Neutrino-Nucleon Cross-Sections at Energies of Megaton-Scale Detectors

Askhat Gazizov

IP NASB, Minsk, Belarus DESY-Zeuthen, Germany

22.06.2015

Neutrinos

The well-known history

- Spectra of electrons emitted in 2-body β -decays of nuclei at rest must be practically monochromatic.
- But the observed spectra were continuous, as in 3-body decays. The third particle was invisible.
- To save the energy, momentum and angular momentum conservation laws in

 $(A,Z) \rightarrow (A,Z+1) + e^{-} + \overline{v}_{e}$

(in \Leftrightarrow to N. Bohr) in 1930 W. Pauli postulated the existence of "neutrons" - neutral, massless, spin 1/2 weakly interacting particles.

In 1932 J. Chadwick discovered real massive neutrons

 $n \rightarrow p + e^- + \overline{v}_e$. • E. Amaldi \Rightarrow E. Fermi \Rightarrow W. Pauli: neutrinos.

• In 1934 **E. Fermi** - theoretical description of the β -decays.

- In 1934 **E. Fermi** theoretical description of the β -decays.
- In analogy with e.-m. interactions, the weak interaction Lagrangian is also a product of the charged currents

- In 1934 **E. Fermi** theoretical description of the β -decays.
- In analogy with e.-m. interactions, the weak interaction Lagrangian is also a product of the charged currents

$$L_{ch}(x) = \frac{G_F}{\sqrt{2}} J^{+\mu}(x) J_{\mu}(x).$$

- In 1934 **E. Fermi** theoretical description of the β -decays.
- In analogy with e.-m. interactions, the weak interaction Lagrangian is also a product of the charged currents

$$L_{ch}(x) = \frac{G_F}{\sqrt{2}} J^{+\mu}(x) J_{\mu}(x).$$

• Fermi constant $G_F \approx 1.027 \cdot 10^{-5} / m_p^2 \approx 1.166 \cdot 10^{-5} \text{ GeV}^{-2}$.

- In 1934 **E. Fermi** theoretical description of the β -decays.
- In analogy with e.-m. interactions, the weak interaction Lagrangian is also a product of the charged currents

$$L_{ch}(x) = \frac{G_F}{\sqrt{2}} J^{+\mu}(x) J_{\mu}(x).$$

- Fermi constant $G_F \approx 1.027 \cdot 10^{-5} / m_p^2 \approx 1.166 \cdot 10^{-5} \text{ GeV}^{-2}$.
- At low energies cross-sections of weak interaction processes are small compared to strong and e.-m. ones. But at high energies this is not the case: $\sigma(E) \mu E$.

- In 1934 **E. Fermi** theoretical description of the β -decays.
- In analogy with e.-m. interactions, the weak interaction Lagrangian is also a product of the charged currents

$$L_{ch}(x) = \frac{G_F}{\sqrt{2}} J^{+\mu}(x) J_{\mu}(x).$$

- Fermi constant $G_F \approx 1.027 \cdot 10^{-5} / m_p^2 \approx 1.166 \cdot 10^{-5} \text{ GeV}^{-2}$.
- At low energies cross-sections of weak interaction processes are small compared to strong and e.-m. ones. But at high energies this is not the case: σ(E) μ E.
- Just in 1956 v's were discovered by **F.Reines** and **C.Cowan**. \overline{v}_{e} -flux from reactor + inverse β -decay $\overline{v}_{e} + p \rightarrow n + e^{+}$ γ -rays: $e^{+} e^{-} \rightarrow \gamma \gamma$; $n + {}^{108}Cd \rightarrow {}^{109m}Cd \rightarrow {}^{108}Cd + \gamma$.

Muon Neutrinos

- In 1936 C. Anderson and S. Neddermeyer discovered µ in CRs.
- μ^{-} was an analog of the electron but ~210 times more massive. •
- In 1962 L. Lederman, M. Schwartz and J. Steinberger discovered the 2-d type of \mathbf{v} , the muon one $-\mathbf{v}_{\mu}$. They appeared in $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ decays (Brookhaven). Muons also decay: $\mu^- \rightarrow e^- + \nu_e + \nu_{\mu}$. \Rightarrow Lepton number conservation.
- After discovery of the 3-d lepton, the heavy τ^- , it was suggested that \mathbf{v}_{τ} must also exist. In $\mathbf{\tau}^{-}$ -decays, like in β -decays, the energy and momentum conservation laws were violated.
- In July 2000 DONUT collaboration (Fermilab) announced the observation \mathbf{v}_{τ} .
- Now OPERA at LNGS announced the detection of 5τ -leptons in $v_{\mu} \leftrightarrow v_{\tau}$ oscillations with following τ^{-} –production. 9

Leptons and Quarks

$$\begin{pmatrix} \mathbf{v}_e & \mathbf{v}_{\mu} & \mathbf{v}_{\tau} \\ e^- & \mu^- & \tau^- \end{pmatrix} \Leftrightarrow \begin{pmatrix} u & c & t \\ d & s & b \end{pmatrix}$$

In the Standard Model all leptons and quarks are massive Dirac bispinors $\psi = \psi_L + \psi_R$; v''s are left-handed and massless. Lepton number is conserved. In 1963 N. Cabbibo suggested $d' = \cos \theta_c d + \sin \theta_c s$ $s' = -\sin \theta_c d + \cos \theta_c s$ $\sin \theta_c = 0.23$; θ_c is the Cabbibo angle.

In 1973 CKM matrix: Cabbibo-Kobayashi-Maskawa

$$\begin{bmatrix} d'\\ s'\\ b' \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d\\ s\\ b \end{bmatrix}$$

C-, P- and CP-violation $\sum_{i} |V_{ij}|^{2} = \sum_{j} |V_{ij}|^{2} = 1$ 4 parameters, 1 - complex

Neutrino Masses and Oscillations

- In 1957 **B. Pontecorvo** proposed $v \leftrightarrow \overline{v}$ oscillation. ($K^0 \leftrightarrow \overline{K}^0$)
- In 1962, in analogy to quarks, Maki, Nakagawa, and Sakata proposed $v_{\mu} \leftrightarrow v_{e}$ mixing \Rightarrow PMNS.
- Now we know than v's are massive. Eigenstates of the mass operator are v_1 , v_2 , v_3 with eigenvalues m_1 , m_2 , m_3 .
- Eigenvalues of the flavor operator are mixture of these v's. In analogy with CKM the PMNS matrix U $\begin{bmatrix}
 v_e \\
 v_\mu \\
 v_\tau
 \end{bmatrix} =
 \begin{bmatrix}
 U_{e1} & U_{e2} & U_{e3} \\
 U_{\mu1} & U_{\mu2} & U_{\mu2} \\
 U_{\tau1} & U_{\tau2} & U_{\tau3}
 \end{bmatrix}
 \begin{bmatrix}
 v_1 \\
 v_2 \\
 v_3
 \end{bmatrix}$
- Confirmation: the 1968 Devis experiment found deficit of solar neutrinos: only 50% of predicted by Bahcall. MSW effect.
- Later SNO (heavy water) confirmed solar ν disappearence. Total flux of all ν 's is in agreement with the Solar Model.

Parameters and PMNS matrix

Standard parameterization of the PMNS matrix

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\ 0 & 0 & e^{i\beta} \end{pmatrix}$$

where $s_{ij} = sin\theta_{ij}$, $c_{ij} = cos\theta_{ij}$, θ_{12} , θ_{23} , θ_{13} – mixing angles, δ – CP-violating phase, α and β – Majorana phases.

- Dirac and Majorana v's are indistinguishable in most experiments.
- The only test of the v nature is the neutrinoless 2β -decay $(A,Z) \rightarrow (A,Z+2) + e^{-} + e^{-}$. Many experiments at LNGS.

Oscillations

- \bullet In the general case of N ν species oscillation formulas are rather complicated. Even the 3-flavor case is difficult.
- \bullet But in the simplified 2-v case the oscillation matrix is just

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix},$$

and the probability for a v to change its flavor, say $v_{\mu} \leftrightarrow v_{\tau}$, $P_{\alpha \rightarrow \beta} = \sin^2(2\theta) \sin^2 \left(1.27 \frac{\Delta m^2}{eV^2} \frac{L}{km} \frac{GeV}{E} \right).$

- However, no CP-violation is possible in this case.
- For $\theta \approx 45^{\circ}$ and a given Δm^2 the probability scales with L/E.

Masses and Hierarchy

- Dirac neutrinos 4-spinors. $v = v_L + v_R$; $\overline{v} = \overline{v}_L + \overline{v}_R$ and $v \neq \overline{v}$; Lepton number conserved
- Majorana neutrinos: $v \equiv \overline{v} = v_L$ Mass term violates the L-number conservation.
- Neutrino masses: m_1^2 , m_2^2 , m_3^2 are unknown (lightest?) $\Delta m_{ij}^2 = m_j^2 - m_i^2 \Rightarrow \Delta m_{12}^2 > 0, \pm \Delta m_{23}^2, \Delta m_{13}^2$ $3 \longrightarrow 2^1$ $2 \longrightarrow 2^1$ $\Delta m_{23}^2 > 0$ Normal Hierarchy Inverse Hierarchy

	Normal Ordering ($\Delta \chi^2 = 0.97$)		Inverted Ordering (best fit)		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 \theta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.270 \rightarrow 0.344$	$0.304\substack{+0.013\\-0.012}$	$0.270 \rightarrow 0.344$	$0.270 \rightarrow 0.344$
$\theta_{12}/^{\circ}$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$31.29 \rightarrow 35.91$
$\sin^2 \theta_{23}$	$0.452^{+0.052}_{-0.028}$	$0.382 \rightarrow 0.643$	$0.579^{+0.025}_{-0.037}$	$0.389 \rightarrow 0.644$	$0.385 \rightarrow 0.644$
$\theta_{23}/^{\circ}$	$42.3^{+3.0}_{-1.6}$	$38.2 \rightarrow 53.3$	$49.5^{+1.5}_{-2.2}$	$38.6 \rightarrow 53.3$	$38.3 \rightarrow 53.3$
$\sin^2 \theta_{13}$	$0.0218\substack{+0.0010\\-0.0010}$	$0.0186 \rightarrow 0.0250$	$0.0219\substack{+0.0011\\-0.0010}$	$0.0188 \rightarrow 0.0251$	$0.0188 \rightarrow 0.0251$
$\theta_{13}/^{\circ}$	$8.50\substack{+0.20 \\ -0.21}$	$7.85 \rightarrow 9.10$	$8.51^{+0.20}_{-0.21}$	$7.87 \rightarrow 9.11$	$7.87 \rightarrow 9.11$
$\delta_{ m CP}/^{\circ}$	306^{+39}_{-70}	$0 \rightarrow 360$	254_{-62}^{+63}	$0 \rightarrow 360$	$0 \rightarrow 360$
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.50\substack{+0.19 \\ -0.17}$	$7.02 \rightarrow 8.09$	$7.50^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.09$	$7.02 \rightarrow 8.09$
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.457^{+0.047}_{-0.047}$	$+2.317 \rightarrow +2.607$	$-2.449\substack{+0.048\\-0.047}$	$-2.590 \rightarrow -2.307$	$ \begin{bmatrix} +2.325 \to +2.599 \\ -2.590 \to -2.307 \end{bmatrix} $

Table 1. Three-flavor oscillation parameters from our fit to global data after the NOW 2014 conference. The results are presented for the "Free Fluxes + RSBL" in which reactor fluxes have been left free in the fit and short baseline reactor data (RSBL) with $L \leq 100$ m are included. The numbers in the 1st (2nd) column are obtained assuming NO (IO), *i.e.*, relative to the respective local minimum, whereas in the 3rd column we minimize also with respect to the ordering. Note that $\Delta m_{3\ell}^2 \equiv \Delta m_{31}^2 > 0$ for NO and $\Delta m_{3\ell}^2 \equiv \Delta m_{32}^2 < 0$ for IO.

	Normal Ordering ($\Delta \chi^2 = 0.97$)		Inverted Ordering (best fit)		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 \theta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.270 \rightarrow 0.344$	$0.304\substack{+0.013\\-0.012}$	$0.270 \rightarrow 0.344$	$0.270 \rightarrow 0.344$
$\theta_{12}/^{\circ}$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$31.29 \rightarrow 35.91$
$\sin^2 \theta_{23}$	$0.452^{+0.052}_{-0.028}$	$0.382 \rightarrow 0.643$	$0.579^{+0.025}_{-0.037}$	$0.389 \rightarrow 0.644$	$0.385 \rightarrow 0.644$
$\theta_{23}/^{\circ}$	$42.3^{+3.0}_{-1.6}$	$38.2 \rightarrow 53.3$	$49.5^{+1.5}_{-2.2}$	$38.6 \rightarrow 53.3$	$38.3 \rightarrow 53.3$
$\sin^2 \theta_{13}$	$0.0218\substack{+0.0010\\-0.0010}$	$0.0186 \rightarrow 0.0250$	$0.0219^{+0.0011}_{-0.0012}$	$0.0188 \rightarrow 0.0251$	$0.0188 \rightarrow 0.0251$
$\theta_{13}/^{\circ}$	$8.50^{+0.20}_{-0.21}$	$7.85 \rightarrow 9.10$	8. 6 0.20	$7.87 \rightarrow 9.11$	$7.87 \rightarrow 9.11$
$\delta_{ m CP}/^{\circ}$	306^{+39}_{-70}	0 ightarrow 00	25-62	0 ightarrow 360	$0 \rightarrow 360$
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.50\substack{+0.19 \\ -0.17}$	$12 \Rightarrow 8.09$	$7.50^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.09$	$7.02 \rightarrow 8.09$
$\frac{\Delta m_{3\ell}^2}{10^{-3}~{\rm eV}^2}$	$+2.457^{+0.047}_{-0.047}$	$+2.317 \rightarrow +2.607$	$-2.449^{+0.048}_{-0.047}$	$-2.590 \rightarrow -2.307$	$ \begin{bmatrix} +2.325 \rightarrow +2.599 \\ -2.590 \rightarrow -2.307 \end{bmatrix} $

Table 1. Three-flavor oscillation parameters from our fit to global data after the NOW 2014 conference. The results are presented for the "Free Fluxes + RSBL" in which reactor fluxes have been left free in the fit and short baseline reactor data (RSBL) with $L \leq 100$ m are included. The numbers in the 1st (2nd) column are obtained assuming NO (IO), *i.e.*, relative to the respective local minimum, whereas in the 3rd column we minimize also with respect to the ordering. Note that $\Delta m_{3\ell}^2 \equiv \Delta m_{31}^2 > 0$ for NO and $\Delta m_{3\ell}^2 \equiv \Delta m_{32}^2 < 0$ for IO.

	Normal Ordering ($\Delta \chi^2 = 0.97$)		Inverted Ordering (best fit)		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 \theta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.270 \rightarrow 0.344$	$0.304\substack{+0.013\\-0.012}$	$0.270 \rightarrow 0.344$	$0.270 \rightarrow 0.344$
$\theta_{12}/^{\circ}$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$31.29 \rightarrow 35.91$
$\sin^2 \theta_{23}$	$0.452^{+0.052}_{-0.028}$	$0.382 \rightarrow 0.643$	$0.579^{+0.025}_{-0.037}$	$0.389 \rightarrow 0.644$	$0.385 \rightarrow 0.644$
$\theta_{23}/^{\circ}$	$42.3^{+3.0}_{-1.6}$	$38.2 \rightarrow 53.3$	$49.5^{+1.5}_{-2.2}$	$38.6 \rightarrow 53.3$	$38.3 \rightarrow 53.3$
$\sin^2 \theta_{13}$	$0.0218\substack{+0.0010\\-0.0010}$	$0.0186 \rightarrow 0.0250$	$0.0219\substack{+0.0011\\-0.0010}$	$0.0188 \rightarrow 0.0251$	$0.0188 \rightarrow 0.0251$
$\theta_{13}/^{\circ}$	$8.50\substack{+0.20 \\ -0.21}$	$7.85 \rightarrow 9.10$	$8.51^{+0.20}_{-0.21}$	$7.87 \rightarrow 9.11$	$7.87 \rightarrow 9.11$
$\delta_{ m CP}/^{\circ}$	306^{+39}_{-70}	$0 \rightarrow 360$	254^{+63}_{-62}	$0 \rightarrow 360$	$0 \rightarrow 360$
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.50\substack{+0.19 \\ -0.17}$	$7.02 \rightarrow 8.09$	$7.50^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.09$	$7.02 \rightarrow 8.09$
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.457^{+0.047}_{-0.047}$	$+2.317 \rightarrow +2.607$	$-2.449^{+0.048}_{-0.047}$	$-2.590 \rightarrow -2.307$	$ \begin{bmatrix} +2.325 \to +2.599 \\ -2.590 \to -2.307 \end{bmatrix} $

Table 1. Three-flavor oscillation parameters from our fit to global data after the NOW 2014 conference. The results are presented for the "Free Fluxes + RSBL" in which reactor fluxes have been left free in the fit and short baseline reactor data (RSBL) with $L \leq 100$ m are included. The numbers in the 1st (2nd) column are obtained assuming NO (IO), *i.e.*, relative to the respective local minimum, whereas in the 3rd column we minimize also with respect to the ordering. Note that $\Delta m_{3\ell}^2 \equiv \Delta m_{31}^2 > 0$ for NO and $\Delta m_{3\ell}^2 \equiv \Delta m_{32}^2 < 0$ for IO.

that $\Delta m_{3\ell}^2 \equiv \Delta m_{31}^2 > 0$ for NO and $\Delta m_{3\ell}^2 \equiv \Delta m_{32}^2 < 0$ for IO.

	Normal Ordering ($\Delta \chi^2 = 0.97$)		Inverted Ordering (best fit)		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 \theta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.270 \rightarrow 0.344$	$0.304\substack{+0.013\\-0.012}$	$0.270 \rightarrow 0.344$	$0.270 \rightarrow 0.344$
$\theta_{12}/^{\circ}$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$33.48^{+0.78}_{-0.75}$	$31.29 \rightarrow 35.91$	$31.29 \rightarrow 35.91$
$\sin^2 \theta_{23}$	$0.452^{+0.052}_{-0.028}$	$0.382 \rightarrow 0.643$	$0.579^{+0.025}_{-0.037}$	$0.389 \rightarrow 0.644$	$0.385 \rightarrow 0.644$
$\theta_{23}/^{\circ}$	$42.3^{+3.0}_{-1.6}$	$38.2 \rightarrow 53.3$	$49.5^{+1.5}_{-2.2}$	$38.6 \rightarrow 53.3$	$38.3 \rightarrow 53.3$
$\sin^2 \theta_{13}$	$0.0218\substack{+0.0010\\-0.0010}$	$0.0186 \rightarrow 0.0250$	$0.0219\substack{+0.0011\\-0.0010}$	$0.0188 \rightarrow 0.0251$	$0.0188 \rightarrow 0.0251$
$\theta_{13}/^{\circ}$	$8.50\substack{+0.20 \\ -0.21}$	$7.85 \rightarrow 9.10$	$8.51^{+0.20}_{-0.21}$	$7.87 \rightarrow 9.11$	$7.87 \rightarrow 9.11$
$\delta_{ m CP}/^{\circ}$	306^{+39}_{-70}	$0 \rightarrow 360$	254_{-62}^{+63}	$0 \rightarrow 360$	$0 \rightarrow 360$
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.50\substack{+0.19 \\ -0.17}$	$7.02 \rightarrow 8.09$	$7.50^{+0.19}_{-0.17}$	$7.02 \rightarrow 8.09$	$7.02 \rightarrow 8.09$
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.457^{+0.047}_{-0.047}$	$+2.317 \rightarrow +2.607$	$-2.449\substack{+0.048\\-0.047}$	$-2.590 \rightarrow -2.307$	$ \begin{bmatrix} +2.325 \to +2.599 \\ -2.590 \to -2.307 \end{bmatrix} $

Table 1. Three-flavor oscillation parameters from our fit to global data after the NOW 2014 conference. The results are presented for the "Free Fluxes + RSBL" in which reactor fluxes have been left free in the fit and short baseline reactor data (RSBL) with $L \leq 100$ m are included. The numbers in the 1st (2nd) column are obtained assuming NO (IO), *i.e.*, relative to the respective local minimum, whereas in the 3rd column we minimize also with respect to the ordering. Note that $\Delta m_{3\ell}^2 \equiv \Delta m_{31}^2 > 0$ for NO and $\Delta m_{3\ell}^2 \equiv \Delta m_{32}^2 < 0$ for IO.

Neutrino Sources

- v's are generated in weak decays of nuclei, mesons and heavy leptons: $n \rightarrow p + e^{-} + \overline{\nu}_{e}$, $\pi^{+} (K^{+}) \rightarrow \mu^{+} + \nu_{\mu}$, $\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu} \dots$
- in the early Universe;
- in ordinary stars like our Sun;
- in SNe explosions: $p + e^{-} \rightarrow n + v_{e}, \gamma + \gamma \rightarrow e^{+} + e^{-}, e^{+} + e^{-} \rightarrow v_{i} + \overline{v}_{i} \dots$
- in AGN due to acceleration of p's on shocks with following $p + p(\gamma) \rightarrow \pi^{\pm} (K^{\pm}) + X$ etc.
- in artificial sources: reactors, accelerators, A-bombs ...

Neutrino Sources, cont.

- Reactor \overline{v}_{e} are copious, but their energies are small.
- Accelerator v's, mostly v_{μ} and \overline{v}_{μ} , are very expensive.
- SNe did not explode in the vicinity since 23.02.1987 (in LMC 51.4 kps from the Earth).
- Cosmogenic (**BZ**) v's to be produced in collisions of UHE, $E > 6 \times 10^9 \text{ eV}$, protons with CMB photons $p + \gamma \rightarrow \pi^+ + n; \quad \pi^+ \rightarrow \mu^+ + \nu_{\mu}; \quad \mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$

are yet not observed even with $M \sim 10^9$ tonn IceCube and ANTARES detectors. (GZK cut-off is observed but the nature of UHECRs = ?)

• Atmospheric neutrinos are very useful for studies of the neutrino properties.

Extended Air Showers (EAS)

Extended Air Showers (EAS)

High-energy **CRs** produce secondary π^{\pm} , K^{\pm} in interactions with atmospheric nuclei.

In their decays HE v's are generated.

These v's were observed by MACRO and LVD at LNGS, and by many other experoments, e.g. SK.

Extended Air Showers (EAS)

High-energy **CRs** produce secondary π^{\pm} , K^{\pm} in interactions with atmospheric nuclei.

In their decays HE v's are generated.

These v's were observed by MACRO and LVD at LNGS, and by many other experoments, e.g. SK.

CR Spectrum

- Energy spectrum of CRs is power-law decreasing $J(E) \propto E^{-2.7}$.
- CR fluxes are isotropic.
- HE v-spectra are steeper, but crosssections and effective volumes grow with energy.
- v-fluxes are also isotropic.
- To register one needs giant detectors.

SuperK

Super-Kamioka Neutrino Detection Experiment

A real breakthrough in the neutrino physics – confirmation of the atmospheric v_{n} disappearence in 1998.

- \sim 50 tons of ultra-pure water 1 km underground.
- SK detects Cherenkov light from charged particle produced in ve- and vN-interactions with electrons and nucleons.
- 11200 50 cm PMT inner detector
- 1900 20 cm PMT outer detector

Zenith Angle Distribution in SK-98

Multi-GeV atm. v-events reported at Neutrino'98

Oscillations discovered by observation of v_{μ} -disappearence on passing through the Earth.

IceCube

ANTARES

IceCube

ANTARES

IceCube

Mediterranean sea, 2.5 km

South Pole, 2.5 km

CFA-2015

ANTARES

IceCube

South Pole, 2.5 km $V \cong 1 \text{ km}^3$ Mediterranean sea, 2.5 km

ANTARES

IceCube

South Pole, 2.5 km **NESTOR – Greece ?**

 $V \cong 1 \text{ km}^3$

Mediterranean sea, 2.5 km NEMO - Italy?

Purposes

CFA-2015

IceCube + DeepCore Purposes

• Study of Crs: origin, spectra

CFA-2015

Purposes

Study of Crs: origin, spectra
Search for UHE v's, including cosmogenic ones

+
$$\gamma \rightarrow \pi^+ + n;$$

 $\pi^+ \rightarrow e^+ + 3v$

р

Purposes

CFA-2015

Purposes

Purposes

- Study of Crs: origin, spectra
 Search for UHE v's, including cosmogenic ones
 p + γ → π⁺ + n;
 - $\pi^{\scriptscriptstyle +}\!\rightarrow e^{\scriptscriptstyle +}+3\nu$
- Study of neutrino properties
- DUMAND Baikal AMANDA – IceCube + DeepCore (V ~ 0.02 km³)
- Cherenkov light from
 - 1) muons tracks
 - 2) cascades showers from electrons and hadrons

IceCube – DeepCore - PINGU Precision IceCube Next Generation Upgrade

IceCube – DeepCore - PINGU Precision IceCube Next Generation Upgrade

IceCube – DeepCore - PINGU Precision IceCube Next Generation Upgrade

• IceCube: 78 strings $E_{th} = 100 \text{ GeV}$ • DeepCore: 8 strings $E_{th} = 10 \text{ GeV}$ • PINGU: +40 strings $E_{th} = 1 \text{ GeV}$ • High statistic ~10⁴ atmospheric v's /yr

Atmospheric v-Oscillations

• With +40 strings a sensitivity to the hierarchy \sim 3.4 σ /yr.

- If deployment will start in 2016/2017, the 3σ result is expected in 2020.
- Survival probability for $\overline{\mathbf{v}}$ in NH is essentially the same as for \mathbf{v} in IH.

Probabilities of Oscillations

Akhmedov, Razzaque, Smirnov, JHEP 1302 (2013) 082, JHEP 1307 (2013) 026; arXiv:1205.7071

Tracks and Cascades in PINGU

From PINGU's Letter of Intent, arXiv:1401.2046

The fluxes of atm v and \overline{v} are different. And at low energies the vN–cross-sections are ~3 times higher than those for $\overline{v}N$.

Systematic Errors

Impacts on the estimated 1 year significance of the MH measurement.

Comparison of Sensitivities

Assuming *NH* and rejecting *IH*. The widths of the is due to maximum sensitivity differences for *NH* and *IH* cases.

vN Cross-Sections at HE

- An accurate account for cross-sections is important also for HE neutrino astrophysics.
- IceCube discovered a statistically significant excess of HE neutrinos over the expected atmospheric flux at E > 30 TeV.
- The number of muon (tracks) events is unexpectedly small as compared to number of showers (electron and tau neutrinos and NC).
- At high energies an accurate account for the pQCD corrections is needed.
- At extreemly high energies non-perturbative effects are to be accounted for.

IceCube HE v Spectrum

IceCube HE v Spectrum

IceCube HE v Spectrum

54 HE v-events in 4 years. ~7 σ . Mostly showers. Isotropic. Sources are unknown. Many models are excluded.

54 HE v-events in 4 years. ~7 σ . Mostly showers. Isotropic. Sources are unknown. Many models are excluded.

Most Energetic Neutrinos

Cascade events

NGIC

Next Lecture

- In spite of the long history of v physics, the cross-sections of vN-interactions with matter remain the field of intensive study at all ranges of energies.
- In the next lecture I'll try to demonstrate the importance of these studies and to present the main theoretical ideas used for calculations of different cross-sections.
- I'll discuss theoretical models and the parameters involved, and the uncertainties due to these unknown parameters.
- The role of elastic, quasi-elastic, single pion production and deep-inelastic scatterings will be discussed separately.
- I plan to show the dependence of the cross-sections on the axial mass M_A in the single pion production case and on W_{cut} parameter, which separates the single-pion and the deep-inelastic contributions.

Next Lecture, cont.

- I'll discuss the DIS and the role of NNLO pQCD and target mass corrections. The role of final lepton mass effects, especially important in the τ-neutrino scattering case, and the kinematic limits involved in calculations.
- Small x and high Q² effects will be considered. The problems with extrapolations of the structure functions to small Q², where the pQCD does not work but which is especially important for the future megaton-scale detector experiments like PINGU, ORCA and Hyper-Kamiokande, will be discussed.
- The cross-sections derived using the set of models and parameters obtained in collaboration with my colleagues
 M. Kowalski (DESY-Zeuthen),
 K. S. Kuzmin (JINR and ITHEP, Moscow),
 V. Naumov (JINR, Russia)
 and Ch. Spiering (DESY-Zeuthen)
 will be compared with the predictions of several MC generators.

Thank you!

and see you...