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Outline 
• Neutron stars in a nutshell 

•  The Galactic NS population 
•  NS structure 
•  Rotation and magnetism 
•  Different classes of (isolated) NSs 

•   Soft Gamma Repeaters (SGRs) and Anomalous X-ray 
pulsars (AXPs) 
•  General properties 
•  SGRs & AXPs as magnetars (aka ultra-magnetized NSs) 

•  The persistent X-ray emission 
•  X-ray spectra 
•  The twisted magnetosphere model 
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Outline - II 
• Bursts & Flares 

•  Burst phenomenology 
•  Burst triggers and emission 

• What makes a magnetar ?  
•  SGRs/AXPs vs. high-field pulsars 
•  “Low-field” magnetars (?) 
•  NSs magneto-thermal evolution  
•  The case of SGR 0418+5729 
•  A magnetar orbiting the CG SMBH 
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Neutron Star Basics 
• Neutron stars (and black holes) are born in the 
core collapse following a supernova explosion 

• Present rate of SN events in the Galaxy:  ≈ 0.01/
yr (possibly higher in the past) 

• Galactic population of compact objects: ≈ 108 – 
109 (≈ 1% of stars) 

• Nature of compact  remnant depends on 
progenitor mass 
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•  If N(>M) ~ M-1.3 (Salpeter) only ~ 20% of stars with M > 8 

M¤ are more massive than 25 M¤ 

• Very massive stars may form “magnetars” (Muno et al 2006, 
but see also Clark et al. 2014), black holes about 10% of the total 

• Galactic compact objects are mostly neutron stars (≈ 108) 

8 < M/M¤ < 20-25 

 M/M¤ > 20-25 
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A 10 km sphere made of  
neutron superfluid covered 
by few hundred meters of 
ordinary matter with a 10 
cm gaseous atmosphere on 
top (with a big question 
mark near the centre) 

Masses ~ 1 – 2 M¤  
Radii ~ 10 – 15 km (~ 3 
Schwarzschild radii) 
Central density ~ 1015 g/cm3  
Surface gravity ~ 1014-15 cm/
s2  
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Rotation and Magnetism 
• NSs rotate fast (fastest 

known: PSR J1748-2446ad, 
ν=716 Hz, P=1.4 ms) 

•  Large dipole magnetic field (B 
≈ 1012 G in “normal” PSRs) 

• Spin-down by magneto-
dipolar losses 
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• A rotating magnetic dipole radiates at a rate  
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Hold if B is a constant dipole and P0 << P! 

Measuring P and Ṗ is crucial   

Phase-coherent timing  Strictly periodic 

SGR 1833 (Esposito et al. 2011) 
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• Most neutron stars are known through their pulsed radio-
emission 

• Galactic pulsar population ≈ 105 (Vranisevic et al. 2004; > 2000 
detected, ATNF catalogue) 

•  The majority of neutron stars are old, dead objects   

• Observations in the X- and γ-rays revealed the existence 
of different classes of isolated neutron stars 
•  Central compact objects in SNRs (CCOs)  
•  X-ray dim isolated neutron stars (XDINSs) 
•  Rotating Radio Transients (RRaTs) 
•  Soft γ-repeaters (SGRs) 
•  Anomalous X-ray pulsars (AXPs) 
 

Pulsars and… 

Magnetars 
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The P - Ṗ Diagram 
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The Powerhouse 
• Rotation (Ė > Lbol, RPPs) 

• PSRs, RRaTs 

• Residual heat 
• XDINSs, CCOs 

• Magnetic energy 
• SGRs, AXPs 

• Accretion 
• HMXBs, LMXBs 
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Are There Enough SNe ?  
• Core-collapse supernova rate, βCCSN = 1.9±1.1 century-1  
• PSRs birth rate, βPSR ~ 1.4 century-1  

• RRaTs birth rate, βRRAT > 4 century-1  

• Magnetars birth rate, βMag ~ 0.1 century-1  

• CCOs birth rate, βCCO ~ 0.04 century-1  

• XDINSs birth rate, βXDINS ~ 2 century-1  

Total NS birthrate  
βTOT ~ 1.4+4+0.1+0.04+2 = 6.5 century-1 > βCCSN 
  

EVOLUTION ! 
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Soft Gamma Repeaters - I 
Rare class of sources, discovered through the emission 
of  strong, recurrent (whence the name) bursts of soft γ-/
hard X-rays:  
L ≈ 1039-1041 erg/s >> LEdd, duration 0.1 - 1 s 

Bursts from SGR 1806-20  (INTEGRAL/IBIS,Gőtz et al 2004) 
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Soft Gamma Repeaters - II 
• Much more energetic “Giant Flares” (GFs, L ≈ 
1044 - 1047 erg/s, tpeak ~ 1 s, ttail ~ 300 s) detected 
from 3 sources 

• No evidence for a binary companion, association 
with a SNR in 1 (?) case 

• Persistent X-ray emitters, L ≈ 1033 -1035 erg/s 
• Pulsations discovered both in GFs tails and 
persistent  emission, P ≈ 2 -10 s 

• Huge spin-down rates, as compared to PSRs, Ṗ ≈ 
10-11 - 10-10 ss-1 
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Anomalous X-ray Pulsars - I 

• Peculiar class of persistent X-ray sources, L ≈ 
1033 -1035 erg/s 

• Spin-down luminosity Ė < LX (not powered by 
rotation, hence “anomalous”) 

• Pulsations with P ≈ 2 -10 s 
• Large spin-down rates, Ṗ ≈ 10-11 ss-1 

• No evidence for a binary companion, association 
with a SNR in six (?) cases 
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Anomalous X-ray Pulsars - II 
 
• Bursts of soft γ-/hard X-rays quite 

similar to those of SGRs detected first 
in AXP 1E 2259+586 (Gavriil et al. 2002; 
Kaspi et al. 2003) and then in all (but one) 
AXPs 

Time (sec) 

Woods &  
Thompson  
(2005) 
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A tale of Two Populations ? 
• No real differences between SGRs and AXPs: AXPs burst 

and SGRs are persistent X-ray sources with Ė < LX (so 
they are “anomalous” too!). Together they form the 
“magnetar class” 

• At present 21sources known, plus a few candidates (McGill 
online catalogue) 

• Rapidly growing class, thanks to the discovery of 
“transients”, detectable only during outbursts (L ≈ 10 – 
1000 Lqui, duration ≈ 1 yr) 

• Several clues indicate that these are (isolated) neutron 
stars 

•  R < ctrise ≈ 100 km  
•  pulsations 

Positions of currently known AXPs and SGRs 
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Magnetars 
• Strong convection in a rapidly rotating (P ~ 1 ms) 
newborn neutron star generates a very strong 
magnetic field via dynamo action 

• Magnetars: neutron stars powered by their own 
magnetic energy (surface field B > a few BQED ~ 
1014 G; Duncan & Thomson 1992; Thomson & Duncan 1993) 

• Rapid spin-down due to magneto-dipolar losses, 
𝑃 = 10↑−11 (𝐵∕10↑14   G )↑2 𝑃↑−1   s/s 
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Why magnetars ? 

•  LX > Ė  → not powered by rotation  
• No evidence for a companion star → not powered by 

accretion 
• Quite young objects (≈ 103 - 104 yrs): spin down to 

present periods (a few seconds) requires B > 1014 G 
•  Large measured spin-down rates  
• Giant flares energetics requires B > 1015 G 
• Opacity suppression for the X polarization mode in a 

strong B-field explains the large, super-Eddington flux in 
bursts 

No direct measure of a super-strong field as yet until recently 
GSSI - September 15,16 2015 



SGRs and AXPs X-ray Spectra 
•  0.5 – 10 keV emission well represented by a blackbody 

plus a power law 
•  kTBB ~ 0.5 keV, does not change much in different sources 
• Photon index Г ≈ 1 – 4, AXPs tend to be softer 
• SGRs and AXPs persistent emission is variable (months/

years) 
• Variability mostly associated with the non-thermal 

component 
•  Transient spectra can be BB+BB, TBB and RBB decrease 

in time 
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XMM Epic-pn data (Rea el al. 2008) 

SGR 1806-20 at different epochs  
(BB+PL) 

AXP 1E 2259-586 (BB+PL) 

Transient AXP XTE 1810-197 at  
different epochs (BB+BB) 
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Hard X-ray Emission 
Mereghetti et al (2006) INTEGRAL revealed  

substantial emission in  
the 20 -100 keV band  
from SGRs and AXPs 

Hard power law tails  
with Г ≈ 1-3, hardening 
wrt soft X-ray emission 
required in AXPs  

Hard emission highly pulsed 
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Twisted Magnetospheres – I 
• The magnetic field inside a 
magnetar is “wound up” 

• The presence of a toroidal 
component induces a 
rotation of the surface 
layers 

• The crust tensile strength 
resists  

• A gradual (quasi-plastic ?) 
deformation of the crust 

• The external field twists up 
(Thompson, Lyutikov & Kulkarni 2002) 

Thompson & Duncan (2001) 
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Twisted Magnetospheres - II 
• Twisted fields are non-
potential,  

• Globally twisted dipole 
(Thompson, Lyutikov & Kulkarni 
2002, Pavan et al. 2009)  

• A sequence of models 
labeled by the twist 
angle 

θ
θ

φ
π

θ

φ
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0
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Photons in a Magnetized Medium 
• A magnetized plasma is anisotropic and birefringent, 

radiative processes sensitive to polarization state 
•  Two normal, linearly polarized modes in the magnetized 

vacuum: the extraordinary (X) and ordinary (O) mode 
• Opacities greatly reduced for X-mode photons 

B 

k 

E 
B 

k 
E 

O mode X mode 



The electron scattering cross section in the ERF is resonant at the cyclotron  
frequency and its harmonics 

mc
eBnnE Bn == ω!

For an electron moving with velocity β the (first) resonance is at a frequency 

( )θβγ
ω

ω
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= B
D

ERF 
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Magnetospheric Currents - I 

0=×∇ B Bcj ×∇=
π4

Contrary to PSRs, currents flow (also) along the  
closed field lines and j ≫ jGJ 
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Magnetospheric Currents - II 
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The twist must decay to support its own currents. A 
parallel electric field develops which accelerates the 
charges along the flux tube (Beloborodov & Thompson 2007; 
Beloborodov 2009) 

A potential drop Φ is maintained between the footpoints 
j = j(Φ) depends on the nature of the discharge and this  
fixes the duration of the twist 

The electric field is self-regulated to ensure that the  
required current flows in the circuit 
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Φ (and Eǁ‖) must be huge (≈1012 GeV) in order to produce jB:  
γe ≈ 109 and the twist decays immediately  
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Where B > 2BQ, 1 keV photons scatter onto γ > 1000 electrons 
Scattered photons have energy ε’ in the MeV range and initially  
propagate along B 

They quickly convert into pairs via 

BeeB ++→+ −+γ

as soon as 
θ

ε
sin
2'

2cme>

γ ʹ′

B
!

γ

B
!
θ

Pair production along the entire circuit 
screens the potential: jB can be conducted 
with Φ ≪ ΦDL 

A quasi-stationary state in which the particle energy is just  
that required to ignite the pair cascade (Beloborodov &  
Thompson 2007)  



Resonant Compton Scattering 
• The current flowing along the closed field lines is 

  
• The optical depth for Thomson scattering is low, τT	  ≈	  
neσTr	  ≈	  10-‐4	  

• At resonance σ ≈ 105 σT → large optical depth to 
resonant cyclotron scattering (RCS) 

• Up-scattering of thermal photons emitted by the 
cooling surface onto mildly relativistic electrons 

𝑗=(𝑐/4𝜋 )𝛻×𝐵⇒𝑛↓𝑒 = 𝑝+1/4𝜋𝑒 𝐵↓𝜑 /𝐵↓𝜃  𝐵/𝑟|⟨𝛽⟩| ≈10↑14   cm↑−3   
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Repeated scatterings lead to the formation of a power-law tail 
because ωD = ωD(r,θ) and rcurrent > RNS 

Spectral formation in twisted magnetospheres investigated  
quite in detail using Montecarlo methods (Lyutikov & Gavriil  
2006; Fernandez & Thompson 2007; Nobili, Turolla & Zane 2008a, b) 

Non Rel 
γ=1.15 

Rel 
γ=1.15 
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Select seed photon  
(energy and direction) 

Generate a uniform  
deviate 0<R<1 

Advance photon, 
compute depth 

         R ? ln−=τ

Compute scattering 

No 
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Escape ? 

Store data 
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No 
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Zane et al. (2009) 

Hascoët et al. (2014) 

RCS models quite successful in explaining magnetars soft X-ray spectra 
(~ 0.5 – 10 keV) and also high-energy tails 
 
Spectral fits provide information on the physical state of the star/magnetosphere 
(twist angle, charge velocity, surface temperature, etc)  
 
No single spectral model can consistently explain observations in the  
0.5-100 keV band though 
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X-ray Polarization 
•  Thermal surface emission highly polarized in the X-mode 
• Scatterings can change the photon polarization state 
•  The observed polarization fraction and polarization angle 

depend on QED effects (“vacuum polarization”) and on 
magnetic field geometry (Stokes parameters rotation) 

• ΠL and χp very sensitive to the source geometry 
(inclination of the LOS and of the magnetic axis wrt the 
rotation axis) 

• X-ray polarimetry will provide an entirely new tool in 
magnetar studies 

• XIPE and IXPE proposed for ESA M4 and NASA Smex 
programmes  
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Bursts & Flares 
• Short bursts 

•  t ~ 0.1 – 1 s, L ~ 1039 – 1041 erg/s , 
thermal spectrum (kT ~ 10 keV), seen 
in both SGRs and AXPs 

•  Intermediate bursts 
•  t ~ 1 – 40 s, L ~ 1041 – 1043 erg/s , 

thermal spectrum, seen in both SGRs 
and AXPs 

• Giant flares 
•  only three observed, each from a 

different SRG, L ~ 1044 – 1047 erg/s, 
initial spike (~ 0.1s) + pulsating tail (~ 
100 s)  

SGR 0501+4516 

SGR 1900+14 
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Burst Trigger Mechanism(s) 
Rapid magnetic field reconfiguration is a key ingredient,  
but no precise model as yet 
 
Secular magnetic evolution builds stresses that are released  
catastrophically in the bursts 

Alvén speed 
 
Shear velocity 
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• Magnetic evolution leads to an unstable configuration in 
the core ⇒ MHD instabilities with growth time ≈ R/vA ≈ 0.1 
s  

• Magnetic stresses rupture the crust ⇒ release of elastic 
energy over a timescale ≈ πR/vs ≈ 0.3 s 

• Core and crust evolve smoothly, stresses are released in 
the magnetosphere via plasma instabilities/magnetic 
reconnection ⇒ very short timescale, < 0.01 s (vA ~ c) 

 
All three scenarios provide timescale in rough agreement  
with burst duration/rise time 
 
No serious problem with energetics (including giant flares)  
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Burst Emission 
• Magnetic reconfiguration produces particle acceleration 
• Electrons moving along the curved field lines emit γ-rays 

which drive a pair cascade 
•  The pair plasma is confined by the magnetic field if  

• Confinement leads to an optically thick  “fireball” 
• Radiation escapes preferentially in the X-mode, due to the 

much reduced opacity 
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No detailed model for burst emission available as yet  
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SGRs/AXPs vs. High-B Pulsars 

“Magnetar activity” (bursts, 
outbursts, …) for a long time  
detected only in high-B sources  
(Bp > 5x1013 G) : AXPs+SGRs  
(  ) and  PSR J1846-0258,  
PSR J1622-4950 (  )  

The ATNF Catalogue lists  
20 PSRs with Bp > 5x1013 G 
(HBPSRs) 
 
A high dipole field does not 
always make a magnetar, but  
a magnetar has necessary a  
high dipole field 
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• What really matters is 
the internal toroidal 
field Bφ  

• A large Bφ induces a 
rotation of the surface 
layers 

• Deformation of the 
crust ð fractures ð 
bursts/twist of the 
external field 

H
igh-B

 P
S

R
 

S
G

R
/A

X
P 
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Calculation of magnetic  
stresses acting on the NS  
crust at different ages  
(Perna & Pons 2011; Pons & 
Perna 2011) 
 
Activity strongly enhanced when  
Btor,0 > Bp,0 

Pons & Perna (2011) 

Btor,0 = 2.5x1016 G  
Bp,0 = 2.5x1014 G 

Btor,0 = 8x1014 G  
Bp,0 = 1.6x1014 G 

A large Btor is necessary associated with a large Bp 

LNGS - September 15,16 2015 



The “Low-Field” Magnetars 
• Three peculiar magnetar candidates discovered 
since 2009: SGR 0418+5729 (van der Horst et al. 2010, 

Esposito et al. 2010, Rea et al. 2010), Swift J1822.3−1606 
(Rea et al. 2012, Scholz et al. 2012) and 3XMM 
J1852+0033 (Rea et al. 2014) 

• All the features of a (transient) magnetar 
• Rapid, large flux increase and decay 
• Emission of bursts 
• Periods in the range ≈ 8-11 s 
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Hunting for Ṗ 
SGR 0418 (Rea et al. 2013) Swift J1822 (Rea et al. 2012) 3XMM J1852 (Rea et al. 2014) 

Ṗ = 8.3x10-14 s/s 
Bp = 2.7x1013 G 
τc = 1.6 Myr   

Ṗ = 5.14x10-15 s/s 
Bp = 6.9x1012 G 
τc = 29.5 Myr   

Ṗ < 1.4x10-13 s/s 
Bp < 4.1x1013 G 
τc > 0.1 Myr   
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Dr Pulsar and Mr Magnetar 

SGR 0418 

SGR 1822 3XMM J1852 

Three “active magnetars”  
with B-field well within 
PSR range 
 
More than 20% of known  
PSRs have Bp stronger  
than SGR 0418 
  
A continuum of  
magnetar-like activity  
across the P-Ṗ diagram 
 
 A supercritical Bp not required to make a magnetar ! 
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Neutron Star Evolution 
• Rotational evolution 

•  Thermal evolution  

• Magnetic evolution   
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Magneto-thermal Evolution 
(Pons, Miralles & Geppert 2009; Viganò et al. 2013) 

Faraday induction equation 
η is the magnetic diffusivity and strongly depends on T 
Coupled thermal and magnetic evolution ! 

Viganò et al. (2013) 
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SGR 0418 (Turolla et al. 2011)) SGR 1822 (Rea et al. 2012) 

“Low-field” sources look indeed oldish (≈ 106 yr) magnetars  
in which the surface magnetic field substantially decaied  

Are low-field sources old ? 
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Wear and Tear 

Crustal fractures possible also at late 
evolutionary phases (≈ 105 – 106 yr; Perna 
& Pons 2011) 
 
Burst energetics decreases and 
recurrence time increases as the NS ages 
 
For Bp,0 = 2x1014 G and Btor,0 = 1015 G,  
Δt ≈ 10 – 100 yr 
 
Very close to what required for SGR 1822 
 
Fiducial model for SGR 0418 has similar 
Bp,0 and larger Btor,0 ð comparable (at 
least) bursting properties 
 

Perna & Pons (2011)) 
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SGR 0418+5729: The “Surprise Egg”  
SGR 0418 went in outburst on June 5, 
2009. Subsequent monitoring with 
RXTE, Swift, Chandra and XMM 
(Esposito et al. 2010; Rea et al. 2010) 
 
67-ks XMM observation on August 12, 
2009 when the source was still quite 
bright 
 
Phase-averaged spectrum is BB+BB or 
BB+PL: kTh ~ 0.91 keV, Rh ~ 0.9 km 
 
Phase-resolved spectra well fitted by 
rescaling the phase-averaged one, but 
not around phases 0.1-0.3 (and 
0.5-0.6) 

+ absorption line 

XMM Epic pn phase-resolved spectrum of 
SGR 0418 (phase interval 0.15-0.17) 

phase-averaged  
model spectrum 
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Normalized phase-energy images (independent on spectral modelling) 

Prominent V-shaped feature 

An absorption feature at phase-dependent energy 
(≈ 1-5 keV, Tiengo et al. 2013) 
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Inferences 
Most probably a cyclotron line (atomic transitions in H/He 
below 1 keV) 

𝐸↓𝐵 ~ 11.6/1+𝑧 (𝑚↓𝑒 /𝑚 )(𝐵/10↑12   G )  keV 
 
EB ~ 70 keV for electrons in the surface field of SGR 0418 
(might be higher up but…) 
 
If protons, the field must be > 2x1014 G. The line may form 
in a localized, baryon-loaded magnetic loop in which B 
changes with position
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An artist impression of SGR 0418 
with the ejected magnetic loop  

First direct measure of the magnetic field at the surface of  
a magnetar, B ~ 2x1014 – 1015 G 

Of course, reality is a trifle more  
complicated… 
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A Space Oddity 

The Galactic Center hosts the 
supermassive black hole Sgr A* 
and a cluster of young, 
massive stars  
 
Compact stellar remnants 
expected. Less expected was 
the presence of a magnetar at 
only 2.4” from Sgr A*  
 

SGR J1745-2900 was 
discovered on April 24, 2013 
when it entered an outburst 
phase (Mori et al. 2013; Rea et al. 
2013) 

VLT/NaCo Ks image of the GC region  

LNGS - September 15,16 2015 



SGR J1745-2900 
•  Full-fledged magnetar: P = 3.76 s, Ṗ = 6.61x10-12 s/s → 

Bp ~ 1.6x1014 G, τc ~ 9 kyr 
• Probability that it is a foreground/ background object ~ 

10-6 

• Estimated distance to Sgr A* ~ 0.1-2 pc 
• Very likely (~ 90%) in a bound orbit around Sgr A* 
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Future Developments 
• Further support to the magnetar model: search for 
cyclotron line in other sources (preliminary results 
promising) 

• Twisted magnetosphere model in general agreement 
with observations; hard vs soft power-laws 

•  Nustar (and ASTRO-H) 
•  More detailed modeling of magnetospheric currents 

• Magnetar emission polarized: polarization measures 
key 

• Only a general picture for the burst emission: need a 
quantitative model to compare with observations 

• Extragalactic magnetars: relation with (long) GRBs ? 
• The neutron star zoo: evolutionary links among 
different classes 
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