High amplitude oscillations in dense matter

Mark Alford Washington University in St. Louis

M. Alford, S. Mahmoodifar, K. Schwenzer, Phys. Rev. D85 024007 and 044051 (2012)

M. Alford, S. Reddy, K. Schwenzer, arXiv:1110.6213 (accepted by Phys. Rev. Lett.)

Outline

- Overview: new phenomena at high amplitude
- R-modes and signatures of dense matter
- Bulk viscosity: generalities
- Bulk viscosity: subthermal and suprathermal
- Gap-bridging in a superfluid/superconductor

Overview

- Some oscillations of neutron stars can reach high amplitude. E.g. violent local accretion impacts, or unstable "r-modes".
- Response of different phases of dense matter to compression may provide signatures of their presence in neutron stars.
- At high enough amplitude, processes that depend on flavor equilibration have amplitude-dependent ("suprathermal") enhancements.
- Suprathermal enhancement may be strong enough to overcome suppression due to
 - slowness of flavor equilibration
 - Cooper pairing of relevant fermions

Overview

- Some oscillations of neutron stars can reach high amplitude. E.g. violent local accretion impacts, or unstable "r-modes".
- Response of different phases of dense matter to compression may provide signatures of their presence in neutron stars.
- At high enough amplitude, processes that depend on flavor equilibration have amplitude-dependent ("suprathermal") enhancements.
- Suprathermal enhancement may be strong enough to overcome suppression due to
 - slowness of flavor equilibration
 - Cooper pairing of relevant fermions
- Consequences for high amplitude oscillations:
 - Enhancement of heating and neutrino emission
 - Unsuppressed bulk viscosity and neutrino emission in superfluid phases
 - Enhanced bulk viscosity is capable of stopping r-mode growth

Suprathermal enhancement of bulk viscosity

Signature: r-mode-induced spindown

An r-mode is a mainly quadrupole flow that emits gravitational radiation. It becomes unstable (i.e. arises spontaneously) when a star spins fast enough, and if the shear and bulk viscosity are low enough.

The unstable *r*-mode can spin the star down very quickly, exactly how fast depends on the amplitude at which it saturates.

(Andersson gr-qc/9706075; Friedman and Morsink gr-qc/9706073; Lindblom astro-ph/0101136).

So if we see a star spinning quickly, we can infer that the interior viscosity must be high enough to damp the r-modes.

Constraints from r-modes: current results

Regions above curves are forbidden \leftarrow viscosity is too low to damp *r*-modes.

Neutron star, nuclear matter Hybrid star, medium quark matter core Hybrid star, large quark matter core Quark star

LMXB data: Aql X-1 (square), SAX J1808.4-3658 (circle).

Damping by crust is not included.

Alford, Mahmoodifar, Schwenzer arXiv:1012.4883

What is bulk viscosity?

Energy consumed in a $V(t) = \bar{V} + \delta V \sin(\omega t)$ compression cycle: $p(t) = \bar{p} + \delta p \sin(\omega t + \phi)$

$$\left\langle \frac{dE}{dt} \right\rangle = -\frac{\zeta}{\tau} \int_0^\tau (\operatorname{div} \vec{v})^2 dt = \frac{\zeta}{2} \omega^2 \frac{\delta V^2}{\bar{V}^2} = -\frac{1}{\tau \bar{V}} \int_0^\tau p(t) \frac{dV}{dt} dt$$

- ► Bulk viscosity arises from re-equilibration processes.
- If some quantity goes out of equilibrium on compression, and re-equilibrates on a timescale comparable to τ, then pressure gets out of phase with volume.
- ► The driving force then does net work in each cycle.
- ▶ There is an exact analogy with V and Q in an R-C circuit.

Bulk viscosity and pressure phase lag

Subthermal vs Suprathermal

Madsen, Phys. Rev. D46,3290 (1992); Reisenegger, Bonacic, astro-ph/0303454

Calculating bulk viscosity

- Compression at frequency ω. Density of conserved charge oscillates as n(t) = n̄ + δn sin(ωt)
- One quantity "∆" goes out of equilibrium (eg S − D in quark matter). In equilibrium, µ_∆ = 0.
- ► EoS is characterized by susceptibilities *B*,*C*.

$$\zeta = -\frac{1}{\pi} \frac{\bar{n}}{\delta n} \frac{C}{B} \int_0^\tau \mu_{\Delta}(t) \cos(\omega t) dt$$

Bulk visc arises from component of μ_{Δ} that lags behind the forcing oscillation by a phase of 90°; $\mu_{\Delta}(t)$ is given by

$$\frac{d\mu_{\Delta}}{dt} = \underbrace{C\omega\frac{\delta n}{\bar{n}}\cos(\omega t)}_{\text{forcing osc.}} - \underbrace{\Gamma(\mu_{\Delta}, T)}_{\text{equilibration}}$$

Re-express this in dimensionless variables:

Computing departure from equilibrium

- Define dimensionless time (i.e. phase) $\varphi = \omega t$
- Define dimensionless departure from equilibrium $\bar{\mu}_{\Delta} = \mu_{\Delta}/T$
- Driving coeff $d = \frac{C}{T} \frac{\delta n}{\bar{n}}$
- Equilibration rate: $\Gamma(\mu_{\Delta}, T) = \tilde{\Gamma} T^{2N} \gamma(\mu_{\Delta}/T)$. Equilibration coeff $f = \frac{B}{\omega} \tilde{\Gamma} T^{2N}$.

$$\frac{d\bar{\mu}_{\Delta}}{d\varphi} = d\cos(\varphi) - f\gamma(\bar{\mu}_{\Delta})$$

Dependence on density, EoS, driving amplitude, and temperature is contained in d and f.

Dependence of equilibration rate on $\bar{\mu}_{\Delta}$ for *unpaired* fermions: $\gamma(\bar{\mu}_{\Delta}) = \bar{\mu}_{\Delta} + \chi_1 \bar{\mu}_{\Delta}^3 + \dots + \chi_N \bar{\mu}_{\Delta}^{2N}$ Final term gives *T*-independent equilibration.

Suprathermal and subthermal bulk viscosity

<u>Subthermal</u>: assume $\bar{\mu}_{\Delta} \ll 1$ (i.e. $\mu_{\Delta} \ll T$), so $\gamma(\bar{\mu}_{\Delta}) = \bar{\mu}_{\Delta}$,

$$\frac{d\bar{\mu}_{\Delta}}{d\varphi} = d\cos(\varphi) - f\bar{\mu}_{\Delta}$$

$$\begin{split} \bar{\mu}_{\Delta}(\varphi) &= -\frac{f d}{1+f^2} \cos \varphi + \frac{d}{1+f^2} \sin \varphi \\ \zeta_{\rm sub} &= \frac{C^2}{B\omega} \frac{f}{1+f^2} = \frac{C^2}{B} \frac{\gamma_{\rm eff}}{\omega^2 + \gamma_{\rm eff}^2} \qquad (\gamma_{\rm eff} \equiv B\tilde{\Gamma} T^{2N}) \end{split}$$

Suprathermal and subthermal bulk viscosity

<u>Subthermal</u>: assume $\bar{\mu}_{\Delta} \ll 1$ (i.e. $\mu_{\Delta} \ll T$), so $\gamma(\bar{\mu}_{\Delta}) = \bar{\mu}_{\Delta}$,

$$\frac{d\bar{\mu}_{\Delta}}{d\varphi} = d\cos(\varphi) - f\bar{\mu}_{\Delta}$$

$$\begin{split} \bar{u}_{\Delta}(\varphi) &= -\frac{f d}{1+f^2} \cos \varphi + \frac{d}{1+f^2} \sin \varphi \\ \zeta_{\rm sub} &= \frac{C^2}{B\omega} \frac{f}{1+f^2} = \frac{C^2}{B} \frac{\gamma_{\rm eff}}{\omega^2 + \gamma_{\rm eff}^2} \qquad (\gamma_{\rm eff} \equiv B\tilde{\Gamma} T^{2N}) \end{split}$$

Suprathermal: allow $\bar{\mu}_{\Delta} \gtrsim 1$ (always assuming $\delta n \ll \bar{n}$),

$$\frac{d\bar{\mu}_{\Delta}}{d\varphi} = d\cos(\varphi) - f\bar{\mu}_{\Delta} \left(1 + \chi_1 \bar{\mu}_{\Delta}^2 + \dots + \chi_N \bar{\mu}_{\Delta}^{2N}\right)$$

Now there are nonlinear effects; $\bar{\mu}_{\Delta}(\varphi)$ may not be harmonic.

The subthermal bulk viscosity

- ζ_{sub} is independent of driving amplitude.
- Prefactor $P = C^2/B$ is a combination of susceptibilities.
- \blacktriangleright $\gamma_{\rm eff}$ is the effective rate/particle of the re-equilibration process.

The subthermal bulk viscosity

- ζ_{sub} is independent of driving amplitude.
- Prefactor $P = C^2/B$ is a combination of susceptibilities.
- $\gamma_{\rm eff}$ is the effective rate/particle of the re-equilibration process.
- As $\gamma_{\text{eff}} \rightarrow 0$, $\zeta \rightarrow 0$. No equilibration.
- ▶ As $\gamma_{\rm eff} \rightarrow \infty$, $\zeta \rightarrow 0$. Infinitely fast equilibration.

The subthermal bulk viscosity

- ζ_{sub} is independent of driving amplitude.
- Prefactor $P = C^2/B$ is a combination of susceptibilities.
- \blacktriangleright $\gamma_{\rm eff}$ is the effective rate/particle of the re-equilibration process.
- As $\gamma_{\rm eff} \rightarrow 0$, $\zeta \rightarrow 0$. No equilibration.
- As $\gamma_{\rm eff} \to \infty$, $\zeta \to 0$. Infinitely fast equilibration.
- In phases where Fermi surface modes dominate equilibration (nuclear, unpaired quark matter, 2SC) P is constant for T ≪ μ_q, and subthermal bulk viscosity peaks when γ_{eff}(T) = ω.
- In phases where bosons dominate equilibration (CFL, CFL-K0), P(T) washes out the peak.

The general bulk viscosity

To include the suprathermal regime, we have to solve the diffeq for $\bar{\mu}_{\Delta}(\varphi)$ numerically.

For a given form of matter, we can summarize dependence on driving amplitude and temperature in dimensionless function $\mathcal{I}(\boldsymbol{d}, f)$,

$$\zeta = \frac{C^2}{2\omega B} \mathcal{I}(\boldsymbol{d}, f)$$

$$f = \gamma_{\rm eff} / \omega \quad \boldsymbol{d} = (C/T) \, \delta \boldsymbol{n} / \bar{\boldsymbol{n}}$$

This could then be used to calculate damping time of r-modes.

Suprathermal enhancement of bulk viscosity

- Bulk visc rises very steeply in suprathermal regime
- Max reached at $\delta n/n \sim 0.1$; max value indp of temperature
- Suprathermal enhancement is greater at low T and for matter where ζ goes as higher power of μ_Δ.

Consequences of suprathermal enhancement

- Superthermal bulk viscosity can stop r-mode growth, but only at very high amplitude α ~ 1 (δn/n̄ ~ 0.03).
 Other mechanisms may saturate r-mode first, e.g. mode-coupling at α ~ 10⁻⁴ (Bondarescu, Teukolsky, Wasserman, arXiv:0809.3448)
- Superthermal bulk viscosity and neutrino emission affect heating and cooling of stars undergoing r-mode spindown
- Response of stars to other high-amplitude compressions will also be affected.

Suprathermal enhancement in a superfluid ("gap-bridging")

If density amplitude is high enough, μ_{Δ} can be large enough to open up phase space above the gap, overcoming $\exp(-\Delta/T)$ suppression.

 $\mu_{\Delta} = C \frac{\delta n}{\bar{n}}$ For APR, $C \sim 20$ to 150 MeV Oscillation with $\delta n/\bar{n} \sim 0.01$ can overcome $\Delta \sim 1$ MeV.

Gap-bridging enhancement of bulk viscosity

Illustrative example: direct Urca allowed s-wave pairing for p and n Δ_p peak of 1 MeV at $n = 1.3 n_0$ Δ_n peak of 0.12 MeV at $n = 3.7 n_0$ [Cas A]

There is similar enhancement for neutrino emissivity.

Future directions

Transport:

- Study suprathermal enhancement in other phases, e.g. Hyperonic nuclear matter, neutron star crust
- ► Gap-bridging: apply to realistic case, modified Urca, ³P₂ neutron pairing, etc.
- Investigate effect of multiple equilibrating quantities

Astrophysics:

- Evolution of r-mode spindown, trajectory in (T, Ω) space (requires assumed r-mode saturation amplitude and a cooling model)
- Complications with r-modes: layered stars, role of crust, etc
- Apply to other modes, e.g. pulsations, f-modes (which emit grav waves), violent accretion events