Detecting 0v-ββ decay: current status and future challenges

Present knowledge about neutrinos

- neutrinos are massive fermions
- there are 3 active neutrino flavors (v_{α})
- neutrino flavor states are mixtures of mass states (v_k)

 $|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k} |\nu_{k}\rangle$

Pontecorvo–Maki–Nakagawa–Sakata matrix $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ Atmospheric / Reactor / Solar / Reactor / Reactor

Measurements of neutrino parameters from:

- neutrino oscillations
- single beta decay
- cosmology
- neutrinoless double beta decay

Open questions

- What is the absolute neutrino mass scale?
- What is the neutrino mass hierarchy? Normal (m1 < m2 < m3) or Inverted (m3 < m1 < m2)?
- Are neutrinos Dirac or Majorana particles?
- What is the origin of neutrino masses and flavor mixing?
- Is there CP violation in the lepton sector?
 - Neutrinos are important probes of the Standard Model limits
 - Neutrino masses are linked (directly or indirectly) to all the above questions

Open questions

CFA Lectures

26 June 2015

 $0v-\beta\beta$ can give an answer to three of those questions:

Oscillation experiments can determine the hierarchy but are blind to the other two questions

Double beta decay

Very rare nuclear decay $(A,Z) \rightarrow (A,Z+2) + 2e^{-}(+?)$

Detecting 0v-ββdecay: current status and future challenges Carlo Bucci

Double beta decay

0v-DBD is a fundamental tool to determine neutrino properties

- Dirac or Majorana nature
- Absolute mass scale
- Mass hierarchy

$$\frac{u}{v}$$

$$(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\overline{\nu}$$

 2ν -DBD

 2^{nd} order process allowed in the SM observed in several nuclei with $\tau^{2v} \sim 10^{19}$ - 10^{21} y

$$(A,Z) \to (A,Z+2) + 2e^{-1}$$

0v-DBD (implies physics beyond SM) lepton number violating process $\tau^{0v} > 10^{24}$ - $10^{25} v$

exists if neutrino is a Majorana particle and m_v≠0

CFA Lectures 26 June 2015

A long history of 0v-ββ experiments

An order of magnitude on the effective Majorana mass every 15 years?

$0v-\beta\beta$ and Majorana mass

Is there a preferred isotope?

- Nuclear matrix elements calculations are rapidly improving and today the differences between different methods (IBM, QRPA, ISM) are much smaller than in the past
- Uncertainty on g_A plays a relevant role factor 2 in g_A is a factor 16 in decay rate
- inverse correlation observed between phase space and square of the nuclear matrix element

Matrix element squared

CFA Lectures 26 June 2015

Isotope choice

In many cases driven by the detector characteristics.

- ⁷⁶Ge with Germanium diodes
- ¹³⁶Xe with Xenon TPCs
- bolometers and scintillators have multiple choices

- Isotopic abundance as high as possible
 money issue
- Q-value as high as possible
 background
- 2v-DBD half-life as high as possible
 energy resolution

Sensitivity

Half-life corresponding to the minimum detectable number of events over background at a given confidence level

$$S_{0\nu} = ln(2)N_A \frac{\eta \cdot \epsilon}{W} \sqrt{\frac{M \cdot T}{\Delta E \cdot B}}$$

finite background: $M \cdot T \cdot B \cdot \Delta E > 1$

$$S_{0\nu} = ln(2)N_A \frac{\eta \cdot \epsilon}{W} M \cdot T$$

zero background: $M \cdot T \cdot B \cdot \Delta E \leq 1$

M: active detector mass [kg]

- T: measurement life time [anni]
- B: background in the ROI [counts keV⁻¹ kg⁻¹ y⁻¹]

W: molecular weight

N_A: Avogadro number
η: isotopic abundance
ε: detector efficiency
ΔΕ: FWHM energy resolution @ Q-value

How to improve sensitivity?

- Increase measurement time
- 🖗 Increase mass
- Increase isotopic abundance (enrichment)
- Improve energy resolution
- Reduce background

Mass and isotopic abundance

- Ş
- Ş a large enough number of active $\beta\beta$ atoms is useless

$$T_{1/2}^{0\nu} = ln(2) \cdot N_A \cdot \frac{M}{W} \cdot \eta \cdot \epsilon \cdot T$$

CFA Lectures *26 June 2015*

Is obviously mandatory to increase mass and isotopic abundance

We can even imagine to reach zero background but if we do not have

Energy resolution

- A good energy resolution is important for several reasons: Ş
 - a smaller ROI means a better sensitivity
 - it's easier to identify background contributions
 - Iess probability of superposition of with natural radioactivity peaks (e.g. 2448 keV) ²¹⁴Bi peak is only 10 keV away from ¹³⁶Xe 0v- $\beta\beta$ Q-value)
 - \bigcirc minimize the impact of the background induced by the 2v- $\beta\beta$

Irreducible background from 2v- $\beta\beta$

- The irreducible background induced by the 2ν-ββ could be mitigated just by the energy resolution
- The effect can be partially attenuated with an asymmetric ROI (but losing efficiency)

$$\frac{S}{B} = \frac{m_e}{7Q\delta^6} \frac{\Gamma_{0\nu}}{\Gamma_{2\nu}} = \frac{m_e}{7Q\delta^6} \frac{T_{1/2}^{2\nu}}{T_{1/2}^{0\nu}}$$

CFA Lectures 26 June 2015

250

Detecting 0v-ββdecay: current status and future challenges Carlo Bucci

Energy resolution

- Ş good enough to neglect the background induced by the $2v-\beta\beta$.
- Ş orders of magnitude
- Xenon TPCs (gas or liquid) have decent energy resolution
- Scintillation detectors (e.g. SNO+ or KamLAND-Zen) are limited by light yield and light collection

Germanium diodes and bolometers have already an energy resolution

Bolometers (in theory) can still improve; every improvement on energy resolution is equivalent to background reduction. But we cannot expect

Background

- Many R&Ds aiming to strong background reduction
 - materials selection
 - active vetoes
 - Ge diodes: copper electroforming
 - Ge diodes: Pulse shape discrimination SSE/MSE
 - TPC Xe: Barium tagging
 - TPC Xe gas: topological discrimination
 - \odot Bolometers: scintillation or Cherenkov light detection to discrimineta α/β or surface/bulk

Detecting 0v-ββdecay: current status and future challenges Carlo Bucci

Recent results

GERDA phase I

- Ge diodes enriched to 86% with ⁷⁶Ge
- Q-value: 2039 keV
- ΔE ~ 3 keV in ROI

CFA Lectures 26 June 2015 Advantages:

- known technology(enrichment + diode production)
- best energy resolution
- handles to reduce background PSD

GERDA Phase I

First BEGe's in GERDA

Calibration spectra

Energy resolution and PSA properties

(de	Detector	E resolution	A/E res.	A/E res. HADES
	Agamennone (GD32B)	2.88 ± 0.02	1.5%	0.8%
	Andromeda (GD32C	2.84 ± 0.02	1.7%	1.3%
:	Anubis (GD32D)	2.96 ± 0.04	1.7%	1.6%
In L	Achilles(GD35B)	3.61 ± 0.05	1.9%	0.6%

- operated bare
- 8 coax detectors v
- 0.8% 1.3% 1.6% 0.6%Aristoteles(GD35C) 3.09 ± 0.06 1.7% 1.7%

21 February 2013

18

- 5 BEGe detectors (3 kg) added in June 2012
- Total exposure of 21.6 kg yr between Nov. 2011 and May 2013

6

GERDA results

we expect to see 6 signal events

In 2039 ±5 keV we see 7 counts, after PSD only 3 remain:

$$T^{0v}_{1/2} > 2.1 \text{ x } 10^{25} \text{ yr}$$

(90% C.L.)

Phys. Rev. Lett. 111, 122503 (2013)

data set	$\mathcal{E}[\mathrm{kg}\cdot\mathrm{yr}]$	$\langle\epsilon angle$	bkg	BI †)	cts
without P	SD				
golden	17.9	0.688 ± 0.031	76	18 ± 2	5
silver	1.3	0.688 ± 0.031	19	63^{+16}_{-14}	1
BEGe	2.4	0.720 ± 0.018	23	$42_{-8}^{+\bar{1}\bar{0}}$	1
with PSD					
golden	17.9	$0.619^{+0.044}_{-0.070}$	45	11 ± 2	2
silver	1.3	$0.619_{-0.070}^{+0.044}$	9	30^{+11}_{-9}	1
BEGe	2.4	0.663 ± 0.022	3	5^{+4}_{-3}	0

[†]) in units of 10^{-3} cts/(keV·kg·yr).

8

KamLAND-Zen

- Hosted in the KamLAND detector
- 3 m diameter mini-balloon at the center
- Loaded with 13 tons of Xe-loaded LS
 - ~2.5% by weight Xe
 - ➡ 90% ¹³⁶ Xe (300 kg)
 - Q-value = 2458 keV
- KamLAND LS, 5m thick ultra-pure active shield
- KamLAND mineral oil buffer (2m thick)
- 3.2 kt water Cherenkov muon veto
- Scintillation light detected by array of ~2000 PMTs
- Energy resolution: $\sigma_E/E = 6.6 \%/\sqrt{E}$ or 100 keV @ Q-value

KamLAND-Zen phase I

Phase 1: Sept 2011-June 2012, 89.5 kg×yr exposure of ¹³⁶Xe

KamLAND-Zen phase II

At the end of Phase 1, the Xe and Xe-LS were purified to try to reduce the background

Detecting 0v-ββdecay: current status and future challenges Carlo Bucci

CUORE-0 is the first tower produced out of the CUORE assembly line.

- 52 TeO₂ 5x5x5 cm³ crystals (~750 g each)
- 13 floors of 4 crystals each
- total detector mass: 39 kg TeO₂ (10.9 kg of ¹³⁰Te)

CUORE-0 has been taking data since March 2013 in the 25 year old Cuoricino cryostat.

- Proof of concept of CUORE detector in all stages
- Test and debug of the CUORE tower assembly line
- Test of the CUORE DAQ and analysis framework
- Check of the radioactive background reduction
- Extend the physics reach beyond Cuoricino while CUORE is being assembled
- Sensitive 0vDBD experiment

From Cuoricino to CUORE

- New lighter detector design structure
- Reduced overall copper surfaces by a factor ~2
- New surface cleaning technique
- Strict production protocols for TeO₂ surface contamination
- Minimization of Rn exposure (Glove Box assembly)
- Strict material selection

CFA Lectures 26 June 2015

Detecting 0v-ββdecay: current status and future challenges Carlo Bucci

Thermistors & Heaters coupling

NTD

Heater

Before

After

Features:

- new semi-automatic system
- highly-reproducible

CFA Lectures

26 June 2015

• fully performed under N₂ atmosphere to minimize radioactive recontamination.

CUORE-0 Assembly & Bonding

2. Cabling box

3. Bonding box

CFA Lectures 26 June 2015 Detecting 0v-ββdecay: current status and future challenges Carlo Bucci

CUORE-0 results

Background index: 0.058 ± 0.004 (stat.) ± 0.002 (syst.) c keV⁻¹ kg⁻¹ yr⁻¹ 0vDBD ¹³⁰Te Bayesian 90% C.L. limit: $T_{1/2} > 2.7 \times 10^{24}$ yr

CFA Lectures 26 June 2015

Near Future

Several experiments in the next 2-3 years

- 🏺 Gerda phase II
- 30 BeGe detectors with improved background; ~20 kg enriched at 86%
- Majorana demonstrator
 - 30 kg of Ge diodes enriched at 87%; very low level background setup
- 🖗 CUORE
- ~ 1000 TeO2 bolometers; ~200 kg of 130Te
- 🖗 Lucifer/Lumineu
 - Enriched Se and Mo bolometers with alpha background discrimination;
- SuperNEMO demonstrator
- 7 kg of 82Se; reconstruction of electron kinematics, good background rejection
- Improved EXO-200
- improved energy resolution and possibly background
- KamLAND-Zen fase 3
 - 600 kg of 90% enriched Xe; improved background
- 🗳 SNO+ 0.3%
 - liquid scintillator loaded with natural Te; 800 kg of 130Te
- 🖗 NEXT-NEW
 - gaseous Xe TPC; ~ 10 kg of 136Xe

And others planned later on

- 🖗 Gerda+Majorana
- ton scale Ge experiment with the best technology
- 🖗 CUPID
 - ~1 ton of enriched Te, Mo or Se bolometers in the CUORE setup, with background discrimination
- 🖗 AMORE
 - ~100 kg CaMoO4 scintillating bolometers with enriched 100Mo
- SuperNEMO
- 100 kg of 82Se (150Nd, 48Ca)
- 🖗 nEXO
 - 5 tons of 90% enriched Xe; possible barium tagging
- KamLAND2-Zen
- ~1 ton of 90% enriched Xe
- § SNO+ 3.0%
- 8 tons of 130Te
- 🖗 NEXT-100, BEXT
 - 100-1000 kg of 136Xe

Different technologies

Different detector technologies are planned

- different challenges
- different capabilities
- Liquid/Gaseous vs Solid detectors
 - Liquid detectors have (generally)
 - worser energy resolution
 - better background (purification)
 - better for reach lower limits
 - Solid detectors have (generally)
 - excellent energy resolution
 - worser background
 - better for discovery

Which is the level that we can reach?

CFA Lectures 26 June 20<u>15</u> Detecting 0v-ββdecay: current status and future challenges Carlo Bucci

Assumptions

- Nuclear matrix elements from IBM-2
- 1 sigma sensitivity
- Zero background (i.e. M·T·B·ΔE ≤1)
- 90% isotopic enrichment
- Present isotope cost
- Present detector technologies
- Present efficiencies (fiducial volume)
- Present (or anticipated) energy resolution
- Measurement time: 5 years
- Goal: <m_{ββ}>=12 meV

 $< m_{\beta\beta} > = 12 \text{ meV}$

g	A	-
	-	

	T1/2 0v [years]	Isotope mass [ton]	Efficiency (fiducial volume)	Total detector mass [ton]	a.i. [%]	lsotope cost/kg [k€]	Isotope cost [M€]	B*∆E [c/kg/y]	ΔE FWHM [keV]	Background [c/keV/kg/y]	Q value [keV]	T1/2 2v [years]	F
⁷⁶ Ge GERDA	1,0E+28	0,365	0,82	0,49	7,8	70,00	34,64	5,5E-04	3	1,8E-04	2039	1,8E+21	6,3
⁸² Se Lucifer	3,7E+27	0,145	0,80	0,36	9,2	70,00	14,11	1,4E-03	10	1,4E-04	2996	9,2E+19	4,4
¹⁰⁰ Mo (ZnMO ₄)	3,2E+27	0,151	0,80	0,48	7,6	100,00	20,97	1,3E-03	9	1,5E-04	3034	7,1E+18	8,0
¹¹⁶ Cd (CdWO ₄)	5,4E+27	0,301	0,80	1,31	9,6	150,00	62,64	6,7E-04	6	1,1E-04	2814	2,8E+19	1,4
¹³⁰ Te CUORE	3,0E+27	0,189	0,87	0,30	34,2	13,00	3,14	1,1E-03	5	2,1E-04	2527	6,8E+20	1,1
¹³⁰ Te SNO+	3,0E+27	0,189	0,20	350,61	34,2	13,00	13,67	1,1E-03	270	3,9E-06	2527	6,8E+20	4,:
¹³⁶ Xe EXO	4,3E+27	0,281	0,50	0,63	8,9	8,00	5,00	7,1E-04	58	1,2E-05	2458	2,1E+21	8,4
¹³⁶ Xe Kam-Zen	4,3E+27	0,281	0,30	42,72	8,9	8,00	8,34	7,1E-04	250	2,8E-06	2458	2,1E+21	1,3
¹³⁶ Xe NEXT	4,3E+27	0,281	0,30	1,04	8,9	8,00	8,34	7,1E-04	15	4,7E-05	2458	2,1E+21	2,8

CFA Lectures 26 June 2015

=1,269

 $< m_{\beta\beta} > = 12 \text{ meV}$

	T1/2 0v [years]	Isotope mass [ton]	Efficiency (fiducial volume)	Total detector mass [ton]	a.i. [%]	lsotope cost/kg [k€]	lsotope cost [M€]	B*∆E [c/kg/y]	ΔE FWHM [keV]	Background [c/keV/kg/y]	Q value [keV]	T1/2 2v [years]	F
⁷⁶ Ge GERDA	2,3E+29	8,26	0,82	11,19	7,8	70,00	783,0	2,4E-05	3	8,1E-06	2039	1,8E+21	6,3
⁸² Se Lucifer	8,8E+28	3,46	0,80	8,65	9,2	70,00	336,9	5,8E-05	10	5,8E-06	2996	9,2E+19	4,4
¹⁰⁰ Mo (ZnMO ₄)	8,7E+28	4,16	0,80	13,25	7,6	100,00	577,4	4,8E-05	9	5,3E-06	3034	7,1E+18	8,0
¹¹⁶ Cd (CdWO ₄)	1,7E+29	9,22	0,80	40,14	9,6	150,00	1919,9	2,2E-05	6	3,6E-06	2814	2,8E+19	1,4
¹³⁰ Te CUORE	1,0E+29	6,30	0,87	10,02	34,2	13,00	104,6	3,2E-05	5	6,4E-06	2527	6,8E+20	1,1
¹³⁰ Te SNO+	1,0E+29	6,30	0,20	11664,54	34,2	13,00	454,9	3,2E-05	270	1,2E-07	2527	6,8E+20	4,3
¹³⁶ Xe EXO	1,5E+29	9,67	0,50	21,50	8,9	8,00	172,0	2,1E-05	58	3,6E-07	2458	2,1E+21	8,4
¹³⁶ Xe Kam-Zen	1,5E+29	9,67	0,30	1468,24	8,9	8,00	286,6	2,1E-05	250	8,3E-08	2458	2,1E+21	1,3
¹³⁶ Xe NEXT	1,5E+29	9,67	0,30	35,83	8,9	8,00	286,6	2,1E-05	15	1,4E-06	2458	2,1E+21	2,8

CFA Lectures 26 June 2015

 $g_{A}=1,269 \cdot A^{-0.18}$

What can we afford?

Assume to build an experiment with a budget of ~100 M€ Ş

- Ş the other expenses
- Suppose that the isotope cost will be 50% of the total budget Ş
- What we can build with that money? Ş

More we increase the mass and more the isotope cost will dominate

Isotope cost = 50 M€

	T1/2 0v [years]	Isotope mass [ton]	Efficiency (fiducial volume)	Total detector mass [ton]	a.i. [%]	lsotope cost/kg [k€]	<mββ> [meV]</mββ>	B*∆E [c/kg/y]	ΔE FWHM [keV]	Background [c/keV/kg/y]	Q value [keV]	T1/2 2v [years]	F
⁷⁶ Ge GERDA	1,4E+28	0,53	0,82	0,71	7,8	70,00	9,8	3,8E-04	3	1,3E-04	2039	1,8E+21	4,4
⁸² Se Lucifer	1,3E+28	0,51	0,80	1,28	9,2	70,00	6,4	3,9E-04	10	3,9E-05	2996	9,2E+19	1,2
¹⁰⁰ Mo (ZnMO ₄)	7,5E+27	0,36	0,80	1,15	7,6	100,00	7,8	5,6E-04	9	6,2E-05	3034	7,1E+18	3,3
¹¹⁶ Cd (CdWO ₄)	4,3E+27	0,24	0,80	1,05	9,6	150,00	13,4	8,3E-04	6	1,4E-04	2814	2,8E+19	1,8
¹³⁰ Te CUORE	4,8E+28	3,01	0,87	4,79	34,2	13,00	3,0	6,6E-05	5	1,3E-05	2527	6,8E+20	6,8
¹³⁰ Te SNO+	1,1E+28	0,69	0,20	1280,37	34,2	13,00	6,3	2,9E-04	270	1,1E-06	2527	6,8E+20	1,2
¹³⁶ Xe EXO	4,3E+28	2,81	0,50	6,24	8,9	8,00	3,8	7,1E-05	58	1,2E-06	2458	2,1E+21	8,4
¹³⁶ Xe Kam-Zen	2,6E+28	1,69	0,30	256,18	8,9	8,00	4,9	1,2E-04	250	4,7E-07	2458	2,1E+21	2,2
¹³⁶ Xe NEXT	2,6E+28	1,69	0,30	6,25	8,9	8,00	4,9	1,2E-04	15	7,9E-06	2458	2,1E+21	4,7

CFA Lectures 26 June 2015

 $g_{A}=1,269$

Isotope cost=50 M€

	T1/2 0v [years]	Isotope mass [ton]	Efficiency (fiducial volume)	Total detector mass [ton]	a.i. [%]	lsotope cost/kg [k€]	<mββ> [meV]</mββ>	B*∆E [c/kg/y]	ΔE FWHM [keV]	Background [c/keV/kg/y]	Q value [keV]	T1/2 2v [years]	F
⁷⁶ Ge GERDA	1,4E+28	0,53	0,82	0,71	7,8	70,00	47,5	3,8E-04	3	1,3E-04	2039	1,8E+21	6,3
⁸² Se Lucifer	1,3E+28	0,51	0,80	1,28	9,2	70,00	31,2	3,9E-04	10	3,9E-05	2996	9,2E+19	4,4
¹⁰⁰ Mo (ZnMO ₄)	7,5E+27	0,36	0,80	1,15	7,6	100,00	40,8	5,6E-04	9	6,2E-05	3034	7,1E+18	8,0
¹¹⁶ Cd (CdWO ₄)	4,3E+27	0,24	0,80	1,05	9,6	150,00	74,4	8,3E-04	6	1,4E-04	2814	2,8E+19	1,4
¹³⁰ Te CUORE	4,8E+28	3,01	0,87	4,79	34,2	13,00	17,4	6,6E-05	5	1,3E-05	2527	6,8E+20	1,1
¹³⁰ Te SNO+	1,1E+28	0,69	0,20	1280,37	34,2	13,00	36,2	2,9E-04	270	1,1E-06	2527	6,8E+20	4,:
¹³⁶ Xe EXO	4,3E+28	2,81	0,50	6,24	8,9	8,00	22,3	7,1E-05	58	1,2E-06	2458	2,1E+21	8,4
¹³⁶ Xe Kam-Zen	2,6E+28	1,69	0,30	256,18	8,9	8,00	28,7	1,2E-04	250	4,7E-07	2458	2,1E+21	1,3
¹³⁶ Xe NEXT	2,6E+28	1,69	0,30	6,25	8,9	8,00	28,7	1,2E-04	15	7,9E-06	2458	2,1E+21	2,8

CFA Lectures 26 June 2015

 $g_{A}=1,269 \cdot A^{-0.18}$

Few thoughts

- All those numbers get worse if we are not in zero background conditions (e.g. if M·T·B·ΔE=10, the needed mass to reach the same result is Mx10)
 - an example: CUORE with 90% enriched ¹³⁰Te with background of 10^{-2} conteggi keV⁻¹ kg⁻¹ y⁻¹ and with g_A=1,269, in order to reach $< m_{\beta\beta} > = 12$ meV should have a mass of ~15 ton.
- On the other hand an experiment with a good background rejection but with not feasible/affordable large masse is not useful
- \Im If g_A is quenched the road is very hard
- Eikely is needed to start thinking at isotopic enrichment with reasonable cost
 - If the best future technique will be based on a isotope different from ¹³⁶Xe and ¹³⁰Te, it is mandatory
 - For ¹³⁰Te (bolometers) and ¹³⁶Xe (NEXO, NEXT) even with the present cost and g_A quenched looks feasible to cover inverted hierarchy; but background reduction is still far from the needs

M. Biassoni, O. Cremonesi, P. Gorla, http://arxiv.org/abs/1310.3870

