Updated results of the OPERA neutrino-velocity analysis

Maximiliano Sioli (Bologna University and INFN) on behalf of the OPERA Collaboration

LNGS Workshop, March 28th 2012

A brief storyline

- September 23rd 2011: public release of the result
 - seminar and first neutrino-velocity paper from OPERA (1109.4897v1): $\delta t = (60.7 \pm 6.9 \pm 7.4)$ ns
- Intense activity within the Collaboration to assess the result under different and complementary perspectives
 - Analysis checks: events selection, event time definition, etc
 - Statistical checks (Maximum Likelihood fit)
 - General and Special Relativity issues
 - Delayed double cosmic muon events
- Oct-Nov 2011: Bunched Beam (two weeks)
 - Excluded major systematic effects related to the statistical procedure
 - New version of the paper (1109.4897v2): $\delta t = (62.1 \pm 3.7)$ ns
- Dec-Feb 2011: measurement campaign of the timing chain
 - 8.3 km fiber delay from the LNGS-GPS to the OPERA Master Clock
 - Frequency of the OPERA Master Clock oscillator
- Interpretation and understanding of the overall picture
 - OPERA-LVD cosmic ray coincidence study

December 2011 measurements

- December 2011 measurement campaign: the "trigger" •
 - Measurement of the 8 km fiber delay: a crucial point (the last measurements dated back to 2006 and 2007)
 - New repeated high-accuracy measurements did not confirm the value found in the past:
 - 2006 measurements: $t_{fiber} = (41001.4 \pm 0.3) \text{ ns}$ 2011 measurements: $t_{fiber} = (41074.6 \pm 0.5) \text{ ns}$ $\Delta t_{fiber} = (73.2 \pm 0.6_{stat}) \text{ ns}$
 - After re-plugging the fiber connector the old 2006 result was restored back
 - First indication of a "drift" in the OPERA timestamps within the 0.6 s DAQ cycle
- Two fundamental questions to answer •
 - -1) What's the source of the Δt_{fiber} delay difference and of the drift effect?
 - 2) How long these two anomalies were there?

Q1: what did it happen?

Answers to these questions came in Feb 2011 (G. Sirri's talk)

1) Source of the Δt_{fiber} delay difference

- A not-proper fiber connection to the OPERA PCI board may induce an artificial delay which propagates up to the last TT sensor
- This is due to the response of the analog circuit to an attenuated light intensity
- It is possible to obtain *stable configurations* which produce delays up to ~100 ns
- This effect goes in the direction to *decrease* the neutrino ToF (if not corrected)

2) Source of time-stamp drift

- Accurate measurements have shown that the 20 MHz OPERA internal oscillator has a frequency slightly larger than the nominal one
- That induces a linear shift of event timestamps within the DAQ cycle with a slope

 $\alpha = (124.08 \pm 0.08) \text{ ns/s}$

• This effect goes in the direction to *increase* the neutrino ToF (if not corrected)

A working model

Q2: when did it happen?

• Since we know that 2009+2010+2011+BB data are perfectly compatible in terms of NuVel analysis (they are "aligned in time"), we are forced to invoke one of the twos:

1) The AC arose between the end of the BB and T3 by an intervention on the fiber connector

2) The AC arose at time T^* <u>after</u> T2 and <u>before</u> the 2009 neutrino run by an intervention on the fiber connector

- If the second case we can distinguish three periods:
 - $t < T2 < T^*$: system in Normal Condition
 - $T^* < t < T3$: system in AC with superluminal neutrinos
 - t > T3: system back again in Normal Condition
- The AC arose at the level of the OPERA Master Clock. The AC is therefore related only to OPERA and not to the other experiments at LNGS.
- We have then a beautiful handle to perform our checks using the well calibrated <u>OPERA-LVD coincidence analysis</u> for cosmic ray studies.

LVD-OPERA coincidences (Prof. Zichichi's talk)

- The analysis started in 2009 following an LVD-OPERA agreement to exchange data to perform searches for high p_T phenomena interesting for pQCD studies
- Analysis still in progress, so far not event found
- Instead several cosmic muon detected impinging OPERA first and LVD after: muons from the Teramo Valley where the rock thickness is relatively small ($\langle h \rangle \approx 2200 \text{ m}, \langle \theta \rangle \approx 85^{\circ}$)
 - → we have an high energy muon beam ($\langle E_{\mu} \rangle \approx 270 \text{ GeV}$) to cross-calibrate the two detector timing systems

Teramo muons

OPERA-LVD coincidences

						Random coincidences				Signal	
Period	OPERA		LVD		Days in common	Rate OPERA (Hz)	Rate LVD (Hz)	Expected in ±1 ms	Observed in ±1 ms	Expected Teramo m	Observed Teramo m
2007	28/08/2007	31/12/2007	27/08/2007	31/12/2007	58.2	0.184	0.095	177.1	162	15.7	21
2008	01/01/2008	05/12/2008	01/01/2008	07/12/2008	263.7	0.073	0.095	314.2	323	71.2	64
2009	01/06/2009	23/11/2009	31/05/2009	01/12/2009	171.1	0.124	0.098	359.0	351	46.2	49
2010	31/12/2009	31/12/2010	01/01/2010	01/01/2011	326.5	0.063	0.097	346.3	369	88.2	63
2011	31/12/2010	07/12/2011	01/01/2011	01/01/2012	336.9	0.063	0.098	360.6	395	91.0	109
2012	09/01/2012	02/03/2012	01/01/2012	03/03/2012	50.8	0.051	0.094	41.9	37	11.1	9
					1207.2			1599.1	1637	323.3	315

Times within the OPERA DAQ cycle

- Teramo μ 's TOFs show a clear dependence within the 0.6 s OPERA DAQ cycle
- The fitted slope (114 ± 20) ns/s is compatible with:
 - drift slope directly measured on the DAQ in Dec 2011
 - Vectron frequency in Feb 2012: 124.08 ± 0.08 ns/s

Function used to correct TOF data: $t^*_{OPERA} = t_{OPERA} - 124 \times 10^{-9} t_{DAQ}$

Page 11

Stability, a thinner binning

Teramo muons

- \triangleright Different at 8 σ level
- To be compared with (73.2 ± 0.6) ns difference in the fiber delay measured in December 2011
- \succ σ = 55 ns, coherent with what found by the LVD Collaboration with CNGS passing muons: single-tank resolution ~50 ns

> (NC) – L/c = (55 ± 10) ns compatible with LVD counter-clock delay Page 13

Independent OPERA analysis

- An independent analysis was carried out:
 - Using the same input files and independent software
 - Using independent input files and independent software
- Complete agreement with the main analysis

Testing the model

1) Cosmic rays (Teramo muons)

→ cosmic rays are uniformly distributed within the DAQ cycle

Green = NC (t < T* OR t > T3) Red = AC (t > T* AND t < T3)

Testing the model

2) CNGS neutrino events are not uniformly distributed within the DAQ cycle: DAQ cycle is one half of the PS booster cycle (1.2 s) \rightarrow we can predict the v anticipation

Testing the model

2) CNGS neutrino events \rightarrow we can explain the v anticipation

Standard CNGS runs

Bunched Beam run

The global picture

Cosmic and neutrino events alltogether show a coherent and self-consistent picture of all the observations

A more global picture...

Some neutrino events were located in different DAQ ranges and we could fit with the Maximum LL the corresponding values

Correction of the BB data

- Bunched Beam data were taken from Oct 22nd 2011 up to Nov 11th 2011 (~2 weeks)
- Single extraction of 4 bunches ~3 ns long separated by 524 ns
- 1/60 of the standard-CNGS intensity
- 4×10^{16} pot in total \rightarrow 35 beam events
- 20/35 events used for the analysis (discarded events were mostly "spectrometer events")
 - 6 events "internal"
 - 14 events "external"
- Expected statistical uncertainty:

$$\begin{split} \sigma_{BB} &= \Delta T_{DAQ} / \sqrt{12} \oplus \Delta T_{jitter} / \sqrt{12} \oplus \sigma_{TT\text{-prop}} \approx \\ & 10 / \sqrt{12} \oplus 50 / \sqrt{12} \oplus 7.3 \approx 16 \text{ ns} \\ \delta_{TOF} &= \sigma_{BB} / \sqrt{N} = 16 / \sqrt{20} \approx 3.6 \text{ ns} \end{split}$$

- Expected systematical uncertainty:
 - Similar to the "standard neutrino run" (at the basic level only the uncertainty on the statistical procedure cancels out)

One BB event in OPERA

Considerations on the BB analysis

- Dominant contribution to the BB time spread:
 - 50 ns jitter of the PPmS signal latch by the Master Clock → cured for the 2012 BB run (expected accuracy ~1 ns)
- 10 ns DAQ granularity
 - Improvable for the 2012 BB run (expected accuracy ~1 ns)
- 7.3 ns spread due to the TT light propagation:
 - Average contribution of 9.4 ns computed by Monte Carlo as due to random event impact point in the transverse coordinate of the TT bar (7.3 RMS spread)
 - Improvable for the 2012 BB considering event-by-event correction according to the precise impact point along the scintillator strip

Unfolding the result

Under the following assumptions:

- The 73.2 ns offset was there in a stable way since mid-2008 or

 at least during the two weeks of BB run (motivated by the LVD-OPERA coincidences and by the connector stability studies)
- 2. The 124.1 ns/s drift was there in a stable way since mid-2008 or at least during the two weeks of BB run (motivated by the *LVD-OPERA coincidences*)

we can correct the BB result for the two effects:

$$\delta t = 62.1 + 124.1 \times 10^{-9} \times 75.3 \times 10^{6} - 73.2 = -1.7 \text{ ns}$$

The statistical error is not affected by the offset nor by the drift

$$\delta t = (-1.7 \pm 3.7)$$
 ns [only stat]

The result is *preliminary* and an interpretation in terms of (v-c)/c is deliberately not attempted

About the systematic error

The present known sources of sytematic errors were reported in the arXiv paper:

ns	Error distribution
0.67	Gaussian
0.2	Exponential (1 side)
2.0	Flat (1 side)
2.0	Gaussian
1.0	Gaussian
1.7	Gaussian
3.0	Gaussian
2.3	Gaussian
5.0	Gaussian
	ns 0.67 0.2 2.0 1.0 1.0 1.0 1.0 1.0 1.7 3.0 2.3 5.0

Total systematic uncertainty

-5.9, +8.3

An analysis performed with the RPC timing algorithm described in A. Bertolin's talk on 16 of the 20 events lead to a result within **0.7 ns** from what quoted above with a similar statistical uncertainty \rightarrow High confidence on the TT and RPC detector cross-time-calibrations!

Conclusions (1)

- OPERA opened the way for high precision measurements of neutrino velocity using an absolute ToF technique
 - All the pioneering geodesy and timing measurements performed by the OPERA Collaboration <u>may now be used by all the LNGS experiments to perform their analyses</u>
- During an throrough data scrutiny to find out unaccounted systematic errors the OPERA Collaboration discovered two effects which may explain the anomaly
 - A time shift caused by a not-proper fiber connection (ToF up)
 - An anomalous internal oscillator frequency (ToF down)
- The LVD-OPERA coincidence study is a key tool since (at present) it's the only way to shed light on what happend in the past four years
 - The analysis indicates when the AC set in and when the NC was restored
 - The analysis also indicates that the drift was there since a long time
 - It allowed to build a coherent working model for the NuVel analysis

Conclusions (2)

- Even if the two effects newly found together with the LVD-OPERA coincidence study – provide a robust interpretation of the results only the forthcoming BB <u>will allow us to provide a firm</u> <u>conclusion</u>
 - Because many hints are not a proof (in science) and the matter is of exceptional importance
 - New BB data will be taken under perfectly controlled conditions (White Rabbit system) and with an improved timing resolution
 - With a new BB we could reach sub-10⁻⁶ sensitivities on $\delta v/c$
 - A new BB would allow the study of the energy dependence and other second-order effects on an event-by-event basis, free from the overall systematic error on the absolute ToF value

OPERA scrutinized by itself

(Handmade pinhole camera, 26 hours exposure)

The OPERA detector impressed in an OPERA emulsion!

Credits: Donato Di Ferdinando – INFN Bologna