

Recent results on hadron/jet and W production of the high-energy polarized p+p program at RHIC at BNL

Bernd Surrow

Outline

Experimental aspects:
 RHIC / PHENIX /STAR

Theoretical foundation

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012

- Selected recent results and future prospects
 - Gluon polarization
 - Quark / Anti-quark polarization

SummaryandOutlook

Bernd Surrow

2

How do we probe the structure and dynamics of matter in ep vs. pp scattering?

How do we probe the structure and dynamics of matter in ep vs. pp scattering?

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012

Bernd Surrow

• Spin sum rule:

$$\frac{1}{2} = \langle S_q \rangle + \langle S_g \rangle + \langle L_q \rangle + \langle L_g \rangle$$

$$\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$
$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x, Q^2) dx \qquad \Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$

 $\frac{1}{2}\Delta\Sigma$

• Spin sum rule:

 $\overline{\mathfrak{h}}$

$$\Delta G$$

(R.L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990))

 $\langle S_q \rangle + \langle S_g \rangle + \langle L_q \rangle + \langle L_g \rangle$

$$\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$

$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x, Q^2) dx \qquad \Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$

 $\Delta\Sigma$

• Spin sum rule:

$$\frac{1}{2} = \langle S_q \rangle + \langle S_g \rangle + \langle L_q \rangle + \langle L_g \rangle$$

$$\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$
$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x, Q^2) dx \qquad \Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$

 $\frac{1}{2}\Delta\Sigma$

g^p(x,Q²)+c(x)

3.5

3

2.5

1.5

0.5

0

1

CLAS^o

Theoretical foundation

☆ EMC

SMC

△ E143

♦ E155

Ð

0

HERMES

CLAS W>2.5

COMPASS

LSS 05

 $g_1^p = \frac{1}{2} \sum e_{q_i}^2 \Delta q_i$

x=0.025

10

x=0.035

x=0.049

x=0.077

x=0.120

=0.170

x=0.240

.x=0.340

x=0.480

 10^{2}

 Q^2 [GeV²]

x=0.740

x=0.015

x=0.006

ΔΔΔΦ

$$\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$
$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x, Q^2) dx \qquad \Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$

Current status: 0

Picture of the proton from polarized ep scattering

• Spin sum rule:

$$\frac{1}{2} = \langle S_q \rangle + \langle S_g \rangle + \langle L_q \rangle + \langle L_g \rangle$$

$$\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$

$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x, Q^2) dx \qquad \Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$

 $\frac{1}{2}\Delta\Sigma$

• Current status:

 Data only from fixed-target experiments (Limited reach in x and Q²) mostly at lower energy

Picture of the proton from polarized ep scattering

• Spin sum rule:

$$\frac{1}{2} = \langle S_q \rangle + \langle S_g \rangle + \langle L_q \rangle + \langle L_g \rangle$$

$$\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$

$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x, Q^2) dx \qquad \Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$

 $\frac{1}{2}\Delta\Sigma$

• Current status:

- Data only from fixed-target experiments (Limited reach in x and Q²) mostly at lower energy
- Quark spin contribution is small (~25%):

Bernd Surrow

Picture of the proton from polarized ep scattering

• Spin sum rule:

$$\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$

$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x, Q^2) dx \qquad \Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$

 $\Delta\Sigma$

Current status:

- Data only from fixed-target experiments (Limited reach in x and Q²) mostly at lower energy
- Quark spin contribution is small (~25%):

 \Box Δg - from scaling violations - unconstrained so far!

Picture of the proton from polarized ep scattering

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012 Spin sum rule:

$$\frac{1}{2} = \langle S_q \rangle + \langle S_g \rangle + \langle L_q \rangle + \langle L_g \rangle$$

$$\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$

$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x, Q^2) dx \qquad \Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$

 $\frac{1}{2}\Delta\Sigma$

Current status:

- Data only from fixed-target experiments (Limited reach in x and Q²) mostly at lower energy
- Quark spin contribution is small (~25%):

 $\Delta \Sigma = 0.242 \ (Q^2 = 10 \,\mathrm{GeV}^2)$

(D. deFlorian et al., Phys. Rev. D80, 034030 (2009))

 \Box Δg - from scaling violations - unconstrained so far!

Picture of the proton from polarized ep scattering

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012 • Spin sum rule:

$$\frac{1}{2} = \langle S_q \rangle + \langle S_g \rangle + \langle L_q \rangle + \langle L_g \rangle$$

(R.L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990))

$$\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$

$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x, Q^2) dx \qquad \Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$

 $\frac{1}{2}\Delta\Sigma$

Current status:

- Data only from fixed-target experiments (Limited reach in x and Q²) mostly at lower energy
- Quark spin contribution is small (~25%):

 $\Delta \Sigma = 0.242 \ (Q^2 = 10 \,\text{GeV}^2) \qquad \qquad \frac{1}{2} \Delta \Sigma = 0.121$

(D. deFlorian et al., Phys. Rev. D80, 034030 (2009))

 \Box Δg - from scaling violations - unconstrained so far!

Bernd Surrow

Status: Polarization of quarks and gluons from a global QCD analysis

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012 D. de Florian et al., Phys. Rev. D71, 094018 (2005).

Bernd Surrow

Status: Polarization of quarks and gluons from a global QCD analysis

Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012

Explore proton spin structure using high-energy polarized p+p collisions

- Observable: Quark/Anti-quark polarization (W production)
 - Longitudinal single-spin
 asymmetry A_L

 $A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$

- Parity (Spatial inversion) violating for W production!
- Observable: Gluon polarization (Jet/Hadron production)
 - Double longitudinal single-spin
 asymmetry A_{LL}

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012

Bernd Surrow

The world's first polarized proton-proton collider

The world's first polarized proton-proton collider

7

The world's first polarized proton-proton collider

Experimental aspects - RHIC

Experimental aspects - STAR

Overview

- Calorimetry system with 0 2π coverage: BEMC $(-1 < \eta < 1)$ and EEMC $(1 < \eta < 2)$
- TPC: Tracking and particle ID

- O ZDC: Relative luminosity and local polarimetry (500GeV)
- **BBC:** Relative 0 luminosity and Minimum bias trigger

Bernd Surrow

Experimental aspects - PHENIX

Overview

- Ο π⁰, η, γ
 - □ Electromagnetic Calorimeter (PbSc/PbGl) ($|\eta < 0.35, \varphi = 2 \times \pi/2$)
- O π^{\pm} , e, $J/\psi \rightarrow e^{+}e^{-}$
 - Drift Chamber (DC)
 - Ring Imaging Cherenkov Detector (RICH)
 - Electromagnetic Calorimeter (PbSc/PbGl)
- $O \quad \mu, \, J/\psi {\rightarrow} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$
 - □ Muon Id/Muon Tracker (1.2< $|\eta|$ <2.4 + 2 π)
- Ο π⁰, η
 - $\square MPC (3.1 < |\eta| < 3.9 + 2\pi)$
- O Relative Luminosity
 - □ Beam Beam Counter (BBC) (3.0< n<3.9)
 - Zero Degree Calorimeter (ZDC)

Double and single longitudinal spin asymmetry measurements

- Require concurrent measurements:
 - Longitudinal beam polarization P₁₍₂₎
 at STAR IR

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012

- Direction of polarization vector
- Relative luminosity R of bunch crossings with different spin directions
- Spin dependent yields of process of interest Nij

Bernd Surrow

11

Recent results - Gluon polarization program

 $\Delta G(Q^2) =$

 $\Delta g(x,Q^2)dx$

-1<η<2 Inclusive γ production

• Examine wide range in Δg : $-g < \Delta g < +g$

• GRSV-STD: Global QCD analysis of

polarized DIS experiments only!

M. Gluck et al. PRD 63 (2001) 094005.

Recent results - Gluon polarization program

 $\Delta G(Q^2) =$

 $\Delta g(x,Q^2)dx$

-1<η<2 Inclusive γ production

• Examine wide range in Δg : $-g < \Delta g < +g$

• GRSV-STD: Global QCD analysis of

polarized DIS experiments only!

M. Gluck et al. PRD 63 (2001) 094005.

Recent results - Gluon polarization program

 $\Delta G(Q^2) =$

 $\Delta g(x,Q^2)dx$

 ${\bf O}\,$ Examine wide range in $\Delta g : \, -g < \Delta g < +g$

• GRSV-STD: Global QCD analysis of

polarized DIS experiments only!

M. Gluck et al. PRD 63 (2001) 094005.

PHENIX: Mid-rapidity neutral pion ALL measurement

- Data are well described by NLO pQCD calculations
- Run 5+6+9 ALL results: Slight tendency to be above previous DSSV fit result incl. STAR/PHENIX Run 5/6

PHENIX: Mid-rapidity neutral pion ALL measurement

 Run 5+6+9 A_{LL} results: Slight tendency to be above previous DSSV fit result incl. STAR/PHENIX Run 5/6

• Run 6 ALL measurement between GRSV-STD and

GRSV-ZERO

- Run 6 A_{LL} measurement
 between GRSV-STD and
 GRSV-ZERO
- Run 9 A_{LL} measurement
 between GRSV-STD and
 DSSV / Clearly above at low p_T

- Run 6 A_{LL} measurement
 between GRSV-STD and
 GRSV-ZERO
- Run 9 A_{LL} measurement
 between GRSV-STD and
 DSSV / Clearly above at low p_T

- Run 6 A_{LL} measurement
 between GRSV-STD and
 GRSV-ZERO
- Run 9 A_{LL} measurement
 between GRSV-STD and
 DSSV / Clearly above at low p_T

14

- Run 6 A_{LL} measurement
 between GRSV-STD and
 GRSV-ZERO
- Run 9 A_{LL} measurement
 between GRSV-STD and
 DSSV / Clearly above at low p_T

- Run 6 A_{LL} measurement
 between GRSV-STD and
 GRSV-ZERO
- Run 9 A_{LL} measurement
 between GRSV-STD and
 DSSV / Clearly above at low p_T
Mid-rapidity Inclusive Jet A_{LL} measurement (Run 9)

- Run 6 A_{LL} measurement
 between GRSV-STD and
 GRSV-ZERO
- Run 9 A_{LL} measurement
 between GRSV-STD and
 DSSV / Clearly above at low p_T
- Truncated first moment incl.
 Run 9 data:

Mid-rapidity Inclusive Jet A_{LL} measurement (Run 9)

- Run 6 A_{LL} measurement
 between GRSV-STD and
 GRSV-ZERO
 - Run 9 A_{LL} measurement between GRSV-STD and DSSV / Clearly above at low p_T
 - Truncated first moment incl.
 Run 9 data:

 ${}^{0.2}_{0.5} \Delta g(x, Q^2 = 10 \text{GeV}^2) dx = 0.13$

(D. deFlorian et al., Prog. Nucl. Part. Phys. 67, 251 (2012))

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012

15

 $x \sim$

10⁻²

10⁻³

10⁻¹

Bernd Surrow

X gluon

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012

15

Recent results - Gluon polarization program

First STAR Di-Jet ALL measurement

○ First Di-Jet A_{LL} measurement in agreement with ∆g constrained by previous inclusive jet result, i.e. small gluon polarization preferred!

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012

Bernd Surrow

\Box First STAR Di-Jet A_{LL} measurement in bins of η

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012 Bernd Surrow

Future prospects - Gluon polarization program

Future Di-Jet / Inclusive Jet measurements

60 70 80

50

50 60 70 80 90

90 100 110

M [GeV/c²]

100 110

M [GeV/c²]

- Access lower Bjorken-x region at $500GeV \Rightarrow Expect smaller A_{LL}$
- Important constrain from future Di-Jet and Inclusive Jet measurements

18

PHENIX Future Neutral pion measurements

measurements

Future Photon-Jet measurements

200GeV: P=0.6 and L_{recorded}=50pb⁻¹ 500GeV: P=0.5 and L_{recorded}=300pb⁻¹

• Direct impact on $\Delta g(x)$

• Projections are for STAR EEMC - STAR FMS will reach lower x region (Few 10⁻³)

ospects - Gluon polarization program

🗅 Impact on 🟒

Run 9 + Run 14 data sample of inclusive jet at $\int s=200GeV$ for $|\eta|<1$

Probing the quark flavor structure using W boson production: Unique new probe Unique New Probe of Proton Spin Structure at RHIC

Direct measurements allow detailed look at how guarks of different flavors contribute to spin

February 15, 2011

UPTON, NY — Scientists hoping to unravel the mystery of proton spin at the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile-circumference particle accelerator at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, have a new tool at their disposal — the first to directly explore how quarks of different types, or "flavors," contribute to the overall spin of the proton. The technique, described in papers just published by RHIC's STAR and PHENIX collaborations in Physical Review Letters, relies on the measurement of particles called W bosons, the mediators of the weak force responsible for the decay of radioactive nuclei.

News Release:

http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=1232

Illustration of a new measurement using W boson production in polarized proton collisions at + ENLARGE RHIC. Collisions of polarized protons (beam entering from left) and unpolarized protons (right) result in the production of W bosons (in this case, W-). RHIC's detectors identify the particles emitted as the W bosons decay (in this case, electrons, e-) and the angles at which they emerge. The colored arrows represent different possible directions, which probe how different quark flavors (e.g., "anti-up," ü; and "down," d) contribute to the proton spin.

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012

Bernd Surrow

Probing the quark flavor structure using W boson production

Probing the quark flavor structure using W boson production

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012

23

Bernd Surrow

Measurement: Background treatment / Signal distribution

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012 STAR Collaboration, PRL 106, 062002 (2011) Bernd Surrow

PHENIX and STAR W⁺ / W⁻ cross section measurement in pp collisions

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012 Bernd Surrow

PHENIX and STAR W⁺ / W⁻ cross section measurement in pp collisions

PHENIX and STAR W⁺ / W⁻ cross section measurement in pp collisions

Measured and theory evaluated

cross-sections agree within

uncertainties

Theory calculations: Full NLO

0

0

PHENIX: Status and projections A_L

in the positive

candidates

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012PHENIX Collaboration, PRL 106, 062001 (2011)

PHENIX: Status and projections A_L

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012 Bernd Surrow

STAR: Status and projections AL

STAR: Status and projections AL

STAR Run 9 **Data** $\sqrt{s} = 500 \,\text{GeV}$ STAR: Status and projections A_L A_L $\vec{p} + p \to W^{\pm} + X \to e^{\pm} + X$ $25 < E_T^e < 50\,{\rm GeV}$ 0.6 $|\eta| < 1 \ L = 12 \,\mathrm{pb}^{-1}$ $A_L^{W^-} = 0.14 \pm 0.19 \text{ (stat.)} \pm 0.02 \text{ (syst.)} \pm 0.01 \text{ (norm.)}$ P = 39%0.4 $A_L^{W^+} = -0.27 \pm 0.10 \text{ (stat.)} \pm 0.02 \text{ (syst.)} \pm 0.03 \text{ (norm.)}$ 0.2 $A_{L}(W^{*})$ negative with a significance of $\sim 3\sigma$ 0 () Run 9 sys. error $A_{L}(W^{-})$ central value positive 0 DSSV08 LO with $\Delta \chi^2 = 1$ pdf error -0.20 Measured asymmetries are in agreement with theory evaluations using polarized RHICBOS -0.4DNS - Kpdf's (DSSV) constrained by polarized DIS DNS – KKP DSSV08 -0.6 data CHE W^+ DSSV08 \Rightarrow Universality of helicity distr. functions! 0 Bernd Surrow η_e

Recent results - Quark / Anti-guark pol. program

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012

Future - Quark / Anti-quark pol. program

RHIC W Impact on polarized QCD sea

• Substantial improvement of anti-u/anti-d quark polarization for $x \ge 0.05$ based on $L_{delivered} = 630 \text{pb}^{-1}$ and P=55%

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012

Bernd Surrow

Summary / Outlook

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012

Gluon polarization program

- Several final states (Hadron / Jet) have been measured all pointing to the same conclusion that the gluon polarization is small
- First Di-Jet measurement opens the path to constrain the shape of Δg
- Run 9 results: Precise A_{LL} measurement suggesting small, non-zero ΔG

Gluon polarization program

- Several final states (Hadron / Jet) have been measured all pointing to the same conclusion that the gluon polarization is small
- First Di-Jet measurement opens the path to constrain the shape of Δg
- Run 9 results: Precise A_{LL} measurement suggesting small, non-zero ΔG

W boson program

- Mid-rapidity: First measurement of W boson production in polarized p+p collisions at RHIC in 2009
- Backward/Forward rapidity: Upgrade of PHENIX forward muon detector (Muon Trigger) and STAR FGT (Forward GEM Tracker)

Gluon polarization program

- Several final states (Hadron / Jet) have been measured all pointing to the same conclusion that the gluon polarization is small
- First Di-Jet measurement opens the path to constrain the shape of Δg
- Run 9 results: Precise A_{LL} measurement suggesting small, non-zero ΔG

W boson program

- Mid-rapidity: First measurement of W boson production in polarized p+p collisions at RHIC in 2009
- Backward/Forward rapidity: Upgrade of PHENIX forward muon detector (Muon Trigger) and STAR FGT (Forward GEM Tracker)

Run 12 and future

- Run 12: Successful trans. 200GeV (~20pb⁻¹ rec.) and long. 510GeV (~85pb⁻¹ rec.) runs
- Future: Expect and need several long 500GeV production runs beyond Run 12 (e.g. Run 13)

29

THANKS

I would like to thank my Spin Collaborators for useful discussions, in particular
E. Aschenauer (BNL), P. Djawotho (Texas A&M), Maro Stratmann (BNL),
W. Vogelsang (University of Tübingen) and M. Walker (Rutgers University)

Greetings from Lanzarote!

Diffraction 2012 / International Workshop on Diffraction in HEP Puerto del Carmen, Lanzarote, Spain, September 10-15, 2012