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The value of  F2/(1 + R)  for x < 0.03 was taken to be constant  as expected from 
Regge theory [46] and as confirmed experimentally up to Q 2 =  7 GeV 2 [471. The 
da ta  in fig. 12 tend to be constant  (within errors) for x < 0.2 as predicted from 
simple Regge theory [46, 48]. 

9. The integral of gP over x 

9.1. THE EMC DATA ALONE 

In integrat ing gP over x the values of  A 1 were assumed constant  over each x bin, 
but  the funct ion F 2 / 2 x ( 1  + R )  was integrated numerically for each bin because of 
its rapid variat ion for x > 0.3. Fig. 13 shows the values of  this integral f rom the low 
edge of  each bin to x = 1, plotted against the low edge of  the bin, together with the 
data  f rom SLAC [2, 3]. The inner and outer error bars are the statistical and total 
errors. It should be noted that the errors are cumulative, i.e. each error contains the 
cont r ibut ion  from all the previous points at higher x. The normalisation error is 
included in the total error. The smooth curve is the integral obtained by using the 
parameter isa t ion of  A 1 (eq. (34)) which was used to estimate the contributions from 
the regions in x not covered by the data, i.e. x < 0.01 and x > 0.7. 

It can be seen that contributions from the lower x bins are small and the integral 
converges well. The values of  the integral shown in fig. 13 were obtained using a 
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parabola and the 1σ uncertainty in any observable would correspond to ∆χ2 = 1. In order to account for unexpected
sources of uncertainty, in modern unpolarized global analysis it is customary to consider instead of ∆χ2 = 1 between
a 2% and a 5% variation in χ2 as conservative estimates of the range of uncertainty.

As expected in the ideal framework, the dependence of χ2 on the first moments of u and d resemble a parabola
(Figures 3a and 3b). The KKP curves are shifted upward almost six units relative to those from KRE, due to the
difference in χ2 of their respective best fits. Although this means that the overall goodness of KKP fit is poorer than
KRE, δd and δu seem to be more tightly constrained. The estimates for δd computed with the respective best fits
are close and within the ∆χ2 = 1 range, suggesting something close to the ideal situation. However for δu, they only
overlap allowing a variation in ∆χ2 of the order of a 2%. This is a very good example of how the ∆χ2 = 1 does not
seem to apply due to an unaccounted source of uncertainty: the differences between the available sets of fragmentation
functions.
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FIG. 4: Parton densities at Q2 = 10 GeV2, and the uncertainty bands corresponding to ∆χ2 = 1 and ∆χ2 = 2%

An interesting thing to notice is that almost all the variation in χ2 comes from the comparison to pSIDIS data.
The partial χ2 value computed only with inclusive data, χ2

pDIS , is almost flat reflecting the fact the pDIS data are

not sensitive to u and d distributions. In Figure 3, we plot χ2
pDIS with an offset of 206 units as a dashed-dotted line.

The situation however changes dramatically when considering δs or δg as shown in Figures 3c and 3f, respectively.
In the case of the variation with respect to δs, the profile of χ2 is not at all quadratic, and the distribution is much
more tightly constrained (notice that the scale used for δs is almost four times smaller than the one used for light
sea quarks moments). The χ2

pDIS corresponding to inclusive data is more or less indifferent within an interval around
the best fit value and increases rapidly on the boundaries. This steep increase is related to a positivity constraints on
∆s and ∆g. pSIDIS data have a similar effect but also helps to define a minimum within the interval. The preferred
values for δs obtained from both NLO fits are very close, and in the case of KRE fits, it is also very close to those
obtained for δu and δd suggesting SU(3) symmetry.
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Calorimetry system with 
2π coverage: BEMC 
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BBC: Relative 
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Minimum bias trigger
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� 1

0
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�g < �g < +gExamine wide range in Δg:

GRSV-STD: Global QCD analysis of 
polarized DIS experiments only!   

�G(Q2 = 1GeV 2) � 1.8

�G(Q2 = 1GeV 2) � 0.4

M. Gluck et al. PRD 63 (2001) 094005.
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Recent results - Gluon polarization program
PHENIX: Mid-rapidity neutral pion ALL measurement
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Data are well described by NLO pQCD calculations

Run 5+6+9 ALL results: Slight tendency to be above 

previous DSSV fit result incl. STAR/PHENIX Run 5/6

PHENIX Collaboration, PRL103, 012003 (2009)
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Mid-rapidity Inclusive Jet ALL measurement (Run 9)
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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but cannot determine its sign as they mainly probe ∆g
squared. To explore this further, Fig. 3 shows the χ2

profile and partial contributions ∆χ2
i of the individual

data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.
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SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2
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∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin
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at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.
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type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2
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TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,
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j (Q2) ≡
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xmin
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at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.
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∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin
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at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.
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SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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but cannot determine its sign as they mainly probe ∆g
squared. To explore this further, Fig. 3 shows the χ2

profile and partial contributions ∆χ2
i of the individual

data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2

-0.02

-0.01

0

0.01

0.02
2 4 6 8

A
π

A
LL

0

p
T
 [GeV]

PHENIX

PHENIX (prel.)

STAR

STAR (prel.)

DSSV
DSSV Δχ

2
=1

DSSV Δχ
2
/χ

2
=2%

A
jet

A
LL

p
T
 [GeV]

-0.05

0

0.05

10 20 30

FIG. 1: Comparison of RHIC data [3] and our fit. The shaded
bands correspond to ∆χ2 = 1 and ∆χ2/χ2 = 2% (see text).

-0.04

-0.02

0

0.02

0.04

-0.04

-0.02

0

0.02

0.04

-0.04

-0.02

0

0.02

0.04

10
-2

10
-1

DSSV

DNS

GRSV

DSSV Δχ
2
=1

DSSV Δχ
2
/χ

2
=2%

xΔu
–

xΔd
–

xΔs
–

x

Q
2
 = 10 GeV

2 GRSV max. Δg

GRSV min. Δg

xΔg

x

-0.2

-0.1

0

0.1

0.2

0.3

10
-2

10
-1

FIG. 2: Our polarized sea and gluon densities compared to
previous fits [4, 6]. The shaded bands correspond to alterna-
tive fits with ∆χ2 = 1 and ∆χ2/χ2 = 2% (see text).

but cannot determine its sign as they mainly probe ∆g
squared. To explore this further, Fig. 3 shows the χ2

profile and partial contributions ∆χ2
i of the individual

data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2
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SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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previous fits [4, 6]. The shaded bands correspond to alterna-
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but cannot determine its sign as they mainly probe ∆g
squared. To explore this further, Fig. 3 shows the χ2

profile and partial contributions ∆χ2
i of the individual

data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating

Strong constraint on the size of Δg from RHIC data, in 
particular STAR jet results (Run 9)

Strong indication for a small, non-zero ΔG! 
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2

-0.02

-0.01

0

0.01

0.02
2 4 6 8

A
π

A
LL

0

p
T
 [GeV]

PHENIX

PHENIX (prel.)

STAR

STAR (prel.)

DSSV
DSSV Δχ

2
=1

DSSV Δχ
2
/χ

2
=2%

A
jet

A
LL

p
T
 [GeV]

-0.05

0

0.05

10 20 30

FIG. 1: Comparison of RHIC data [3] and our fit. The shaded
bands correspond to ∆χ2 = 1 and ∆χ2/χ2 = 2% (see text).

-0.04

-0.02

0

0.02

0.04

-0.04

-0.02

0

0.02

0.04

-0.04

-0.02

0

0.02

0.04

10
-2

10
-1

DSSV

DNS

GRSV

DSSV Δχ
2
=1

DSSV Δχ
2
/χ

2
=2%

xΔu
–

xΔd
–

xΔs
–

x

Q
2
 = 10 GeV

2 GRSV max. Δg

GRSV min. Δg

xΔg

x

-0.2

-0.1

0

0.1

0.2

0.3

10
-2

10
-1

FIG. 2: Our polarized sea and gluon densities compared to
previous fits [4, 6]. The shaded bands correspond to alterna-
tive fits with ∆χ2 = 1 and ∆χ2/χ2 = 2% (see text).

but cannot determine its sign as they mainly probe ∆g
squared. To explore this further, Fig. 3 shows the χ2

profile and partial contributions ∆χ2
i of the individual

data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating

Strong constraint on the size of Δg from RHIC data, in 
particular STAR jet results (Run 9)

Strong indication for a small, non-zero ΔG! 

Next steps: Mapping of x-dependence and extension of x-
coverage needed (Di-Jet measurements)!
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Data are well 

described by 

NLO pQCD plus 

hadronization 

and underlying 

event 

corrections

First Di-Jet ALL measurement in agreement with Δg constrained 

by previous inclusive jet result, i.e. small gluon polarization 

preferred! 
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Preliminary Run 9

STAR

Run 9 data: First rapidity dependent 

di-jet measurement                                    

⇒ Constrain x dependence! 
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Future Di-Jet / Inclusive Jet measurements

Access lower Bjorken-x region at 
500GeV ⇒ Expect smaller ALL

Important constrain from future 
Di-Jet and Inclusive Jet 
measurements

P=0.5 and Lrecorded=85pb-1

P=0.5 and Lrecorded=390pb-1
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PHENIX Future Neutral pion measurements

Access lower Bjorken-x region at 500GeV ⇒ 

Expect smaller ALL

Important constrain from future neutral pion 
measurements
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TABLE I: Data used in our analysis [2, 3], the individual
χ2 values, and the total χ2 of the fit. We employ cuts of
Q, pT > 1GeV for the DIS, SIDIS, and RHIC high-pT data.

experiment data data points χ2

type fitted

EMC, SMC DIS 34 25.7

COMPASS DIS 15 8.1

E142, E143, E154, E155 DIS 123 109.9

HERMES DIS 39 33.6

HALL-A DIS 3 0.2

CLAS DIS 20 8.5

SMC SIDIS, h± 48 50.7

HERMES SIDIS, h± 54 38.8

SIDIS, π± 36 43.4

SIDIS, K± 27 15.4

COMPASS SIDIS, h± 24 18.2

PHENIX (in part prel.) 200 GeV pp, π0 20 21.3

PHENIX (prel.) 62GeV pp, π0 5 3.1

STAR (in part prel.) 200 GeV pp, jet 19 15.7

TOTAL: 467 392.6

spond to the maximum variations for ALL computed with
alternative fits consistent with an increase of ∆χ2 = 1 or
∆χ2/χ2 = 2% in the total χ2 of the fit.

Our newly obtained antiquark and gluon PDFs are
shown in Fig. 2 and compared to previous analysis [4, 6].
For brevety, the total ∆u+∆ū and ∆d+∆d̄ densities are
not shown as they are very close to all other fits [4–6].
Here, the bands correspond to fits which maximize the
variations of the truncated first moments,

∆f1,[xmin−xmax]
j (Q2) ≡

∫ xmax

xmin

∆fj(x, Q2)dx, (8)

at Q2 = 10 GeV2 and for [0.001 − 1]. As in Ref. [6]
they can be taken as faithfull estimates of the typical
uncertainties for the antiquark densities. For the elusive
polarized gluon distribution, however, we perform a more
detailed estimate, now discriminating three regions in x:
0.001-0.05, 0.05-0.2 (roughly corresponding to the range
probed by present RHIC data), and 0.2-1.0. Within each
region, we scan again for alternative fits that maximize
the variations of the truncated moments ∆g1,[xmin−xmax],
sharing evenly to ∆χ2. In this way we can produce a
larger variety of fits than for a single ([0.001−1]) moment,
and, therefore, a more conservative estimate. Such a pro-
cedure is not necessary for antiquarks whose x-shape is
already much better determined by DIS and SIDIS data.
One can first of all see in Fig. 2 that ∆g(x, Q2) comes out
rather small, even when compared to fits with a “moder-
ate” gluon polarization [4, 6], with a possible node in the
distribution. This is driven by the RHIC data which put
a strong constraint on the size of ∆g for 0.05 ! x ! 0.2
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FIG. 1: Comparison of RHIC data [3] and our fit. The shaded
bands correspond to ∆χ2 = 1 and ∆χ2/χ2 = 2% (see text).
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FIG. 2: Our polarized sea and gluon densities compared to
previous fits [4, 6]. The shaded bands correspond to alterna-
tive fits with ∆χ2 = 1 and ∆χ2/χ2 = 2% (see text).

but cannot determine its sign as they mainly probe ∆g
squared. To explore this further, Fig. 3 shows the χ2

profile and partial contributions ∆χ2
i of the individual

data sets for variations of the moment computed for this
x range. A nice degree of complementarity and consis-
tency between is found. A small ∆g at x # 0.2 is also
consistent with data for ALL from lepton-nucleon scatter-
ing [15], which still lack a proper NLO description. The
small x region remains still largely unconstrained.

We also find that the SIDIS data give rise to a ro-
bust pattern for the sea polarizations, clearly deviating

DSSV

projection run 9-14

Q2 = 10 GeV2

DIS + RHIC ) run 6

mid-rap. jets, 200 GeV

GRSV std

x6g
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Substantial improvement of Δg for x > 0.02 based on a combined 
Run 9 + Run 14 data sample of inclusive jet at √s=200GeV for |η|<1

M. Stratmann
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News Release:

http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=1232  

http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=1232
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Probing the quark flavor structure using W boson production
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Recent results - Quark / Anti-quark pol. program
Measurement: Background treatment / Signal distribution 
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Recent results - Quark / Anti-quark pol. program
PHENIX and STAR W+ / W- cross section measurement in pp collisions 
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Recent results - Quark / Anti-quark pol. program
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Recent results - Quark / Anti-quark pol. program
PHENIX: Status and projections AL
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Recent results - Quark / Anti-quark pol. program
PHENIX: Status and projections AL
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Recent results - Quark / Anti-quark pol. program
STAR: Status and projections AL
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Recent results - Quark / Anti-quark pol. program
STAR: Status and projections AL
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Recent results - Quark / Anti-quark pol. program

AL(W+) negative with a significance of ~3σ

AL(W-) central value positive

Measured asymmetries are in agreement 

with theory evaluations using polarized 

pdf’s (DSSV) constrained by polarized DIS 

data                                                          

⇒ Universality of helicity distr. functions!

STAR: Status and projections AL
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Future  - Quark / Anti-quark pol. program
RHIC W Impact on polarized QCD sea 
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Summary / Outlook
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Gluon polarization program

Several final states (Hadron / Jet) have been measured all pointing to the same conclusion 

that the gluon polarization is small

First Di-Jet measurement opens the path to constrain the shape of Δg

Run 9 results: Precise ALL measurement suggesting small, non-zero ΔG
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W boson program
Mid-rapidity: First measurement of W boson production in polarized p+p collisions at RHIC in 2009 

Backward/Forward rapidity: Upgrade of PHENIX forward muon detector (Muon Trigger) and STAR FGT 

(Forward GEM Tracker)
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W boson program
Mid-rapidity: First measurement of W boson production in polarized p+p collisions at RHIC in 2009 

Backward/Forward rapidity: Upgrade of PHENIX forward muon detector (Muon Trigger) and STAR FGT 

(Forward GEM Tracker)

Run 12 and future
Run 12: Successful trans. 200GeV (~20pb-1 rec.) and long. 510GeV (~85pb-1 rec.) runs

Future: Expect and need several long 500GeV production runs beyond Run 12 (e.g. Run 13)
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Greetings from Lanzarote!


