HEP physics software applications on
many-core: present and perspectives

SuperB Workshop, July "I |

Vincenzo Innocente
CERN

https://twiki.cern.ch/twiki/bin/view/LCG/MultiCoreRD !

{\

A

“~ Moore’s Law is Alive and Well

1.E+07

1.E+06

¢ Transistors (in Thousands)

1.E+05

1.E+04

1.E+03

1.E+02

1.E+01
.)
A J

1.E+00

1.E'01 T T T T T T T
1970 1975 1980 1985 1990 1995 2000 2005 2010

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,
Burton Smith, Chris Batten, a%d Krste Asanovig

& But Clock Frequency Scaling Replaced
by Scaling Cores / Chip

1.E+07
15 Years of exponential growth ~2x year has ended .
1.E+06 ¢ Transistors (in Thousands)
B Frequency (MHz)
1.E+05 o Cores
1.E+04
1.E+03
1.E+02
1.E+01 . s
) w ®
1.E+00 - v <
1.E-01 ; ; ; ; ; . .
1970 1975 1980 1985 1990 1995 2000 2005 2010

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,
Burton Smith, Chris Batten, aqd Krste Asanovig

(Performance Has Also Slowed,
Along with Power

1.E+07))
Power is the root cause of all this
s

1.E+06

® Transistors (in Thousands)
1.E+05 ® Frequency (MHz) So

Power (W)

1.E+04

® Cores

1.E+01
A 2 ®
)/ n °
1.E+00 A - <
1.E'01 T T T T T T T
1970 1975 1980 1985 1990 1995 2000 2005 2010

Data from Kunle Olukotun, Lance Hammond, Herb Sutter,
Burton Smith, Chris Batten, a%d Krste Asanovig

6
<~ Power Cost of Frequency

e Power « VO":age2 X Frequency (VZF)

 Frequency « Voltage

* Power «Freaue
Cores Freq \Perf Power @m

Superscalar
O.45X
[Multicore 2X O.75X\O.757/ 1.5X 0.8X

N _/
(Bigger # is better)

1.5X | 15X 3.3X

“New" Superscalar IX 15X

50% more performance with 20% less power

Preferable to use multiple slower devices, than one superfast device

N
<= Moore’s Law reinterpreted

 Number of cores per chip will double every
two years

* Clock speed will not increase (possibly
decrease) because of Power

Power < Voltage® * Frequency

Voltage o< Frequency

3
Power o< Frequency

* Need to deal with systems with millions of
concurrent threads

* Need to deal with inter-chip parallelism as
well as intra-chip parallelism

WHAT WE WILLFINDIN A
BOX?

Intel Sandy Bridge (January 6 201 1)
2" Gen Intel® Core™ Processor Overview

ngh BWIIow-Iatency modular
Next Generatlonllntelﬁ’ Turbo -Ore/ 1€ 1€

High Bandwidth

I I l Ii I Display

Next Generatlon Processor

Integrated quog3¢ontroller

Intel® Hyper-Threading
Discrete Graphics Support: T‘::ﬁ:‘ub:::::d Technology ,

Embedded Display Port

Intel XEON 2012

Read:

lemory

4 x 8 cores 8-word wide ~PR3&DDR3L

Sandy Bridge CPUs QPIL
Socket R: Up to 8 cores / socket Socket R: 2 QPI links
Socket B2: Up to 8 cores / socket Socket B2: 1 QPI link

Manageability
Node Manager

Data Center Manager
Interface ‘

Intel® yPro™
Technology (for WS)

Intel® AMT
Technology (for WS)

Intel® C600 series
chipset (Patsburg PCH)
Optimized Server & WS PCH
Integrated Storage:

Up to 8 ports 6Gb/s SAS
RAID 5 optional

Intel® C600
series chipset

RDIMMs & UDIMMs, LR DIMMs

Socket R: 4 channels per socket, up
to 3 DPC; speeds up to DDR3 1600

Socket B2: 3 channels per socket, up
to 2 DPC; speeds up to DDR3 1600

Intel®
A\ LOM Options
W] 1GbE:
Hartwell

_____ 4 Powerville

10GbE:
Twinville (10GBase-T)
Niantic (SfI/KR)

PCI Express 3.0%*

Socket R: 40 lanes per socket
Socket B2: 24 |lanes per socket
Extra Gen 2 x4 on 2" CPU

AMD Buldozer CORE (next quarter)

Bulldozer

What it is:

A monolithic dual core building block that “Bulldozer”
supports two threads of execution - -

How it works:
Shares latency-tolerant functionality
Smoothes bursty/inefficient usage
Dynamic resource allocation between threads

Customer Benefits:

Greater scalability and predictability than two
threads sharing a single core

Throughput advantages for multi-threaded
workloads without significant loss on serial
single-threaded workload components
When only one thread is active, it has full
access to all shared resources

Estimated average of 80% of the CMP
performance with much less area and power *

The Adwre i Rusicr

@ 6 | Hot Chips | A L ' *Based on intemal AMD modeling using benchmark simulations AMD

AMD Buldozer CHIP (next quarter)
Read:

N x M cores “8-word wide”

Building a Bulldozer-Based Chip

Shared L3 Cache and NB

Each chip is composed of multiple bulldozer modules
Module divisions are transparent to shared hardware, operating system or application
The modular architecture speeds chip development and increases product flexibility

@ B s/ Hotchk AMD
™he hAwe i lusion

¢ Commaodity plus Accelerators

icLor-

Commodity Accelerator (GPU)
Intel Xeon Nvidia C2050 “Fermi”
8 cores 448 “Cuda cores”
3 GHz 1.15 GHz

84 opsl/cycle / €
96 Gflop/s (DP) 515 Gflop/s (DP)

Device Memory

erconnect
PCI-X 16 lane

64 Gb/s

1 GWI/s

45

L
- We Have Seen This Before

* Floating Point Systems FPS-164
Scientific Computer (1976)

* Intel Math Co-processor (1980)
* Weitek Math Co-processor (1981)

'

l The lntel 3_.:.__": SSOY here's one for every machine. 105 FAST! -
18 for crunchm0 numbem Taster ' e

¢. Balance Between Data Movement and
- Floating point

* FPS-164 and VAX (1976)
* 11 Mflop/s; transfer rate 44 MB/s

= Ratio of flops to bytes of data movement:
1 flop per 4 bytes transferred

* Nvidia Fermi and PCI-X to host
* 500 Gflop/s; transfer rate 8 GB/s

= Ratio of flops to bytes of data movement:
62 flops per 1 byte transferred

* Flop/s are cheap, so are provisioned in
excess Y

Dominated by data movement NOW!
We use only 5% of availiable “‘d"flops

o/ ¢ . s
EcalRawToRecHitProducer hltEcalRecHitAll - CYCLES: 25708037 60 A aCtlve

STALLED: 40.2% - CPI: 0.98

Stalls composition Store-forward stalls co

—3 L2 miss impact: 44.172% —& Loads blocked by unknown)
address store impact: 80.790%

— L2 hit impact: 21.537%

o Loads overlapped with stores
—3 L/ dtlb miss impact: 3.987% impact: 12.310%

—— 3 LCP stalls impact: 1.216%

Loads spanning across cache

" L—@ Store-fivd stalls impact: 29.088% — line impact: 6.900%

Instruction type (ITLB miss rate = 0.01%) Mispredicted branches = 0.01486

This value is the fraction of branches

| = Loads: 25.103% 0100 14t were mispredicted.
500/ 4 Stores: 13.753%
(o)
¢ 1T — —10 Branches: 16.462% _
com afion 0.050

O n ngl e / ﬂ]j o u b—le—EI SIMD Computational: 0.000%

)

— Other: 44.682%
wor
X‘

nVidia Fermi Architecture Read:

16 cores 32-world wide
*Up to 512 cores

« 16 Streaming multiprocessors each
with 32 cores @ 1.3GHz
-Parallel DataCache
« 64 KB Shmem/L1 Cache
- 768 KB Unified L2 Cache

EEEENEEENEEEEEEE
EEEEEEEEEE

I

|

I

I

|

I
H ||
u ||
| u
o u
o ||
| | ||
H H
o [

—
| | [|

EEEEEEEEE

*Six 64-bit memory partitions

« 384-bit memory interface
« Upto6 GB GDDR5 DRAM

TITTTT

*Up to 16 concurrent kernels

ENNENNEENEEEEEEE
HEEEEEEN
ENEEEEEEEEEEEEEE

*|[EEE floating point math
*ECC memory

16 Dell LHC Team

Fermi Streaming Multiprocssor Architecture

*32 Cores

32-bit Integer ALU with 64-bit
extensions

Full IEEE 754-2008 32-bit and 64-
bit precision
*64 KB Shared Memory/L1 cache

16KB Shmem/48KB cache or SRRSO
48KB Shmem/16KB L1 cache

*16 load/store units

*Dual Warp scheduler (dual
instruction issue)

*Four Special Function Units (SFUs)
for sin, cosine, reciprocal, and square
root operations

®

17 Dell LHC Team

Comparison to Previous nVidia GPGPUs

e V) G80 GT200 Fermi

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating None 30 FMA ops / clock | 256 FMA ops /clock

Point Capability

Single Precision Floating 128 MAD 240 MAD ops / 512 FMA ops /clock

Point Capability ops/clock clock

Special Function Units 2 2 4

(SFUs) / SM

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or
16 KB

L1 Cache (per SM) None None Configurable 16 KB or
48 KB

L2 Cache None None 768 KB

ECC Memory Support No No Yes

Concurrent Kernels No No Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit

18

Dell LHC Team

Intel MIC Architecture

Pronounced “Mike”

Many cores with many threads
per core

Standard IA programming and
memory model

Knights Ferry

Read:
32 cores 16-word wide

VECTOR VECTOR VECTOR VECTOR
1A CORE IACORE ,,, | IACORE IA CORE

INTERPROCESSOR NETWORK

COHERENT COHERENT COHERENT
CACHE CACHE - CACHE

COHERENT COHERENT COHERENT
CACHE CACHE s CACHE

INTERPROCESSOR NETWORK

VECTOR VECTOR VECTOR VECTOR
IA CORE IA CORE T IA CORE IA CORE

L
g
5
[
2
@
8
&

MEMORY and I/O INTERFACES

- Software development platform

+ 1-2GB GDDRS5 connected to host
memory through PClI DMA
operations with virtual addressing

* Intel HPC developer tools

32 Cores @ 1.2 GHz
v 4 threads/core, 128 total parallel threads
v" 32KB i-cache, 32KB d-cache
v 256KB coherent L2 cache (8MB total)
v 512bit vector unit
16 Single precision FLOPs/clock
8 Double precision FLOPS/clock

MIC Programming Environment

*Inherently supports OpenMP.
*Virtual memory environment extends back to host memory.
*Intel Parallel Studio and Cluster Studio support MIC.

*Optimizing performance will take almost as much effort as for
CUDA and OpenCL environments.

Knights Corner
15t Production MIC Co-processor

*Second Half 2012

Knowns:

« 50+ cores

« 22nm manufacturing process
* Unknowns:

* Core frequency
« Size of GDDR5 memory on board

 ECC support

Co-processor Comparison

AMD Intel Knights Intel Knights Corner
Corner Speculationn Speculation2

NVIDIA Fermi Intel Knights Ferry

B
Cores 1600 512 32*4 threads/core = 128 50*4 threads/core = 200 64 *4 threads/core = 256
Core Frequency 700/825 MHz 1.3 GHz 1.2 GH:z 1.2 GH:z 2 GHz
Thread Granularity fine fine coarse coarse coarse
Single Precision
Floating Point 2000/2640 1024 614 960 2048
Capability GFLOPs
Double Precision
Floating Point 400/528 512 307
Capability GFLOPs
GDDR5 RAM 2/4 GB 3-6 GB 1-2 GB ? ?

L1 64KB (16KB Shmem,)\ o (35KB icache, 32KB 64KB (32KB icache, 32KB 64KB (32KB icache, 32KB
48KB L1 or 48KB

cache/processor Shmem, 16KB L1) dcache) dcache) dcache)

L2 8MB coherent total 12MB coherent total 16MB coherent total
768KB shared L2

cache/processor (256KB/core) (256KB/core) (256KB/core)

programming

model

virtual memory no yes yes yes

memory shared

with host

Firestream

CUDA kernels posix threads posix threads posix threads

no no no no

C,C++,CUDA, C,C++, FORTRAN, C,C++, FORTRAN, C,C++, FORTRAN,
OpenCL, OpenMP,CUDA, OpenCL, OpenMP, CUDA, OpenCL, OpenMP,CUDA, OpenCL,
DirectCompute DirectCompute DirectCompute DirectCompute

22 Dell LHC Team

OpenCL,

Software .
DirectCompute

N

< Future Computer Systems @9}

* Most likely be a hybrid design

= Think standard multicore chips and accelerator
(GPUs)

 Today accelerators are attached
* Next generation more integrated

* Intel’s MIC architecture “Knights Ferry” and
“Knights Corner” to come.

= 48 x86 cores AMD
« AMD’s Fusionin 2012 - 2013 RGERNOCISIOEE)

= Multicore with embedded graphics ATI

* Nvidia’s Project Denver plans to develop
an integrated chip using ARM
architecture in 2013.

55

Content of a box (server)

— Very soon
» 4 highly interconnected chips with 8 “vector”-core each

» Fast access to peripherals

— Soon
» As above + one (or more!?) coprocessor(s)

» Faster and faster communication among host and coprocessor

» Better and better sharing of resources (memory)

— Not so far in future
» Core and coprocessors integrated in a chip or very close together

» Seamless instruction and data sharing among them

24

WHAT TO DO WITH SUCH
A BOX?

25

Optimization on many core

— Efficient use of shared resources

» Main memory, shared caches, I/O

— Minimize communication

» Including back-&-forth to main memory

— Remove synchronization-barriers

» Mostly implicit in traditional sequential scheduling
— Streamline code to allow vectorization
— New programming paradigm

» Think local and parallel!

» Decompose a problem vertically (parallel) first, then horizontally
(sequentially)

» Consider speculative computation in place of likely miss-predicted
branches

» Prefer deterministic algorithm to recursion, hit/miss

26

HEP Application

Application
Manager | > S C'Event \ Converter
- . Selector =[] éndl
7 heY .] AwxParCandidates fr
e ~ . =-_] Mc . :
b 3 Event Data e o || Persistency
Service / Service 1 MCverices Service
] Raw
. Transient
JobOptions
Service — Algomfhm H \EVCHT STOF‘ej
: g Transient ;
Particle .Pr'op. / \ Detec . Data Detector Persistency
Service Service Store Service
Other
Services , Transient)
| Histogram Histogram Persistency
| Service Store Service

Data
Files

Data
Files

27

~1.2 GB

CMS offline software memory budget

Event specific data

Read only data

eometry,

magnetic field,

conditions and alignment,
hysics processes, etc

Code

28

~1.2 GB

CMS offline software memory budget

Event specific data

Read only data

hysiics processes, etc

COMMON!

29

CMS near future multicore strategy:
forking

Shared common data

30

C-o-W*

— Most (all?) of the common const data / code can
actually be brought in the application very early

— If you fork at that point, the kernel is actually
smart enough to share the common data memory
pages between parent and the children

— The kernel “un-shares” the memory pages only
when one of the processes writes to them

— New allocations (i.e. event data) end up in non
shared pages

* Copy-on-Write

Shared Data (kB)

Forking: memory sharing

Shared Data vs Time Private Data vs Time
800000 800000
600000 600000
[ie)
X
o
®
400000 QO 400000
(o)) - -
@ o '
= f
i ‘r
200000 200000 ‘J

M 2 L N 0 ' 1 " " N
00:00.000 01:00.000 02:00.000 03:00.000 04:00.000 05:00.000 00:00.000 01:00.000 02:00.000 03:00.000 04:00.000 05:00.000

Time since start of process (minutes) Time since start of process (minutes)

Measurements done using reconstruction with 64bit software on 4
CPU, 8 core/CPU 2GHz AMD Opteron(tm) Processor 6128

Shared memory per child: ~700MB We suddenly
Private memory per child: ~375MB

have lots of
Total memory used by 32 children: 13GB @ free memory
Total memory used by 32 separate jobs: 34 GB available

32

Forking: throughput

Events/sec vs Number of Cores

50.0
+ Measured Forked
O Measured Separate Jobs
37.5 .
o - Perfect Scaling
Q +
3 T+
£ 250 z
<))
>
i
12.5
0
0 8 16 24 32 40

Number of Cores Used

33

Events/sec/core vs Number of Cores

1.100

o
o
n
33

0.550

Events/sec/core

(=)
[
~
o

Number of Cores Used

ey + . . i
¥ &
+ Measured Forked
O Measured Separate Jobs
0 8 16 24 32 40

34

Problems

— /O “consolidation” non solved yet

» There are still multiple input and output buffers plus independent output
streams

» Will require introducing explicit distributor and collector processes.

— Memory accounting gets more complicated

All the nice accounting tools we had for RSS memory are now useless. We need
something which is capable to keep sharing of pages into account. See
http://www.selenic.com/smem/ and http://lwn.net/Articles/230975/ for some ideas.

— Deleting “common” objects make them non-shared!

This actually a problem when you are border-line with memory usage. The final
deletion of common part has to be avoided to prevent a swap-storm.

A newly desighed framework may prefer an
explicit shared memory model

35

“Whole-node” scheduling

Exploiting this new processing model requires a new model in
computing resources allocation as well

Experiments need to have control over a larger quantum of resources
as multi-core aware jobs require scheduling of multiple cores at the same time

Correct resource accounting fundamental (and gets trickier)

Whole-Node Job Submission Task Force*

whole-node-task-force@cern.ch
(mandated by WLCG-MB, chaired by Peter Elmer)

36

“Whole-node” scheduling

One natural unit in the system is the
“whole node”: the physical thing running
one copy of the OS and sharing a set of
resources (CPU, disk, network, etc.)

The applications explicitly take over the management iy
of the sharing of resources within the “whole node”
quantum of resources

Compatible with current modus-operandi, will allow
moving to forking / multi-threading, allowing for
optimization of data/workflow management: |/O
caching, local merging, etc

Sites only need to care about the whole node, not
individual processes

A move to a proper “whole node” accounting for
CPU / memory use, etc. recognizes the role of the
OS in optimizing access to resources

37

Gaudi : HEP Event Processing

*Transient Event
Store : Part of Framework
*Stores DataObjects during

/ \ Data T1 .
processing
o Data T2, T3 *Loaded from Persistent
a2 StOrage at Start
Data T3 .
. , *Constantly modified
Transient Event Data T2 _ .
Data Store Data T4 ﬂ[gorztﬁm durlng run
4 B
Data T3, T4 Data T4
" Algorithm
« Data T5 C <::]
K // Real dataflow

Af—
Data T5 U

Multi-threading scheduler

Current single threaded processing

— [[e e @

algorithm/module

Unrelated parts could be elaborated by separate
threads to increase throughput

-
@ — > - @

38

Behavior / bottlenecks can be “estimated” even now

Average module processing
duration (single threaded)
is well known

Module A

Module B

Module C

Module D

time
Module dependencies are known

Number of Running Modules vs Time for TTBar RECO

N
o

-b
(o))

—
N

(o 0]

=N

El d
Tracking mleJ%tr'\~ Find Png

4ll Y -

- > 4

0 0.5 1.0 1.5 2.0
Average time processing one event (sec)

Number of concurrently running modules

o

Not worth with current tracking algorithms.

¢ PLASMA: Parallel Linear Algebra s/w

ICL ’

for Multicore Architectures

‘Objectives
= High utilization of each core Cholesky

= Scaling to large number of cores
= Shared or distributed memory

‘Methodology
= Dynamic DAG scheduling (QUARK)
= Explicit parallelism
= |Implicit communication
= Fine granularity / block data layout

-Arbltrary DAG with dynamlc schedulmg

i % = é;"g- -5 == JForkioin
% ____; = ====1 parallelism

DAG scheduled
parallelism

Time > 70

41

£ Pipelining: Cholesky Inversion

"~ 3 Steps: Factor, Invert L, Multiply L’s
LAUUM ré;;:
48 cores

POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000, tile size is 200 x 200,

POTRF+TRTRI+LAUUM: 25 (7t-3)
Cholesky Factorization alone: 3t-2

Pipelined: 18 (3t+6)

42

43

Toward an Effective Parallel Architecture

Heterogeneous hardware, caps |
multiple parallelism forms

granularity

A

Grid. Cluster. Box pplication programmers’ level

Files, htep

Box, Chi - : Dynamic,

Modules, Algorithms

Core, Thread,Vector

load balancing oriented

Target accelerators and manycores

Data st llel
ata steanpararclisnEsse locality oriente

Memory Instruction level parallelis

Mod

ules

SIMD Instructions (SSE,

Algorith argeted by compile

June 2011 www.caps-entreprise.com 6

7 4

Hybrid Programming for Future Manycores cArs

Agnostic programming is paramount
o Highlight parallelism not its implementation

Use the right parallelism level for each part
o Software engineering is important

o Separate application issues from performance issues
» Specialized components, libraries, ...

Do no expect a common programming API for all levels
o APl always makes some underlying architecture assumptions
» Fixing APl makes hypothesis on the future of architectures

o No low level programming APl common to all devices

o An APl addresses a specific hardware component as a consequence we
need many

Plan for debugging and tuning
o Parallel bugs are nasty
o Tuning is target specific

June 2011 www.caps-entreprise.com 7

Design for efficient parallelism

— Fuzzy boundaries among “computational domains”

» Workflows, applications, event, detector, “data-object”

— Look for innovative (revolutionary?) problem decompositions
» ldentify sizable computational chucks that replicates on “identical” data
 down to the lowest possible granularity!
— Compilers and cpu can be quite smart, still...
» They still need “help” from the software-developers

» Naive OO design can easily obfuscate the actual
“communication” (memory access) and computation pattern

Parallel programming is “tricky”:

Better to get inspiration from a model that works. Look at OpenCL
» Memory Model (“notebooks” vs “whiteboard”)
» Scheduling (commands queued to devices in a context)

» Task synchronization using “events” (effective DAG)

46

OpenCL Memory Model

* Private Memory

Private Private

- Per work-item Memory — Memory
° Local Memory Work-ltem | 'Work-ltem

- Shared within a workgroup \
’ o Workgroup

- Visible to all workgroups
’ HOSt Memory Computer Device

- On the CPU

47

Private Private
Memory Memory

Work-ltem Work-Iltem

Local Memory

Workgroup

‘ Global/Constant Memory v

Host Memory

* Memory management is explicit

You must move data from host -> global -> local and back
Whiteboard => Notebooks => Whiteboad ™~

Memory Consistency

« “OpenCL uses a relaxed consistency memory model; i.e.
- the state of memory visible to a work-item is not guaranteed to be
consistent across the collection of work-items at all times.”

* Within a work-item:
- Memory has load/store consistency to its private view of memory

* Within a work-group:
- Local memory is consistent between work-items at a barrier

* Global memory is consistent within a work-group, at a
barrier, but not guaranteed across different work-groups

+ Consistency of memory shared between commands (e.qg.
kernel invocations) are enforced through
synchronization (events)

- Page 21

Execution on GPUs

Execution on CPUs

Cannot synchronize
across work groups

J
Note: Work-items may be merged by the compiler for parallel execution on SSE/AVX lanes.

J

i
Executes on
the same core

- Page 36

1st Command queue

clEnqueueNDRangeKernel()
clEnqueueWriteBuffer()
clEnqueueWriteBuffer()
clEnqueueNDRangeKernel()
clEnqueueReadBuffer()
clEnqueueReadBuffer()
clEnqueueWriteBuffer()
clEnqueueNDRangeKernel()
clEnqueueReadBuffer()

S —

(fcIEnqueueBarrier()

clEnqueueNDRangeKernel()
clEnqueueWriteBuffer()
clEnqueueWriteBuffer()

Barriers between queues: clEnqueueBarrier doesn’t work

2" Command queue

clEnqueueReadBuffer()
clEnqueueReadBuffer()
clEnqueueWriteBuffer()
clEnqueueNDRangeKernel()
clEnqueueReadBuffer()
clEnqueueNDRangeKernel()

clEnqueueNDRangeKernel()
clEnqueueWriteBuffer()
clEnqueueWriteBuffer()
clEnqueueNDRangeKernel()
clEnqueueReadBuffer()
clEnqueueReadBuffer()
clEnqueueWriteBuffer()
clEnqueueNDRangeKernel()
clEnqueueReadBuffer()

e ———

clEnqueueBarrier()

clEnqueueNDRangeKernel()
clEnqueueWriteBuffer()
clEnqueueWriteBuffer()
clEnqueueReadBuffer()
clEnqueueReadBuffer()
clEnqueueWriteBuffer()
clEnqueueNDRangeKernel()
clEnqueueReadBuffer()
clEnqueueNDRangeKernel()

- Page 106

Barriers between queues: this works!

1st Command queue

clEnqueueNDRangeKernel()
clEnqueueWriteBuffer()
clEnqueueWriteBuffer()
clEnqueueNDRangeKernel()
clEnqueueReadBuffer()
clEnqueueReadBuffer()
clEnqueueWriteBuffer()
clEnqueueNDRangeKernel()

clEnqueueReadBuffer() —
clEnqueueBarrier()
clEnqueueWaitForEvent(event)

2" Command queue

clEnqueueNDRangeKernel()
clEnqueueWriteBuffer()
clEnqueueWriteBuffer()
clEnqueueNDRangeKernel()
clEnqueueReadBuffer()
clEnqueueReadBuffer()
clEnqueueWriteBuffer()
clEnqueueNDRangeKernel()

—clinaucueReadBuffer()

clEnqueueMarker(event)

clEnqueueNDRang

clEnqueueNDRangeKernel()

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueReadBuffer() clEnqueueReadBuffer()
clEnqueueReadBuffer() clEnqueueReadBuffer()
clEnqueueWriteBuffer() clEnqueueWriteBuffer()
clEnqueueNDRangeKernel() clEnqueueNDRangeKernel()
clEnqueueReadBuffer() clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

- Page 107

Vector Addition - Host Program
L | Build the program | . ..

Define platform and queues
!/ A k:dCl. LIl Ll1loulw UL T U UTV LT O aoouilawmssud Wl Lll L/Ulll.ext / create and Setup kernel
clGetContextInfo (context, CL CONTEXT DEVICES, O, k . I . ; W) ;
NULL, &cb);
devices = malloc(cb); // set the args values
clGetContextInfo (context, CL CONTEXT DEVICES, cb, err = clSetKernelArg(kernel, 0, (void *) &memocbjs[0],
devices, NULL) ; sizeof (cl mem));
err |= clSetKernelArg(kernel, 1, (void *)é&memcbijs[1l],
// create a command-queue sizeof (cl mem));
cmd queue = clCreateCommandQueue (context, devices[0], err |= clSetKernelArg(kernel, 2, (void *)&Bemobjs[2],
W, UL 7 i eof (c] mem));
. . // set work-item dimensions
Define Memory objects global w
Execute the kernel
// execu_ _ _ _ N
err = clEnqueueNDRangeKernel (cmd queue, kernel, 1,
NULL, global work size, NULL, 0, NULL, NULL);

// rea
err = Read results on the host .,

r ——

// create *he mrasrom

proaron © Create the program '

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.

- Page 47

7 4

What is Stream Computing? CAPS

A similar computation is performed on a collection of
data (stream)

o There is no data dependence between the computation on
different stream elements

+ Stream programming is well suited to GPU and vector-cpu!

kernel void Fct (float a<>, float b<>, out float c<>) {

e b; Al0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[] A[]

int main(int argc, char** argv) {
int 1, 3J; B[O] B[1] B[2] B[3] B[4] BI[5] BI[6] B[7] B8] B[9]

float a<10, 10>, b<1l0, 10>, c<10, 10>;
float input a[10][10],input b[10][10], input g[10] j10]; \
for (i=0; i<10; i++) {
for (j=0; j<10; J++) { Fot Fot Fo

Fao

input al[i][j] = (float) i; ‘
input b[i] []J] = (float) j;
}
} .
streamRead (a, 1nput_a); C[(\" C[41 C[:‘\"' C[G'v C[‘” C[r'! C[F" C[v'! C[Fﬂ C[g]

streamRead (b, input b) ;
Fct(a, b, ¢);
streamWrite (¢, input c);

. Brook+ example

“June 2011 —— e — — WWW.Caps entr lvl:\J\l-bVI‘Hi ! 5

atan2: sequential vs vector optimization

Traditional sequential

code = 0;

if(x <0.0) code = 2;

if(y <0.0) code |= |;

if(x==0.0) {
if(code & 1) return(-PIO2F);
if(y == 0.0) return(0.0);
return(PIO2F);

}

if(y ==0.0) {
if(code & 2) return(PIF);
return(0.0);

}

switch(code) {

default:

case 0:

case |: w = 0.0; break;

case 2: w = PIF; break;

case 3: w = -PIF; break;

}

return w + atanf(y/x); // more if,div + a poly

Vector kernel

float xx = fabs(x);
float yy = fabs(y);
float tmp =0.0f;
if (yy>xx) { // pi/4

tmp = yy; YY=XX; XX=tmp;
}
float t=yy/xx;
float z=t;
if(t > 0.4142135623730950f) // pi/8

z = (t-1.0f)/(t+1.0f); // always computed

// 2 divisions will cost more than the poly
float ret = poly(z);

if (y==0) ret=0.0f;
if(t>0.4142135623730950f) ret += PIOA4F;
if (tmp!=0) ret = PIO2F - ret;

if (x<0) ret = PIF - ret;

if (y<O) ret = -ret;

return ret;

56

sin-cos: sequential vs vector optimization

Traditional sequential

int sign = |;
if(x<0)x=-x;

if(x > T24MI) return(0.0);
int j = FOPI * x;

floaty = j;

if(j& 1) {j+=1; y+=1.0;}
j&=17;

if(j > 3) {j -=4; sign = -sign;}
if(j > 1) sign = -sign;

if(x > lossth) x = x - y * PIO4F;

else x = ((x -y * DPI) -y * DP2) - y * DP3;

if(j==1) || (==2)) cos = polyl(x);
else cos = poly2(x);
if(sign < 0) cos = -cos;

return cos;

Vector kernel

float x = fabs(xx);

IIx= (x>T24M1)? T24MI : x;
int j = FOPI * x;

=) & (1)

floaty = j;

float signS = (j&4);

i=2;

float signC = (j&4);

float poly = (j&2);

x = ((x-y*DPI) -y *DP2) -y * DP3;
cos = polyl(x);

sin = poly2(x);

if(poly!=0) { swap(cos,sin);}

if(signC == 0) cos = -cos;

if(signS == 0) sin = -sin;

if (xx<0) sin = -sin;

57

Data Organization AoS vs SoA

— Traditional Object organization is an Array of Structure

» Abstraction often used to hide implementation details at object level

— Difficult to fit stream computing

— Better to use a Structure of Arrays

X X, [X5 [X, [X5 [X |
LY Y5 [Y [Ya [Ys [Ye |
12,12, 12, (2, [Z; |Z, |

— OO can wrap SoA as the AoS

» Move abstraction higher

» Expose data layout to the compiler

— Explicit copy in many cases more efficient

» (notebooks vs whiteboard)

Summary

— Next generations of generic computers will contain several
multicore vector cpus connected with manycore accelerators

— Efficient software will require a design that highlights parallelism
» Novel problem decomposition
» High granularity task (allow global optimization of DAG)
» Explicit memory model (“notebooks” vs “whiteboard”)
» SoA instead of AoS (ease stream computing)

» Long stream-kernels (maximize (G)flops over (G)B/s)

— The Event Processing Framework will have to enable such an
approach
» Task scheduling
» Memory Model & Data transformation

» Library of optimized algorithms

https://twiki.cern.ch/twiki/bin/view/LCG/MultiCoreRD

58

