

q̄′(x′)
λa

2
γµq

′(x′) +O

(

1√
Ng

)

+O
(

j3
)



 q(x)

• Now, we recover the non-local model of Weise et al. directly from QCD (2G(0) = G is the standard NJL
coupling)

G(p) = −

1

2
g
2

∞
∑

n=0

Bn

p2 − (2n + 1)2(π/2K(i))2σ + iǫ
=

G

2
C(p)

with C(0) = 1 fixing in this way the value of G using the gluon propagator.
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Bosonization
• We move to an Euclidean action and define the following fields

φa(x) = (σ(x),π(x))
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Bosonization
• We move to an Euclidean action and define the following fields

φa(x) = (σ(x),π(x))

• So, the bosonic action will be, after taking the expansion around the v.e.v.
φa = (v, 0),

SB =

∫

d4x
[

1

2
(∂δσ)2 − 1

2
m2

0(δσ)
2
]

+ SMF + S(2) + . . .
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Bosonization
• We move to an Euclidean action and define the following fields

φa(x) = (σ(x),π(x))

• So, the bosonic action will be, after taking the expansion around the v.e.v.
φa = (v, 0),

SB =

∫

d4x
[

1

2
(∂δσ)2 − 1

2
m2

0(δσ)
2
]

+ SMF + S(2) + . . .

• being

SMF /V4 = −2NNf

∫

d4p

(2π4
ln
[

p2 +M2(p)
]

+
v2

2Geff
.
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Bosonization
• We move to an Euclidean action and define the following fields

φa(x) = (σ(x),π(x))

• So, the bosonic action will be, after taking the expansion around the v.e.v.
φa = (v, 0),

SB =

∫

d4x
[

1

2
(∂δσ)2 − 1

2
m2

0(δσ)
2
]

+ SMF + S(2) + . . .

• being

SMF /V4 = −2NNf

∫

d4p

(2π4
ln
[

p2 +M2(p)
]

+
v2

2Geff
.

• This holds together with the gap equations

M(p) = mq + C(p)v

v = 4GeffNNf

∫

d4p

(2π)4
C(p)

M(p)

p2 +M2(p)

where we can identify a Geff = 1
m2

0+1/G
< G due to the mass gap m0.
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Instanton liquid
• For aims of completeness, we give here a comparison of our gluon propagator

(the form factor) with the one used in Weise et al. based on an instanton liquid
model and the one derived for an instanton liquid [T. Schäfer and E. V.
Shuryak, Rev. Mod. Phys. 70, 323 (1998)].
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(the form factor) with the one used in Weise et al. based on an instanton liquid
model and the one derived for an instanton liquid [T. Schäfer and E. V.
Shuryak, Rev. Mod. Phys. 70, 323 (1998)].

• This is the result:
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• Istanton liquid approximation is a good one indeed in describing the ground
state of Yang-Mills theory!
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Numerical results (1)
• Finally, we take the Nambu-Jona-Lasinio limit in the non-local model and

compute some observables. The agreement is absolutely excellent for
Λ = 1183 MeV , σ = (440 MeV )2, mq = 4.1 MeV and g = 1.52(αs ≈ 0.18). Then,
G ≈ 0.7854(g2/σ) ≈ 4.9 GeV −2 that gives Geff ≈ 2.6 GeV −2 and so

GeffΛ
2 ≈ 3.6. We use mean field formulas as given in Klevansky (RMP 64,

649 (1992)) and refer to PDG for experimental values with 4d cut-off.
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Numerical results (1)
• Finally, we take the Nambu-Jona-Lasinio limit in the non-local model and

compute some observables. The agreement is absolutely excellent for
Λ = 1183 MeV , σ = (440 MeV )2, mq = 4.1 MeV and g = 1.52(αs ≈ 0.18). Then,
G ≈ 0.7854(g2/σ) ≈ 4.9 GeV −2 that gives Geff ≈ 2.6 GeV −2 and so

GeffΛ
2 ≈ 3.6. We use mean field formulas as given in Klevansky (RMP 64,

649 (1992)) and refer to PDG for experimental values with 4d cut-off.

•

Observ. Exp. Theor. Error

mπ 139.57018±0.00035 MeV 139.7 0.09%

fπ 130.41±0.03±0.20 MeV 131.5 MeV 0.9%

−〈ūu〉 1
3 = −〈d̄d〉 1

3 230±10 MeV (sum rules) 274 MeV 16%

gπqq - 2.3 -
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Numerical results (1)
• Finally, we take the Nambu-Jona-Lasinio limit in the non-local model and

compute some observables. The agreement is absolutely excellent for
Λ = 1183 MeV , σ = (440 MeV )2, mq = 4.1 MeV and g = 1.52(αs ≈ 0.18). Then,
G ≈ 0.7854(g2/σ) ≈ 4.9 GeV −2 that gives Geff ≈ 2.6 GeV −2 and so

GeffΛ
2 ≈ 3.6. We use mean field formulas as given in Klevansky (RMP 64,

649 (1992)) and refer to PDG for experimental values with 4d cut-off.

•

Observ. Exp. Theor. Error

mπ 139.57018±0.00035 MeV 139.7 0.09%

fπ 130.41±0.03±0.20 MeV 131.5 MeV 0.9%

−〈ūu〉 1
3 = −〈d̄d〉 1

3 230±10 MeV (sum rules) 274 MeV 16%

gπqq - 2.3 -

• This is given with a constituent quark mass m∗ = 214 MeV .
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Numerical results(2)
• Further considerations are needed for the σ mass. In NJL this is given by

mσ =
√

4m∗2 +m2
π being m∗ the quark constituent mass obtained from the

gap equation of the model.
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Numerical results(2)
• Further considerations are needed for the σ mass. In NJL this is given by

mσ =
√

4m∗2 +m2
π being m∗ the quark constituent mass obtained from the

gap equation of the model.

• Analysis on experimental data gives for this particle [Caprini, Colangelo,
Leutwyler, PRL 96, 132001 (2006)]

mσ = 441+16
−8 MeV

and [R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. Ruiz de Elvira, PRL 107,
072001 (2011)]

mσ = 457+14
−13 MeV
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Numerical results(2)
• Further considerations are needed for the σ mass. In NJL this is given by

mσ =
√

4m∗2 +m2
π being m∗ the quark constituent mass obtained from the

gap equation of the model.

• Analysis on experimental data gives for this particle [Caprini, Colangelo,
Leutwyler, PRL 96, 132001 (2006)]

mσ = 441+16
−8 MeV

and [R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. Ruiz de Elvira, PRL 107,
072001 (2011)]

mσ = 457+14
−13 MeV

• Our model provides
mσ = 451± 20 MeV

the error arising from string tension, in close agreement with these results.
This permits us to conclude that σ particle is a glue particle arising from the
Yang-Mills part of the QCD Lagrangian, in agreement with recent studies [e.g.
G. Mennessier, S. Narison, X.-G. Wang, PLB696, 40 (2011) and refs. therein.].
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Conclusions

• We provided a strong coupling expansion both for classical and quantum field
theory of a massless quartic scalar field.
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• A set of classical solutions is proved to exist for the Yang-Mills field, instantons,
that support the view of a trival infrared fixed point.
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Conclusions

• We provided a strong coupling expansion both for classical and quantum field
theory of a massless quartic scalar field.

• A set of classical solutions is proved to exist for the Yang-Mills field, instantons,
that support the view of a trival infrared fixed point.
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