
1	



HEP physics software applications on 
many-core: present and perspectives���

  ���
SuperB Workshop, July `11 ���

���

	



Vincenzo Innocente	


CERN	



High Performance Computing ���
for High Energy Physics 	



https://twiki.cern.ch/twiki/bin/view/LCG/MultiCoreRD	





2	





3	





4	





5	





6	





WHAT WE WILL FIND IN A 
BOX?	



7	





Intel Sandy Bridge      (January 6th 2011)	


8	





9	



Intel XEON 2012	


Read:	


4 x 8 cores 8-word wide	





AMD Buldozer CORE     (next quarter)	


10	





AMD Buldozer CHIP       (next quarter)	


11	



Read:	


N x M cores “8-word wide”	





12	





13	





14	





Dominated by data movement NOW!���
We use only 15% of availiable “d”flops	



15	



60% “active”	



50% 
“computation 	


on single/double 
word”	





16 Dell LHC Team 

nVidia Fermi Architecture 
• Up to 512 cores 

•  16 Streaming multiprocessors each 
with 32 cores @ 1.3GHz 

• Parallel DataCache 
•  64 KB Shmem/L1 Cache 
•  768 KB Unified L2 Cache 

• Six 64-bit memory partitions 
•  384-bit memory interface 
•  Up to 6 GB GDDR5 DRAM 

• Up to 16 concurrent kernels 

• IEEE floating point math 

• ECC memory 

Read:	


16 cores 32-world wide	





17 Dell LHC Team 

Fermi Streaming Multiprocssor Architecture 
• 32 Cores 

•  32-bit Integer ALU with 64-bit 
extensions 

•  Full IEEE 754-2008 32-bit and 64-
bit precision 

• 64 KB Shared Memory/L1 cache 
•  16KB Shmem/48KB cache or 

48KB Shmem/16KB L1 cache 

• 16 load/store units 

• Dual Warp scheduler (dual 
instruction issue) 

• Four Special Function Units (SFUs) 
for sin, cosine, reciprocal, and square 
root operations 



18 Dell LHC Team 

Comparison to Previous nVidia GPGPUs 



Confidential 19 Dell LHC Team 

32 Cores @ 1.2 GHz 
  4 threads/core, 128 total parallel threads 
  32KB i-cache, 32KB d-cache 
  256KB coherent L2 cache (8MB total) 
  512bit vector unit 

•  16 Single precision FLOPs/clock 
•  8 Double precision FLOPS/clock 

Intel MIC Architecture 
Pronounced “Mike” 

Many cores with many threads 
per core 

Standard IA programming and 
memory model 

Knights Ferry 
•  Software development platform 

•  1-2GB GDDR5 connected to host 
memory through PCI DMA 
operations with virtual addressing 

•  Intel HPC developer tools 

Read:	


32 cores 16-word wide	





20 Dell LHC Team 

MIC Programming Environment 

• Inherently supports OpenMP. 

• Virtual memory environment extends back to host memory. 

• Intel Parallel Studio and Cluster Studio support MIC. 

• Optimizing performance will take almost as much effort as for 
CUDA and OpenCL environments. 



21 Dell LHC Team 

Knights Corner 
1st Production MIC Co-processor 

• Second Half 2012 
•  Knowns: 

•  50+ cores 
•  22nm manufacturing process 

•  Unknowns: 
•  Core frequency 
•  Size of GDDR5 memory on board 
•  ECC support 



22 Dell LHC Team 

Co-processor Comparison 
	
  

AMD	
  
Firestream 	
  NVIDIA	
  Ferm i 	
  Intel	
  Knig hts	
  Ferry

	
  Intel	
  Knig hts	
  
C orner	
  Speculation

	
  Intel	
  Knig hts	
  C orner	
  
Speculation2

C ores 1600 512 32*4 	
  threads/core	
  = 	
  128 50*4 	
  threads/core	
  = 	
  200 64*4 	
  threads/core	
  = 	
  256
C ore	
  Frequency 700/825	
  MH z 1.3	
  GH z 1.2	
  GH z 1.2	
  GH z 2	
  GH z
Thread	
  Granularity fine fine coarse coarse coarse
Single	
  Prec ision	
  
Floating 	
  Point	
  
C apability	
  GFLO Ps

2000/2640 1024 614 960 2048

Double	
  Prec ision	
  
Floating 	
  Point	
  
C apability	
  GFLO Ps

400/528 512 307 480 1024

GDDR5	
  RAM 2/4 	
  GB 3-­‐ 6	
  GB 1-­‐ 2	
  GB ? ?

	
  L1	
  
cache/processor

64KB	
  (16KB	
  Shmem,	
  
48KB	
  L1	
  or	
  48KB	
  
Shmem,	
  16KB	
  L1)

64KB	
  (32KB	
  icache,	
  32KB	
  
dcache)

64KB	
  (32KB	
  icache,	
  32KB	
  
dcache)

64KB	
  (32KB	
  icache,	
  32KB	
  
dcache)

	
  L2	
  
cache/processor

768KB	
  shared	
  L2 8MB	
  coherent	
  total	
  
(256KB/core)

12MB	
  coherent	
  total	
  
(256KB/core)

16MB	
  coherent	
  total	
  
(256KB/core)

	
  programming	
  
model

C UDA	
  kernels posix	
  threads posix	
  threads posix	
  threads

	
  virtual	
  memory no yes yes yes
	
  memory	
  shared	
  
with	
  host

no no no no

Software
OpenC L,	
  

DirectC ompute

C ,	
  C ++ ,	
  C UDA,	
  
O penC L,	
  

DirectC ompute

C ,	
  C ++ ,	
  FO RTRAN,	
  
O penMP,	
  C UDA,	
  O penC L,	
  

DirectC ompute

C ,	
  C ++ ,	
  FO RTRAN,	
  
O penMP,	
  C UDA,	
  O penC L,	
  

DirectC ompute

C ,	
  C ++ ,	
  FO RTRAN,	
  
O penMP,	
  C UDA,	
  O penC L,	
  

DirectC ompute



23	





Content of a box (server)	


–  Very soon	



»  4 highly interconnected chips with 8 “vector”-core each	



»  Fast access to peripherals	



–  Soon	


»  As above + one (or more?) coprocessor(s)	



»  Faster and faster communication among host and coprocessor	



»  Better and better sharing of resources (memory)	



–  Not so far in future	


»  Core and coprocessors integrated in a chip or very close together	



»  Seamless instruction and data sharing among them	



24	





WHAT TO DO WITH SUCH 
A BOX?	



25	





Optimization on many core	


–  Efficient use of shared resources	



»  Main memory, shared caches, I/O	



–  Minimize communication	


»  Including back-&-forth to main memory	



–  Remove synchronization-barriers	


»  Mostly implicit in traditional sequential scheduling	



–  Streamline code to allow vectorization	


–  New programming paradigm	



»  Think local and parallel!	



»  Decompose a problem vertically (parallel) first, then horizontally 
(sequentially)	



»  Consider speculative computation in place of likely miss-predicted 
branches	



»  Prefer deterministic algorithm to recursion, hit/miss	



26	





HEP Application	



27	



Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

AlgorithmAlgorithm

Transient 
Event Store

Detec . Data
Service

Persistency
Service

Data
Files

Transient 
Detector 

Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram 

Store

Application
Manager

Converter
ConverterEvent

Selector

Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

AlgorithmAlgorithm

Transient 
Event Store

Detec . Data
Service

Persistency
Service

Data
Files

Transient 
Detector 

Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram 

Store

Application
Manager

Converter
ConverterEvent

Selector



CMS offline software memory budget 	



Event specific data	



Read only data	


geometry,	


magnetic field, 	


conditions and alignment,	


physics processes, etc	



Code	



~1.2 GB	



28	





CMS offline software memory budget 	



Event specific data	



Read only data	


geometry,	


magnetic field, 	


conditions and alignment,	


physics processes, etc	



Code	



~1.2 GB	



COMMON!	



29	





CMS near future multicore strategy: ���
 forking	



Event 
specific	


data	



Shared common data	



Event 
specific	


data	



Event 
specific	


data	



Event 
specific	


data	



Event 
specific	


data	



Event 
specific	


data	



30	





C-o-W*	



– Most (all?) of the common const data / code can 
actually be brought in the application very early	



–  If you fork at that point, the kernel is actually 
smart enough to share the common data memory 
pages between parent and the children	



–  The kernel “un-shares” the memory pages only 
when one of the processes writes to them	



– New allocations (i.e. event data) end up in non 
shared pages	



* Copy-on-Write	



31	





Forking: memory sharing	



Measurements done using reconstruction with 64bit software on 4 
CPU, 8 core/CPU 2GHz AMD Opteron(tm) Processor 6128 
Shared memory per child: ~700MB	


Private memory per child: ~375MB	


Total memory used by 32 children: 13GB	


Total memory used by 32 separate jobs: 34 GB	


 

	



Short periods of  high parallelism 

Extended periods of  only 1 or 2 modules running 
Tracking	


Electron and muon finding	



We suddenly 
have lots of 
free memory 
available	



32	





Forking: throughput	



Short periods of  high parallelism 

Extended periods of  only 1 or 2 modules running 
Tracking	


Electron and muon finding	



33	





Problems	


– I/O “consolidation” non solved yet	



»  There are still multiple input and output buffers plus independent output 
streams 	



»  Will require introducing explicit distributor and collector processes.	



– Memory accounting gets more complicated	


All the nice accounting tools we had for RSS memory are now useless. We need 

something which is capable to keep sharing of pages into account. See 
http://www.selenic.com/smem/ and http://lwn.net/Articles/230975/ for some ideas.	



– Deleting “common” objects make them non-shared!	


This actually a problem when you are border-line with memory usage. The final 

deletion of common part has to be avoided to prevent a swap-storm.	



	



A newly designed framework may prefer an 
explicit shared memory model	



34	





“Whole-node” scheduling	


Exploiting this new processing model requires a new model in 

computing resources allocation as well	


Experiments need to have control over a larger quantum of resources 	



as multi-core aware jobs require scheduling of multiple cores at the same time	



Correct resource accounting fundamental (and gets trickier)	



Whole-Node Job Submission Task Force* ���
whole-node-task-force@cern.ch ���

(mandated by WLCG-MB, chaired by Peter Elmer)	



35	





“Whole-node” scheduling	


One natural unit in the system is the 
“whole node”: the physical thing running 
one copy of the OS and sharing a set of 
resources (CPU, disk, network, etc.)	



The applications explicitly take over the management 
of the sharing of resources within the “whole node” 
quantum of resources	



Compatible with current modus-operandi, will allow  
moving to forking / multi-threading, allowing for 
optimization of data/workflow management: I/O 
caching, local merging, etc	



Sites only need to care about the whole node, not 
individual processes	



A move to a proper “whole node” accounting for 
CPU / memory use, etc. recognizes the role of the 
OS in optimizing access to resources	



36	





Gaudi : HEP Event Processing	


• Transient Event 
Store : Part of Framework	


• Stores DataObjects during 
processing	


• Loaded from Persistent 
Storage at Start	


• Constantly modified 
during run	



37	





algorithm/module	



Unrelated parts could be elaborated by separate 
threads to increase throughput	



Multi-threading scheduler	



Current single threaded processing	



38	





Behavior / bottlenecks can be “estimated” even now	



Average module processing 
duration (single threaded) 
is well known	



Module dependencies are known	


time	



39	





Tracking	


Electron and 
muon finding	



Not worth with current tracking algorithms.	



40	





41	





42	





43	



Toward an Effective Parallel Architecture	





44	



Grid, Cluster, Box	


Files, http	


Workflows, frameworks	



Box, Chip, Core	


Main memory	


Event framework,	


Modules, Algorithms	



Core, Thread, Vector	


Memory chaches	


Modules,	


Algorithms, Functions	





45	





Design for efficient parallelism	


–  Fuzzy boundaries among “computational domains”	



»  Workflows, applications, event, detector, “data-object” 	



–  Look for innovative (revolutionary?) problem decompositions	


»  Identify sizable computational chucks that replicates on “identical” data	



•  down to the lowest possible granularity!	



–  Compilers and cpu can be quite smart, still…	


»  They still need “help” from the software-developers 	



»  Naïve OO design can easily obfuscate the actual 
“communication” (memory access) and computation pattern 	



Parallel programming is “tricky”:	


Better to get inspiration from a model that works. Look at OpenCL	



»  Memory Model  (“notebooks” vs “whiteboard”)	


»  Scheduling (commands queued to devices in a context)	



»  Task synchronization using “events”  (effective DAG)	



46	





47	



Whiteboard => Notebooks => Whiteboad 	





48	





49	





50	





51	





52	





53	





54	



and vector-cpu!	





atan2: sequential vs vector optimization 	


Traditional sequential	


code = 0;	


if( x < 0.0 ) code = 2;	


if( y < 0.0 ) code |= 1;	



if( x == 0.0 ) {	


  if( code & 1 ) return( -PIO2F );	


  if( y == 0.0 ) return( 0.0 );	


  return( PIO2F );	


}	


if( y == 0.0 ) {	



  if( code & 2 ) return( PIF );	


  return( 0.0 );	


}	


switch( code ) {	


 default:	


 case 0:	



 case 1: w = 0.0; break;	


 case 2: w = PIF; break;	


 case 3: w = -PIF; break;	


}	


return w + atanf( y/x ); // more if,div + a poly	



Vector kernel	


    float xx = fabs(x);	


    float yy = fabs(y);	


    float tmp =0.0f;	



    if (yy>xx) {   // pi/4	


      tmp = yy; yy=xx; xx=tmp;	


    }	


    float t=yy/xx;	


    float z=t;	


    if( t > 0.4142135623730950f)   // pi/8	



        z = (t-1.0f)/(t+1.0f); // always computed	


    // 2 divisions will cost more than the poly	


    float ret = poly(z);	


	


    if (y==0) ret=0.0f;	


    if( t > 0.4142135623730950f ) ret += PIO4F;	



    if (tmp!=0) ret = PIO2F - ret;	


    if (x<0) ret = PIF - ret;	


    if (y<0) ret = -ret;	


	


    return ret;	



55	





sin-cos: sequential vs vector optimization 	


Traditional sequential	


  int sign = 1;	


  if( x < 0 ) x = -x;	


	



  if( x > T24M1 ) return(0.0);	


  int j = FOPI * x; 	


  float y = j;	


  if( j & 1 )  { j += 1;  y += 1.0; }	


  j &= 7;	


  if( j > 3) { j -=4; sign = -sign;}	



  if( j > 1 ) sign = -sign;	


	


  if( x > lossth ) x = x - y * PIO4F;	


  else x = ((x - y * DP1) - y * DP2) - y * DP3;	


  if( (j==1) || (j==2) ) cos = poly1(x);	


  else cos = poly2(x);	



  if(sign < 0) cos = -cos;	


  return cos;	



Vector kernel	


    float x = fabs(xx);	


    // x =  (x > T24M1) ?   T24M1 : x;	


    int j = FOPI * x; 	



    j = (j+1) & (~1);	


    float y = j;	


    float signS = (j&4);	


    j-=2;	


    float signC = (j&4);	


    float poly = (j&2);	



	


    x = ((x - y * DP1) - y * DP2) - y * DP3;	


    cos = poly1(x);	


    sin = poly2(x);	


    if( poly!=0 ) { swap(cos,sin);}	


    if(signC == 0) cos = -cos;	



    if(signS == 0) sin = -sin;	


    if (xx<0)  sin = -sin;	


   	



56	





Data Organization AoS vs SoA	


–  Traditional Object organization is an Array of Structure	



»  Abstraction often used to hide implementation details at object level	



–  Difficult to fit stream computing	



–  Better to use a Structure of Arrays	


	



–  OO can wrap SoA as the AoS	


»  Move abstraction higher	



»  Expose data layout to the compiler	



–  Explicit copy in many cases more efficient 	


»  (notebooks vs whiteboard)	



57	





Summary	


–  Next generations of generic computers will contain several 

multicore vector cpus connected with  manycore accelerators	



–  Efficient software will require a design that highlights parallelism	


»  Novel problem decomposition	


»  High granularity task (allow global optimization of DAG)	



»  Explicit memory model (“notebooks” vs “whiteboard”)	



»  SoA instead of AoS   (ease stream computing)	



»  Long stream-kernels  (maximize (G)flops over (G)B/s)	



–  The Event Processing Framework will have to enable such an 
approach 	



»  Task scheduling	



»  Memory Model & Data transformation	



»  Library of optimized algorithms	



58	



https://twiki.cern.ch/twiki/bin/view/LCG/MultiCoreRD	




