
1	

HEP physics software applications on
many-core: present and perspectives���

 ���
SuperB Workshop, July `11 ���

���

	

Vincenzo Innocente	

CERN	

High Performance Computing ���
for High Energy Physics 	

https://twiki.cern.ch/twiki/bin/view/LCG/MultiCoreRD	

2	

3	

4	

5	

6	

WHAT WE WILL FIND IN A
BOX?	

7	

Intel Sandy Bridge (January 6th 2011)	

8	

9	

Intel XEON 2012	

Read:	

4 x 8 cores 8-word wide	

AMD Buldozer CORE (next quarter)	

10	

AMD Buldozer CHIP (next quarter)	

11	

Read:	

N x M cores “8-word wide”	

12	

13	

14	

Dominated by data movement NOW!���
We use only 15% of availiable “d”flops	

15	

60% “active”	

50%
“computation 	

on single/double
word”	

16 Dell LHC Team

nVidia Fermi Architecture
• Up to 512 cores

•  16 Streaming multiprocessors each
with 32 cores @ 1.3GHz

• Parallel DataCache
•  64 KB Shmem/L1 Cache
•  768 KB Unified L2 Cache

• Six 64-bit memory partitions
•  384-bit memory interface
•  Up to 6 GB GDDR5 DRAM

• Up to 16 concurrent kernels

• IEEE floating point math

• ECC memory

Read:	

16 cores 32-world wide	

17 Dell LHC Team

Fermi Streaming Multiprocssor Architecture
• 32 Cores

•  32-bit Integer ALU with 64-bit
extensions

•  Full IEEE 754-2008 32-bit and 64-
bit precision

• 64 KB Shared Memory/L1 cache
•  16KB Shmem/48KB cache or

48KB Shmem/16KB L1 cache

• 16 load/store units

• Dual Warp scheduler (dual
instruction issue)

• Four Special Function Units (SFUs)
for sin, cosine, reciprocal, and square
root operations

18 Dell LHC Team

Comparison to Previous nVidia GPGPUs

Confidential 19 Dell LHC Team

32 Cores @ 1.2 GHz
  4 threads/core, 128 total parallel threads
  32KB i-cache, 32KB d-cache
  256KB coherent L2 cache (8MB total)
  512bit vector unit

•  16 Single precision FLOPs/clock
•  8 Double precision FLOPS/clock

Intel MIC Architecture
Pronounced “Mike”

Many cores with many threads
per core

Standard IA programming and
memory model

Knights Ferry
•  Software development platform

•  1-2GB GDDR5 connected to host
memory through PCI DMA
operations with virtual addressing

•  Intel HPC developer tools

Read:	

32 cores 16-word wide	

20 Dell LHC Team

MIC Programming Environment

• Inherently supports OpenMP.

• Virtual memory environment extends back to host memory.

• Intel Parallel Studio and Cluster Studio support MIC.

• Optimizing performance will take almost as much effort as for
CUDA and OpenCL environments.

21 Dell LHC Team

Knights Corner
1st Production MIC Co-processor

• Second Half 2012
•  Knowns:

•  50+ cores
•  22nm manufacturing process

•  Unknowns:
•  Core frequency
•  Size of GDDR5 memory on board
•  ECC support

22 Dell LHC Team

Co-processor Comparison
	

AMD	
Firestream 	 NVIDIA	 Ferm i 	 Intel	 Knig hts	 Ferry

	 Intel	 Knig hts	
C orner	 Speculation

	 Intel	 Knig hts	 C orner	
Speculation2

C ores 1600 512 32*4 	 threads/core	 = 	 128 50*4 	 threads/core	 = 	 200 64*4 	 threads/core	 = 	 256
C ore	 Frequency 700/825	 MH z 1.3	 GH z 1.2	 GH z 1.2	 GH z 2	 GH z
Thread	 Granularity fine fine coarse coarse coarse
Single	 Prec ision	
Floating 	 Point	
C apability	 GFLO Ps

2000/2640 1024 614 960 2048

Double	 Prec ision	
Floating 	 Point	
C apability	 GFLO Ps

400/528 512 307 480 1024

GDDR5	 RAM 2/4 	 GB 3-‐ 6	 GB 1-‐ 2	 GB ? ?

	 L1	
cache/processor

64KB	 (16KB	 Shmem,	
48KB	 L1	 or	 48KB	
Shmem,	 16KB	 L1)

64KB	 (32KB	 icache,	 32KB	
dcache)

64KB	 (32KB	 icache,	 32KB	
dcache)

64KB	 (32KB	 icache,	 32KB	
dcache)

	 L2	
cache/processor

768KB	 shared	 L2 8MB	 coherent	 total	
(256KB/core)

12MB	 coherent	 total	
(256KB/core)

16MB	 coherent	 total	
(256KB/core)

	 programming	
model

C UDA	 kernels posix	 threads posix	 threads posix	 threads

	 virtual	 memory no yes yes yes
	 memory	 shared	
with	 host

no no no no

Software
OpenC L,	

DirectC ompute

C ,	 C ++ ,	 C UDA,	
O penC L,	

DirectC ompute

C ,	 C ++ ,	 FO RTRAN,	
O penMP,	 C UDA,	 O penC L,	

DirectC ompute

C ,	 C ++ ,	 FO RTRAN,	
O penMP,	 C UDA,	 O penC L,	

DirectC ompute

C ,	 C ++ ,	 FO RTRAN,	
O penMP,	 C UDA,	 O penC L,	

DirectC ompute

23	

Content of a box (server)	

–  Very soon	

»  4 highly interconnected chips with 8 “vector”-core each	

»  Fast access to peripherals	

–  Soon	

»  As above + one (or more?) coprocessor(s)	

»  Faster and faster communication among host and coprocessor	

»  Better and better sharing of resources (memory)	

–  Not so far in future	

»  Core and coprocessors integrated in a chip or very close together	

»  Seamless instruction and data sharing among them	

24	

WHAT TO DO WITH SUCH
A BOX?	

25	

Optimization on many core	

–  Efficient use of shared resources	

»  Main memory, shared caches, I/O	

–  Minimize communication	

»  Including back-&-forth to main memory	

–  Remove synchronization-barriers	

»  Mostly implicit in traditional sequential scheduling	

–  Streamline code to allow vectorization	

–  New programming paradigm	

»  Think local and parallel!	

»  Decompose a problem vertically (parallel) first, then horizontally
(sequentially)	

»  Consider speculative computation in place of likely miss-predicted
branches	

»  Prefer deterministic algorithm to recursion, hit/miss	

26	

HEP Application	

27	

Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

AlgorithmAlgorithm

Transient
Event Store

Detec . Data
Service

Persistency
Service

Data
Files

Transient
Detector

Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram

Store

Application
Manager

Converter
ConverterEvent

Selector

Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

AlgorithmAlgorithm

Transient
Event Store

Detec . Data
Service

Persistency
Service

Data
Files

Transient
Detector

Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram

Store

Application
Manager

Converter
ConverterEvent

Selector

CMS offline software memory budget 	

Event specific data	

Read only data	

geometry,	

magnetic field, 	

conditions and alignment,	

physics processes, etc	

Code	

~1.2 GB	

28	

CMS offline software memory budget 	

Event specific data	

Read only data	

geometry,	

magnetic field, 	

conditions and alignment,	

physics processes, etc	

Code	

~1.2 GB	

COMMON!	

29	

CMS near future multicore strategy: ���
 forking	

Event
specific	

data	

Shared common data	

Event
specific	

data	

Event
specific	

data	

Event
specific	

data	

Event
specific	

data	

Event
specific	

data	

30	

C-o-W*	

– Most (all?) of the common const data / code can
actually be brought in the application very early	

–  If you fork at that point, the kernel is actually
smart enough to share the common data memory
pages between parent and the children	

–  The kernel “un-shares” the memory pages only
when one of the processes writes to them	

– New allocations (i.e. event data) end up in non
shared pages	

* Copy-on-Write	

31	

Forking: memory sharing	

Measurements done using reconstruction with 64bit software on 4
CPU, 8 core/CPU 2GHz AMD Opteron(tm) Processor 6128
Shared memory per child: ~700MB	

Private memory per child: ~375MB	

Total memory used by 32 children: 13GB	

Total memory used by 32 separate jobs: 34 GB	

	

Short periods of high parallelism

Extended periods of only 1 or 2 modules running
Tracking	

Electron and muon finding	

We suddenly
have lots of
free memory
available	

32	

Forking: throughput	

Short periods of high parallelism

Extended periods of only 1 or 2 modules running
Tracking	

Electron and muon finding	

33	

Problems	

– I/O “consolidation” non solved yet	

»  There are still multiple input and output buffers plus independent output
streams 	

»  Will require introducing explicit distributor and collector processes.	

– Memory accounting gets more complicated	

All the nice accounting tools we had for RSS memory are now useless. We need

something which is capable to keep sharing of pages into account. See
http://www.selenic.com/smem/ and http://lwn.net/Articles/230975/ for some ideas.	

– Deleting “common” objects make them non-shared!	

This actually a problem when you are border-line with memory usage. The final

deletion of common part has to be avoided to prevent a swap-storm.	

	

A newly designed framework may prefer an
explicit shared memory model	

34	

“Whole-node” scheduling	

Exploiting this new processing model requires a new model in

computing resources allocation as well	

Experiments need to have control over a larger quantum of resources 	

as multi-core aware jobs require scheduling of multiple cores at the same time	

Correct resource accounting fundamental (and gets trickier)	

Whole-Node Job Submission Task Force* ���
whole-node-task-force@cern.ch ���

(mandated by WLCG-MB, chaired by Peter Elmer)	

35	

“Whole-node” scheduling	

One natural unit in the system is the
“whole node”: the physical thing running
one copy of the OS and sharing a set of
resources (CPU, disk, network, etc.)	

The applications explicitly take over the management
of the sharing of resources within the “whole node”
quantum of resources	

Compatible with current modus-operandi, will allow
moving to forking / multi-threading, allowing for
optimization of data/workflow management: I/O
caching, local merging, etc	

Sites only need to care about the whole node, not
individual processes	

A move to a proper “whole node” accounting for
CPU / memory use, etc. recognizes the role of the
OS in optimizing access to resources	

36	

Gaudi : HEP Event Processing	

• Transient Event
Store : Part of Framework	

• Stores DataObjects during
processing	

• Loaded from Persistent
Storage at Start	

• Constantly modified
during run	

37	

algorithm/module	

Unrelated parts could be elaborated by separate
threads to increase throughput	

Multi-threading scheduler	

Current single threaded processing	

38	

Behavior / bottlenecks can be “estimated” even now	

Average module processing
duration (single threaded)
is well known	

Module dependencies are known	

time	

39	

Tracking	

Electron and
muon finding	

Not worth with current tracking algorithms.	

40	

41	

42	

43	

Toward an Effective Parallel Architecture	

44	

Grid, Cluster, Box	

Files, http	

Workflows, frameworks	

Box, Chip, Core	

Main memory	

Event framework,	

Modules, Algorithms	

Core, Thread, Vector	

Memory chaches	

Modules,	

Algorithms, Functions	

45	

Design for efficient parallelism	

–  Fuzzy boundaries among “computational domains”	

»  Workflows, applications, event, detector, “data-object” 	

–  Look for innovative (revolutionary?) problem decompositions	

»  Identify sizable computational chucks that replicates on “identical” data	

•  down to the lowest possible granularity!	

–  Compilers and cpu can be quite smart, still…	

»  They still need “help” from the software-developers 	

»  Naïve OO design can easily obfuscate the actual
“communication” (memory access) and computation pattern 	

Parallel programming is “tricky”:	

Better to get inspiration from a model that works. Look at OpenCL	

»  Memory Model (“notebooks” vs “whiteboard”)	

»  Scheduling (commands queued to devices in a context)	

»  Task synchronization using “events” (effective DAG)	

46	

47	

Whiteboard => Notebooks => Whiteboad 	

48	

49	

50	

51	

52	

53	

54	

and vector-cpu!	

atan2: sequential vs vector optimization 	

Traditional sequential	

code = 0;	

if(x < 0.0) code = 2;	

if(y < 0.0) code |= 1;	

if(x == 0.0) {	

 if(code & 1) return(-PIO2F);	

 if(y == 0.0) return(0.0);	

 return(PIO2F);	

}	

if(y == 0.0) {	

 if(code & 2) return(PIF);	

 return(0.0);	

}	

switch(code) {	

 default:	

 case 0:	

 case 1: w = 0.0; break;	

 case 2: w = PIF; break;	

 case 3: w = -PIF; break;	

}	

return w + atanf(y/x); // more if,div + a poly	

Vector kernel	

 float xx = fabs(x);	

 float yy = fabs(y);	

 float tmp =0.0f;	

 if (yy>xx) { // pi/4	

 tmp = yy; yy=xx; xx=tmp;	

 }	

 float t=yy/xx;	

 float z=t;	

 if(t > 0.4142135623730950f) // pi/8	

 z = (t-1.0f)/(t+1.0f); // always computed	

 // 2 divisions will cost more than the poly	

 float ret = poly(z);	

	

 if (y==0) ret=0.0f;	

 if(t > 0.4142135623730950f) ret += PIO4F;	

 if (tmp!=0) ret = PIO2F - ret;	

 if (x<0) ret = PIF - ret;	

 if (y<0) ret = -ret;	

	

 return ret;	

55	

sin-cos: sequential vs vector optimization 	

Traditional sequential	

 int sign = 1;	

 if(x < 0) x = -x;	

	

 if(x > T24M1) return(0.0);	

 int j = FOPI * x; 	

 float y = j;	

 if(j & 1) { j += 1; y += 1.0; }	

 j &= 7;	

 if(j > 3) { j -=4; sign = -sign;}	

 if(j > 1) sign = -sign;	

	

 if(x > lossth) x = x - y * PIO4F;	

 else x = ((x - y * DP1) - y * DP2) - y * DP3;	

 if((j==1) || (j==2)) cos = poly1(x);	

 else cos = poly2(x);	

 if(sign < 0) cos = -cos;	

 return cos;	

Vector kernel	

 float x = fabs(xx);	

 // x = (x > T24M1) ? T24M1 : x;	

 int j = FOPI * x; 	

 j = (j+1) & (~1);	

 float y = j;	

 float signS = (j&4);	

 j-=2;	

 float signC = (j&4);	

 float poly = (j&2);	

	

 x = ((x - y * DP1) - y * DP2) - y * DP3;	

 cos = poly1(x);	

 sin = poly2(x);	

 if(poly!=0) { swap(cos,sin);}	

 if(signC == 0) cos = -cos;	

 if(signS == 0) sin = -sin;	

 if (xx<0) sin = -sin;	

 	

56	

Data Organization AoS vs SoA	

–  Traditional Object organization is an Array of Structure	

»  Abstraction often used to hide implementation details at object level	

–  Difficult to fit stream computing	

–  Better to use a Structure of Arrays	

	

–  OO can wrap SoA as the AoS	

»  Move abstraction higher	

»  Expose data layout to the compiler	

–  Explicit copy in many cases more efficient 	

»  (notebooks vs whiteboard)	

57	

Summary	

–  Next generations of generic computers will contain several

multicore vector cpus connected with manycore accelerators	

–  Efficient software will require a design that highlights parallelism	

»  Novel problem decomposition	

»  High granularity task (allow global optimization of DAG)	

»  Explicit memory model (“notebooks” vs “whiteboard”)	

»  SoA instead of AoS (ease stream computing)	

»  Long stream-kernels (maximize (G)flops over (G)B/s)	

–  The Event Processing Framework will have to enable such an
approach 	

»  Task scheduling	

»  Memory Model & Data transformation	

»  Library of optimized algorithms	

58	

https://twiki.cern.ch/twiki/bin/view/LCG/MultiCoreRD	

