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Overview
I Some oscillations of neutron stars can reach high amplitude.

E.g. violent local accretion impacts, or unstable “r-modes”.
I Response of different phases of dense matter to compression may

provide signatures of their presence in neutron stars.
I At high enough amplitude, processes that depend on flavor

equilibration have amplitude-dependent (“suprathermal”)
enhancements.

I Suprathermal enhancement may be strong enough to overcome
suppression due to

I slowness of flavor equilibration
I Cooper pairing of relevant fermions

I Consequences for high amplitude oscillations:
I Enhancement of heating and neutrino emission

I Unsuppressed bulk viscosity and neutrino emission in superfluid
phases

I Enhanced bulk viscosity is capable of stopping r-mode growth
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Suprathermal enhancement of bulk viscosity

Unpaired matter, T = 106 K
quark matter
non�leptonic

hadronic matter
direct Urca

hadronic matter
modified Urca

10�5 10�4 0.001 0.01 0.1 1 10

1

105

1010

1015

1020

1025

∆n/n̄

ζ
[

g
cm

s

]

Nuclear superfluid, T = 108 K
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Signature: r-mode-induced spindown

An r-mode is a mainly quadrupole
flow that emits gravitational radia-
tion. It becomes unstable (i.e. arises
spontaneously) when a star spins
fast enough, and if the shear and
bulk viscosity are low enough.

Side viewPolar view

mode pattern

star

The unstable r -mode can spin the star down very quickly, exactly how
fast depends on the amplitude at which it saturates.
(Andersson gr-qc/9706075; Friedman and Morsink gr-qc/9706073; Lindblom

astro-ph/0101136).

So if we see a star spinning quickly, we can infer that the interior
viscosity must be high enough to damp the r -modes.



Constraints from r-modes: current results

Regions above curves are forbidden ⇐ viscosity is too low to damp r -modes.

æ

à

105 107 109 1011
0

200

400

600

800

1000

T @KD

Ν
@H

zD

Neutron star, nuclear matter
Hybrid star, medium quark matter
core
Hybrid star, large quark matter core
Quark star

LMXB data: Aql X-1 (square),
SAX J1808.4-3658 (circle).

Damping by crust is not included.

Alford, Mahmoodifar, Schwenzer arXiv:1012.4883



What is bulk viscosity?

Energy consumed in a
compression cycle:

V (t) = V̄ + δV sin(ωt)
p(t) = p̄ + δp sin(ωt + φ)

〈
dE

dt

〉
= −ζ

τ

∫ τ

0

(div~v)2dt =
ζ

2
ω2 δV

2

V̄ 2
= − 1

τ V̄

∫ τ

0

p(t)
dV

dt
dt

I Bulk viscosity arises from re-equilibration processes.
I If some quantity goes out of equilibrium on compression, and

re-equilibrates on a timescale comparable to τ , then pressure gets
out of phase with volume.

I The driving force then does net work in each cycle.
I There is an exact analogy with V and Q in an R-C circuit.



Bulk viscosity and pressure phase lag
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Subthermal vs Suprathermal

Subthermal
µ∆ � T � µ

Suprathermal
T � µ∆ � µ

µ∆
µ∆

EE

Tprob prob T

Madsen, Phys. Rev. D46,3290 (1992); Reisenegger, Bonacic, astro-ph/0303454



Calculating bulk viscosity

I Compression at frequency ω. Density of conserved charge oscillates
as n(t) = n̄ + δn sin(ωt)

I One quantity “∆” goes out of equilibrium (eg S − D in quark
matter). In equilibrium, µ∆ = 0.

I EoS is characterized by susceptibilities B ,C .

ζ = − 1

π

n̄

δn

C

B

∫ τ

0

µ∆(t) cos(ωt)dt

Bulk visc arises from component of µ∆ that lags behind the forcing
oscillation by a phase of 90◦; µ∆(t) is given by

dµ∆

dt
= Cω

δn

n̄
cos(ωt)

︸ ︷︷ ︸
forcing osc.

− Γ(µ∆,T )
︸ ︷︷ ︸

equilibration

Re-express this in dimensionless variables:



Computing departure from equilibrium

I Define dimensionless time (i.e. phase) ϕ = ωt
I Define dimensionless departure from equilibrium µ̄∆ = µ∆/T

I Driving coeff d =
C

T

δn

n̄
I Equilibration rate: Γ(µ∆,T ) = Γ̃T 2N γ(µ∆/T ).

Equilibration coeff f =
B

ω
Γ̃T 2N .

d µ̄∆

dϕ
= d cos(ϕ)− f γ(µ̄∆)

Dependence on density, EoS, driving amplitude, and temperature is
contained in d and f .
Dependence of equilibration rate on µ̄∆ for unpaired fermions:
γ(µ̄∆) = µ̄∆ + χ1µ̄∆

3 + · · ·+ χN µ̄∆
2N

Final term gives T -independent equilibration.



Suprathermal and subthermal bulk viscosity

Subthermal: assume µ̄∆ � 1 (i.e. µ∆ � T ), so γ(µ̄∆) = µ̄∆,

d µ̄∆

dϕ
= d cos(ϕ)− f µ̄∆

µ̄∆(ϕ) = − f d

1 + f 2
cosϕ +

d

1 + f 2
sinϕ

ζsub =
C 2

Bω

f

1 + f 2
=

C 2

B

γeff

ω2 + γeff
2

(γeff ≡ B Γ̃T 2N)

Suprathermal: allow µ̄∆ & 1 (always assuming δn� n̄),

d µ̄∆

dϕ
= d cos(ϕ)− f µ̄∆

(
1 + χ1µ̄∆

2 + · · ·+ χN µ̄∆
2N
)

Now there are nonlinear effects; µ̄∆(ϕ) may not be harmonic.
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The subthermal bulk viscosity

ζsub(ω,T ) = P
γeff(T )

γeff(T )2 + ω2

1
2

ω

ωP

ζsub

γ
eff

I ζsub is independent of driving amplitude.
I Prefactor P = C 2/B is a combination of susceptibilities.
I γeff is the effective rate/particle of the re-equilibration process.

I As γeff → 0, ζ → 0. No equilibration.
I As γeff →∞, ζ → 0. Infinitely fast equilibration.

I In phases where Fermi surface modes dominate equilibration
(nuclear, unpaired quark matter, 2SC) P is constant for T � µq,
and subthermal bulk viscosity peaks when γeff(T ) = ω.

I In phases where bosons dominate equilibration (CFL, CFL-K0),
P(T ) washes out the peak.
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The general bulk viscosity

To include the suprathermal regime, we have to solve the diffeq for
µ̄∆(ϕ) numerically.

For a given form of matter, we
can summarize dependence on
driving amplitude and temper-
ature in dimensionless function
I(d , f ),

ζ =
C 2

2ωB
I(d , f )

f = γeff/ω d = (C/T ) δn/n̄

This could then be used to
calculate damping time of r -
modes.

Nuclear matter, modified Urca



Suprathermal enhancement of bulk viscosity
(ms pulsar)

T = 106 K
quark matter
non�leptonic

hadronic matter
direct Urca

hadronic matter
modified Urca
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I Bulk visc rises very steeply in suprathermal regime
I Max reached at δn/n ∼ 0.1; max value indp of temperature
I Suprathermal enhancement is greater at low T and for matter

where ζ goes as higher power of µ∆.



Consequences of suprathermal enhancement

I Superthermal bulk viscosity can stop r-mode growth, but only at
very high amplitude α ∼ 1 (δn/n̄ ∼ 0.03).
Other mechanisms may saturate r-mode first, e.g. mode-coupling
at α ∼ 10−4 (Bondarescu, Teukolsky, Wasserman, arXiv:0809.3448)

I Superthermal bulk viscosity and neutrino emission affect heating
and cooling of stars undergoing r-mode spindown

I Response of stars to other high-amplitude compressions will also be
affected.



Suprathermal enhancement in a superfluid
(“gap-bridging”)

If density amplitude is high enough, µ∆ can be large enough to open up
phase space above the gap, overcoming exp(−∆/T ) suppression.

µ∆

µn pµ

µ∆µ∆

µ∆<∆n+∆p ∆n+∆p

µ∆
=0

e

µe+

e

∆

p p
n n

2

Beta equilibrium

e

Compression

n
p

n

Gap−bridging 
compression

>

µ∆ = C δn
n̄

For APR, C ∼ 20 to 150 MeV
Oscillation with δn/n̄ ∼ 0.01 can overcome ∆ ∼ 1 MeV.



Gap-bridging enhancement of bulk viscosity
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Illustrative example:

direct Urca allowed

s-wave pairing for p
and n

∆p peak of 1 MeV at
n = 1.3n0

∆n peak of 0.12 MeV
at n = 3.7n0 [Cas A]

There is similar
enhancement for
neutrino emissivity.



Future directions

Transport:

I Study suprathermal enhancement in other phases, e.g. Hyperonic
nuclear matter, neutron star crust

I Gap-bridging: apply to realistic case, modified Urca,
3P2 neutron pairing, etc.

I Investigate effect of multiple equilibrating quantities

Astrophysics:

I Evolution of r-mode spindown, trajectory in (T ,Ω) space
(requires assumed r-mode saturation amplitude and a cooling model)

I Complications with r-modes: layered stars, role of crust, etc
I Apply to other modes, e.g. pulsations, f-modes (which emit grav

waves), violent accretion events
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