F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The Dark Matter density

Fabrizio Nesti

Università dell'Aquila, Italy

LNGS, July 5th 2012

w/ C.F. Martins, G. Gentile, P. Salucci

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

A number of indirect supporting evidences

(galaxy rotation, cluster velocity dispersion, CMB, LSS)

Modify Gravity or Matter

Dark Matter?

(or both)

Modify Gravity: we look still for a healthy theory (I'd say still mainly a theoretical activity)

Dark Matter: still elusive (well, more than Higgs) (good to have many search channels)

Hints (puzzles) from Direct and Indirect searches?

(DAMA, Cogent, CDMS, CRESST, Fermi line(?))

Collisionless? (Bullet cluster) or Collisional? (A520 cluster) (mistery)

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The DM densities

All searches depend on the expected DM density:

In the Solar System

```
Direct laboratory searches at Earth: . . . depend on the local density at earth \rho_0
```

Indirect searches (mainly neutrino annihilation in Sun, Earth) . . . depend on accumulated DM which in turn is driven by ρ_0

In the Galaxy

Looking for decay or annihilation $\dots {\rm depend} \mbox{ on } \rho \mbox{ or } \rho^2 \mbox{ along the l.o.s.}$

Both the Local and Galactic DM density are interesting...

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

Our galaxy

- Bulge/bar (10¹⁰ *M*_☉)
- Stellar disk $(5-7 \times 10^{10} M_{\odot})$
- Dark Matter halo $(10^{11-12} M_{\odot})$

and subleading

- Thick disk (older stars up to $z \sim \text{kpc}$)
- Stellar halo (globular clusters, old BHB, red, brown dwarfs, etc) (at least up to 80 kpc)

F. Nesti

Problem

www.componen

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The DM Density profile

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

DM profiles, Einasto, NFW, Burkert, cusped or cored

(with $x = r/R_H$, scale radius R_H) Triaxiality? small [OBrien+ '10]. Smooth?

Component profiles

Bulge: pointlike (as seen from r > 2 kpc!) $M_B = 1.2$ – $1.7 \times 10^{10} M_{\odot}$

Disk: biexponential, $\Sigma_D = (M_D/2\pi R_D^2)e^{-r/R_D}$ $z_0 = 240$ pc [PR04,juric08,robin08,reyle09] $M_D = 5-7 \times 10^{10} M_{\odot}$ $R_D = 2.5 \pm 0.2$ kpc

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

DM profiles, Einasto, NFW, Burkert, cusped or cored

Component profiles

(with $x = r/R_H$, scale radius R_H) Triaxiality? small [OBrien+ '10]. Smooth?

Bulge: pointlike (as seen from $r > 2\,{
m kpc!}$) $M_B = 1.2\text{--}1.7 imes 10^{10}\,M_\odot$

Disk: biexponential, $\Sigma_D = (M_D/2\pi R_D^2) e^{-r/R_D}$ $z_0 = 240 pc$ [PR04,juric08,robin08,reyle09] $M_D = 5-7 \times 10^{10} M_{\odot}$ $R_D = 2.5 \pm 0.2 \text{ kpc}$

All together

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

Would like to constrain V(r) to constrain ρ_{DM} .

Unlike other galaxies, where we can measure $\mathsf{V}(\mathsf{r})$ quite well. here situation is much harder.

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The Inner rotational velocities

Rotating HI gas in the inner region

- Doppler gives relative speed along the l.o.s.
- Maximum at the tangential point, terminal velocities V_T:

$$V(r) = V_T(r/R_\odot) + V_\odot r/R_\odot$$

- \blacksquare Inside \sim 1–2 kpc the bulge/bar structure prevents analysis.
- between 2 and 8 kpc a lot of measures along the arms, with systematic variations

F. Nesti

Data: inner

Real data. relative speed $V_T(r/R_{\odot})$

The Inner rotational velocities

< 17 >

ъ

F. Nesti

Problem

MW Components

Global densit

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The Outer rotational velocities

Out to \sim 80 kpc, survey of 'old' halo stars, moving randomly. . .

Only l.o.s. speed... need to rely on virial equilibrium

- ~3000 Tracers
- Eliminate the ouliers (|v| > 500 km/s)
- Velocity dispersion $\sim 110\,{
 m km/s}$

・ロト ・ 雪 ト ・ ヨ ト

-

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The Outer rotational velocities

Out to $\sim 80\,\text{kpc},$ survey of 'old' halo stars, moving randomly. . .

Only l.o.s. speed... need to rely on virial equilibrium

- ~3000 Tracers
- Eliminate the ouliers (|v| > 500 km/s)
- Velocity dispersion $\sim 110\,{
 m km/s}$

Binned:

[Brown '10, Xue '08]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Fig. 11.— The Galactic sky coverage of the observed BHB stars (red dots) and selected simulated stars (black dots), drawn from Simulation I.

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The Outer rotational velocities cont'd

Each population of tracers, has a measured density $\rho_i \propto r^{-\gamma_i}$, Consider (?) virial equilibrium and use Jeans' Equation:

$$V^{2} = \sigma_{i}^{2} \left[\gamma_{i} - 2\beta_{i} - \frac{\partial \ln \sigma_{i}^{2}}{\partial \ln r} \right]$$

Unknown velocity anisotropy β_i (maybe r dependent)
 γ_i ≃ 3.5-4, for observed populations.

We can integrate Jeans' equation, for each model:

$$\{V^{model}(r), \beta_i\} \rightarrow \sigma_i^{model}(r),$$

and compare σ_i^{model} with data for that population.

(Traditionally: derive pseudo-measures of V , w/ great uncertainties.)

Until 2011: the degeneration

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

- Inner: Bulge-Disk compensation
- Middle: Disk-DM Halo compensation
- Outer: DM Halo ρ_H - R_H flat direction
- and, V_{\odot} not fixed \rightarrow shift up/down.

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer **Data: masers** Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

Masers in Star forming regions

First results only. In the near future more extensive surveys from BeSSeL and VERA.

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer **Data: masers** Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

Masers in Star forming regions

Parallax from ground based arrays:

Able to constrain: $V_{\odot}/R_{\odot}\simeq 30.2\pm0.3\,{\rm km/s\,kpc}$

 $V_{\odot}\simeq 239\pm 7~{
m km/s}$ [Brunthaler+ '11]

$$V(r\simeq 10
m kpc)\simeq 240\pm 5
m km/s$$

$$V(r \simeq 13 {\rm kpc}) \simeq 244 \pm 4 {\rm km/s}$$

[Sanna+ '11]

(angular precision 0.01 mas!)

First results only.

In the near future more extensive surveys from BeSSeL and VERA.

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits

Annihilation

Local density

Method Data: Sun Data: gala×y DM density

Conclusions

Model parameters, giving $V_{circ}(r)$ and integrated dispersion $\sigma(r)$:

- Sun: R_{\odot} , V_{\odot} (related)
- Bulge: M_B

Fitting

- Disk: M_D , R_D
- DM Halo: ρ_H , R_H
- Anisotropy for each population of tracers $\beta_i(r)$

Fitted against data: $V_T(x_i)$, $\sigma(r_i)$ and $V_{maser}(r_i)$.

Not all parameters relevant. (i.e. R_D and β *r*-dependence) Also, bulge and disk are preferred as light as possible, extremal: $M_B \simeq 1 \times 10^{10} M_{\odot}, M_D \simeq 5 \times 10^{10} M_{\odot}.$ Also, anisotropy of tracers are in tension among two populations: even β_i required to be somehow extremal.

Most important are thus ρ_H , R_Hwhich can be traded for V_{\odot} , R_H .

F. Nesti

Problem

MW Component

Global densit

Data: inner Data: outer Data: maser Fits

Annihilation

Local density

Method Data: Sun Data: galaxy DM density

10 20

 R_H

Conclusions

EIN NFW BUR 270 270 270 260 260 260 250 250 25 >° <u>_</u>0 240 24 230 230 230 220 220 220 21

Black lines mark $C_{vir} = 4-50$, green dots are cosmological simulations. Blue lines mark $M_{vir}[10^{12} M_{\odot}]$ and region disfavored by MW total mass. Same, $\rho_H - R_H$: [from Dehnen+'96, to Deason+'12]

 R_H

50 60

10 15 20 25

R_H

Consistency with data at 90%, 95%, 99%

10 20 30

One fit (Burkert)

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: maser Fits

Annihilatio

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

All fits require minimal Disk and minimal Bulge.

	ρн	r _H	V_{\odot}	R_{\odot}	$ ho_{\odot}$	M_{50}	M_{100}	$M_{\rm vir}$	C _{vir}
	$\left[10^7 M_\odot / \rm kpc^3\right]$	[kpc]	[km/s]	[kpc]	$\left[{\rm GeV}/{\rm cm^3}\right]$	$\left[10^{12} \text{Ms}\right]$	$\left[10^{12}\text{Ms} ight]$	$\left[10^{12} \text{Ms}\right]$	[Δ=100]
EIN	0.165	22.0	246.	8.12	0.391	0.448	0.831	1.75	15.4
NFW	0.881	20.0	245.	8.09	0.419	0.477	0.849	1.71	16.8
BUR	5.48	8.00	245.	8.09	0.511	0.425	0.641	0.985	34.9

 $\left\{\text{BUR}, M_B \rightarrow 1.2, M_D \rightarrow 5, R_D \rightarrow 2.5, R_H \rightarrow 8, V_\odot \rightarrow 241, R_\odot \rightarrow 7.9538, \beta_\odot \rightarrow 0 \pm 0.3, \sigma_{80\,\text{kpc}} \rightarrow 105 \pm 20\right\}$

One fit (NFW)

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: maser Fits

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

All fits require minimal Disk and minimal Bulge.

	Ρн	r _H	V_{\odot}	R_{\odot}	$ ho_{\odot}$	M_{50}	M_{100}	$M_{\rm vir}$	Cvir
	$\left[10^7 M_\odot \left/\mathrm{kpc^3}\right]\right.$	[kpc]	[km/s]	[kpc]	$\left[{\rm GeV}/{\rm cm^3}\right]$	$\left[10^{12} \text{Ms}\right]$	$\left[10^{12}\text{Ms} ight]$	$\left[10^{12} \text{Ms}\right]$	[Δ=100]
EIN	0.165	22.0	246.	8.12	0.391	0.448	0.831	1.75	15.4
NFW	0.881	20.0	245.	8.09	0.419	0.477	0.849	1.71	16.8
BUR	5.48	8.00	245.	8.09	0.511	0.425	0.641	0.985	34.9

 $\left\{\mathrm{NFW},\,M_B\rightarrow1.2,\,M_D\rightarrow5,\,R_D\rightarrow2.5,\,R_H\rightarrow25,\,V_{\odot}\rightarrow244,\,R_{\odot}\rightarrow8.05281,\,\beta_{\odot}\rightarrow0\pm0.3,\,\sigma_{80\,\mathrm{kpc}}\rightarrow105\pm20\right\}$

One fit (Einasto)

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: maser Fits

Local density

Method Data: Sun Data: gala×y DM density

Conclusions

All fits require minimal Disk and minimal Bulge.

	Ρн	r _H	V_{\odot}	R_{\odot}	$ ho_{\odot}$	M_{50}	M_{100}	$M_{\rm vir}$	Cvir
	$\left[10^7 M_\odot / \rm kpc^3\right]$	[kpc]	[km/s]	[kpc]	$\left[{\rm GeV}/{\rm cm^3}\right]$	$\left[10^{12} \text{Ms}\right]$	$\left[10^{12}\text{Ms} ight]$	$\left[10^{12} \text{Ms}\right]$	[Δ=100]
EIN	0.165	22.0	246.	8.12	0.391	0.448	0.831	1.75	15.4
NFW	0.881	20.0	245.	8.09	0.419	0.477	0.849	1.71	16.8
BUR	5.48	8.00	245.	8.09	0.511	0.425	0.641	0.985	34.9

 $\left\{ \text{EIN}, \textit{M}_{B} \rightarrow 1.2, \textit{M}_{D} \rightarrow 5, \textit{R}_{D} \rightarrow 2.5, \textit{R}_{H} \rightarrow 25, \textit{V}_{\odot} \rightarrow 244, \textit{R}_{\odot} \rightarrow 8.05281, \textit{\beta}_{\odot} \rightarrow 0 \pm 0.3, \sigma_{80\,\text{kpc}} \rightarrow 105 \pm 20 \right\}$

Comparing

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers

Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

Comparing the best (Burkert) fits with other galaxies

(日)、

э

MW fits well, despite the large uncertainties.

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits

Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

Conclusions for global fit of galaxy DM profile

- Some degeneracy removed thanks to masers.
- Mild core-cusp discrimination, with preference for cored.
 The terminal velocities are responsible for the core preference.
- Unlike in external galaxies, MW uncertainties are still large: Can not rule out 'cuspy' profile, but
- For NFW the $c_{vir} \sim 20$ is at odds with ACDM simulations. (Adiabatic contraction could raise c_{vir} in simulations but would make them even more cusped) The high $V_{\odot} \sim 250$ km/s is responsible for the large c_{vir} .
- A preference for more radial velocity dispersion in BHB halo tracers, with respect to DR6 ones.
- Total mass of the galaxy is large for EIN and NFW, ok for BUR.

What about DM annihilation?

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The DM annihilation angular profile

... hard to discriminate, need to mess with the Center.

(日)、

э

F. Nesti

Problem

MW Component

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The DM Density at the sun's location

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The Local DM density

Curiously no dedicated estimate before 2009.

(only very old guesses using outdated data, DM profile) Main estimates using a global profile modeling, which is very uncertain, or cosmological simulations (even more uncertain)

 \blacksquare In 2009 Catena Ullio, by global modeling, claim $\rho_\odot = 0.389 \pm 0.02\,{\rm GeV/cm^3} \qquad \qquad {\rm [Catena+ '10]}$

Criticised by [Weber+ '10] and others, still global modeling.

Criticized first by [Tremaine+ '12], on the velocity assumptions. Other criticisms may be advanced.

• Our work to assess the uncertainties finds

 $ho_{\odot} = 0.43 \pm 0.1 \pm 0.1 \, , {\rm GeV/cm^3}$ [Salucci, FN+ '10]

still the most accurate, and halo model independent.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method

Data: Sun Data: galaxy DM density

Conclusions

A new method for the Local DM density

Decompose radial acceleration as due to Bulge + Disk + DM Halo $V^2/r = a_B + a_D + a_H \,,$

Use Gauss law for the DM Halo: $\rho_H r^2 \propto \partial_r (r^2 a_H)$

$$\begin{split} \rho_H(r) &= \frac{1}{4\pi G} \frac{1}{r^2} \frac{d}{dr} \left[r^2 \left(\frac{V^2(r)}{r} - a_D(r) - a_B(r) \right) \right] X_q \,, \\ &= \frac{1}{4\pi G} \frac{V^2}{r^2} \left[\left(1 + 2 \frac{d \ln V}{d \ln r} \right) - \frac{V_D^2}{V^2} f\left(\frac{r}{R_D} \right) X_{z_0} \right] X_q \,. \end{split}$$

with f a known analytic function, for thin disk. Notes:

- At R_{\odot} the contribution of Bulge is negligible
- $X_q \simeq 1.0-1.05$ corrects spherical Gauss law, for oblateness.
- $X_{z_0} \simeq 0.95 \pm 0.01$ corrects for nonzero disk thickness.

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method

Data: Sun Data: galaxy DM density

Conclusions

The Local DM density, cont'd

$$\rho_{\odot} = 1.2 \times 10^{-27} \frac{\mathrm{g}}{\mathrm{cm}^3} \left(\frac{\omega_{\odot}}{\mathrm{km/s\,kpc}} \right)^2 X_q \left[(1 + 2\alpha_{\odot}) - \beta f(r_{\odot D}) X_{z_0} \right],$$

Result depends on

$$\begin{split} \omega_{\odot} &\equiv (V_{\odot}/R_{\odot}), \text{ angular speed, (very well known)} \\ \alpha_{\odot} &\equiv d \ln V/d \ln r|_{\odot}, \text{ RC slope (uncertain)} \\ \beta &\equiv (V_D/V_{\odot})^2 \text{ (constrained)} \\ \rho_{\odot D} &\equiv R_{\odot}/R_D. \text{ (constrained)} \end{split}$$

Fig. B.1. Effect of the disk thickness z0.

0.6 0.7

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The Sun Galactic Radius and Angular Velocity

■ *R*_☉ Gillessen 2009: 8.33 ± 0.3 kpc

> Ghez et al 2009 (using orbits): 8.0 ± 0.6 kpc 8.4 ± 0.4 kpc(assuming stationary BH)

Bovy et al 2009 (a global average)

[0907.5423v2]

$$R_\odot = (8.2\pm0.5)\,\mathrm{kpc}$$

• V_{\odot}/R_{\odot} is measured with a very high accuracy and much better than V_{\odot} and R_{\odot} separately:

 $V_{\odot}/R_{\odot} = (30.3 \pm 0.3) \, {
m km/s/kpc}$

[MB+09,reid+09,Brunthaler+11]

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The Sun Galactic Radius and Angular Velocity

 $\begin{array}{c} \mathbf{R}_{\odot} \\ \text{Gillessen 2009:} \\ 8.33 \pm 0.3 \, \text{kpc} \end{array}$

Ghez et al 2009 (using orbits): 8.0 ± 0.6 kpc 8.4 ± 0.4 kpc(assuming stationary BH)

Bovy et al 2009 (a global average)

[0907.5423v2]

$$R_{\odot} = (8.2 \pm 0.5) \, \mathrm{kpc}$$

• V_{\odot}/R_{\odot} is measured with a very high accuracy and much better than V_{\odot} and R_{\odot} separately:

$$V_{\odot}/R_{\odot} = (30.3 \pm 0.3) \, \mathrm{km/s/kpc}$$

[MB+09, reid+09, Brunthaler+11]

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The Slope and Disk contribution R_{\odot}

Circular velocity slope α(r) = d ln V(r)/d ln r
 It is limited but uncertain from 2 to 8 kpc:

$$lpha(2\,\mathrm{kpc} < r < 8\,\mathrm{kpc}) \simeq 0.1\text{--}0$$

(also slightly correlated with R_\odot through the terminal velocities) At R_\odot we can take the broad range

 $\alpha_{\odot} = 0. \pm 0.1$

(confirmed by the global profile fits, above)

• Contribution of disk to sun's rotation, $\beta = V_D/V_{\odot}$ The disk can neither contribute totally, nor negligibly. A broad conservative range is

 $0.65 < \beta < 0.77$

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

The Slope and Disk contribution R_{\odot}

Circular velocity slope α(r) = d ln V(r)/d ln r
 It is limited but uncertain from 2 to 8 kpc:

$$lpha(2\,\mathrm{kpc} < r < 8\,\mathrm{kpc}) \simeq 0.1\text{--}0$$

(also slightly correlated with R_\odot through the terminal velocities) At R_\odot we can take the broad range

 $\alpha_{\odot} = 0. \pm 0.1$

(confirmed by the global profile fits, above)

• Contribution of disk to sun's rotation, $\beta = V_D/V_{\odot}$ The disk can neither contribute totally, nor negligibly. A broad conservative range is

$$0.65 < \beta < 0.77$$

F. Nesti

Problem

An analytical formula:

Result

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

$\rho_{\odot} = 0.43 \frac{\text{GeV}}{\text{cm}^3} \left[1 + 2.9 \,\alpha_{\odot} - 0.64 \left(\beta - 0.72\right) + 0.45 \left(r_{\odot D} - 3.4\right) \right. \\ \left. - 0.1 \left(\frac{z_0}{\text{kpc}} - 0.25\right) + 0.10 \left(q - 0.95\right) \right. \\ \left. + 0.07 \left(\frac{\omega}{\text{km/s kpc}} - 30.3\right) \right].$

Good also for the future.

Today, using central values and present uncertainties:

$$\rho_{\odot} = \left(0.43 \pm 0.094_{(\alpha_{\odot})} \mp 0.016_{(\beta)} \pm 0.096_{(r_{\odot D})} \right) \frac{\text{GeV}}{\text{cm}^3} \,,$$

F. Nesti

Problem

An analytical formula:

Result

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

$$\begin{split} \rho_{\odot} &= 0.43 \frac{\text{GeV}}{\text{cm}^3} \Bigg[1 + 2.9 \,\alpha_{\odot} - 0.64 \left(\beta - 0.72\right) + 0.45 \left(r_{\odot D} - 3.4\right) \\ &- 0.1 \left(\frac{z_0}{\text{kpc}} - 0.25\right) + 0.10 \left(q - 0.95\right) \\ &+ 0.07 \left(\frac{\omega}{\text{km/s kpc}} - 30.3\right) \Bigg] \,. \end{split}$$

Good also for the future.

Today, using central values and present uncertainties:

$$\rho_{\odot} = \left(0.43 \pm 0.094_{(\alpha_{\odot})} \mp 0.016_{(\beta)} \pm 0.096_{(r_{\odot D})} \right) \frac{\text{GeV}}{\text{cm}^3} \,,$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

Claim of no local DM!?

■ ESO claim [Mona-Bidin+'12] using thick disk stars, with |z| < 4 kpc (This is a lot above or below the disk.) Measures l.o.s. velocity dispersion Assume 'circular' velocity is z and R independent Use vertical Jeans equation to find the gravitational potential → local DM surface density =0

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

Claim of no local DM!?

- ESO claim [Mona-Bidin+'12] using thick disk stars, with |z| < 4 kpc (This is a lot above or below the disk.) Measures l.o.s. velocity dispersion Assume 'circular' velocity is z and R independent Use vertical Jeans equation to find the gravitational potential → local DM surface density =0
- Tremaine refutes (nonconstant velocity at higher z) Finds $\rho_0 \simeq 0.3 \pm 0.1$.
- Garbari et al refine the analysis and finds 0.9 GeV/cm³
 But using simulation of the z dynamics and MCMC.
- Also consistency of the sample can be questioned.
- More generally,

it is hard to estimate the vertical dynamics.

Maybe with GAIA - increasing statistics and precision.

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

Claim of no local DM!?

- ESO claim [Mona-Bidin+'12] using thick disk stars, with |z| < 4 kpc (This is a lot above or below the disk.) Measures l.o.s. velocity dispersion Assume 'circular' velocity is z and R independent Use vertical Jeans equation to find the gravitational potential → local DM surface density =0
- Tremaine refutes (nonconstant velocity at higher z) Finds $\rho_0 \simeq 0.3 \pm 0.1$.
- Garbari et al refine the analysis and finds 0.9 GeV/cm³
 But using simulation of the z dynamics and MCMC.
- Also consistency of the sample can be questioned.

More generally,

it is hard to estimate the vertical dynamics. Maybe with GAIA - increasing statistics and precision.

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

Conclusions

Dark Matter in our Galaxy:

- Galaxy profile intrinsecally uncertain, observations hard.
- Still, it appears consistent with similar galaxies.
- Preference for cored profile, down to 2 kpc.
- At odds with ΛCDM simulations.
- Hard to discriminate profiles, need to look inside 1 kpc.

Dark matter near the sun:

- $\rho_{\odot} = 0.4 \pm 0.2$ is still the proper estimate.
- Uncertainties can not be reduced, at present.
- r_D/R_{\odot} , and the RC slope $lpha_{\odot}$ are driving the uncertainty,

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

Conclusions

Dark Matter in our Galaxy:

- Galaxy profile intrinsecally uncertain, observations hard.
- Still, it appears consistent with similar galaxies.
- Preference for cored profile, down to 2 kpc.
- At odds with ΛCDM simulations.
- Hard to discriminate profiles, need to look inside 1 kpc.

Dark matter near the sun:

- $\rho_{\odot} = 0.4 \pm 0.2$ is still the proper estimate.
- Uncertainties can not be reduced, at present.
- $\blacksquare~r_D/R_{\odot},$ and the RC slope α_{\odot} are driving the uncertainty,

Thanks.

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

Conclusions

Dark Matter in our Galaxy:

- Galaxy profile intrinsecally uncertain, observations hard.
- Still, it appears consistent with similar galaxies.
- Preference for cored profile, down to 2 kpc.
- At odds with ΛCDM simulations.
- Hard to discriminate profiles, need to look inside 1 kpc.

Dark matter near the sun:

- $\rho_{\odot} = 0.4 \pm 0.2$ is still the proper estimate.
- Uncertainties can not be reduced, at present.
- $\blacksquare~r_D/R_{\odot},$ and the RC slope α_{\odot} are driving the uncertainty,

Thanks.

F. Nesti

Problem

MW Components

Global density

Data: inner Data: outer Data: masers Fits Annihilation

Local density

Method Data: Sun Data: galaxy DM density

Conclusions

Conclusions

Dark Matter in our Galaxy:

- Galaxy profile intrinsecally uncertain, observations hard.
- Still, it appears consistent with similar galaxies.
- Preference for cored profile, down to 2 kpc.
- At odds with ΛCDM simulations.
- Hard to discriminate profiles, need to look inside 1 kpc.

Dark matter near the sun:

- $\rho_{\odot} = 0.4 \pm 0.2$ is still the proper estimate.
- Uncertainties can not be reduced, at present.
- $\blacksquare~r_D/R_{\odot},$ and the RC slope α_{\odot} are driving the uncertainty,

Thanks.