> Gran Sasso, November 11-13, 2010
> International Student Workshop on
> "Neutrinoless Double Beta Decay"

# III. Quasiparticle Random Phase Approximation: Formalism 

Fedor Šimkovic<br>JINR Dubna,<br>Comenius University, Bratislava

# $0 v \beta \beta$-decay matrix element (two ways of calculation) 

## $0 \vee \beta \beta$-decay matrix elements

$$
\begin{aligned}
& M^{0 \nu}=\frac{4 \pi R}{g_{A}^{2}} \int\left(\frac{1}{(2 \pi)^{3}} \int \frac{e^{-i \vec{q} \cdot\left(\vec{x}_{1}-\vec{x}_{2}\right)}}{|q|}\right) \times \\
& \sum_{m} \frac{<0_{f}^{+}\left|J_{\alpha}^{\dagger}\left(\vec{x}_{1}\right)\right| m><m\left|J^{\dagger \dagger}\left(\vec{x}_{2}\right)\right| 0_{i}^{+}>}{E_{m}-\left(E_{i}+E_{f}\right) / 2+|q|} d \vec{q} d \vec{x}_{1} d \vec{x}_{2}
\end{aligned}
$$

## Weak hadron current

## Formfactor

$$
\begin{aligned}
j^{\rho \dagger}=\bar{\Psi} \tau^{+}\left[g_{V}\left(q^{2}\right) \gamma^{\rho}+i g_{M}\left(q^{2}\right) \frac{\sigma^{\rho \nu}}{2 m_{p}} q_{\nu}\right. & g_{V}\left(\vec{q}^{2}\right) & =g_{V} /\left(1+\vec{q}^{2} / M_{V}^{2}\right)^{2} \\
\left.-g_{A}\left(q^{2}\right) \gamma^{\rho} \gamma_{5}-g_{P}\left(q^{2}\right) q^{\rho} \gamma_{5}\right] \Psi, & g_{A}\left(\vec{q}^{2}\right) & =g_{A} /\left(1+\vec{q}^{2} / M_{A}^{2}\right)^{2}
\end{aligned}
$$

Weak hadron current in a Breit frame

$$
\begin{aligned}
J^{\rho \dagger}(\vec{x}) & =\sum_{n=1}^{A} \tau_{n}^{+}\left[g^{\rho 0} J^{0}\left(\vec{q}^{2}\right)+\sum_{k} g^{\rho k} J_{n}^{k}\left(\vec{q}^{2}\right)\right] \delta\left(\vec{x}-\vec{r}_{n}\right) \\
J^{0}\left(\vec{q}^{2}\right) & =g_{V}\left(q^{2}\right) \\
\vec{J}_{n}\left(\vec{q}^{2}\right) & =g_{M}\left(\vec{q}^{2}\right) i \frac{\vec{\sigma}_{n} \times \vec{q}}{2 m_{p}}+g_{A}\left(\vec{q}^{2}\right) \vec{\sigma}-g_{P}\left(\vec{q}^{2}\right) \frac{\vec{q} \vec{\sigma}_{n} \cdot \vec{q}}{2 m_{p}}
\end{aligned}
$$

## Two one-body operators

One-body operator

$$
e^{i \vec{q} \cdot \vec{r}}=4 \pi \sum_{l} i^{l} j_{l}(q r)\left(Y_{l m}\left(\Omega_{r} \cdot Y_{l m}\left(\Omega_{q}\right)\right) \quad \hat{\mathcal{O}}_{J M}=\sum_{p n} \frac{\left\langle p\left\|\mathcal{O}_{J}\right\| n\right\rangle}{\sqrt{2 J+1}}\left[c_{p}^{+} \tilde{c}_{n}\right]_{J M}\right.
$$

Decomposition of

$$
\int e^{i \bar{q} \overrightarrow{r_{1}}} e^{-i \bar{q} \cdot \vec{r}_{2}} d \Omega_{q}=
$$

plane waves

$$
(4 \pi)^{2} \sum_{l}(-1)^{l} \sqrt{2 l+1} j_{l}\left(q r_{1}\right) j_{l}\left(q r_{2}\right)\left\{Y_{l m}\left(\Omega_{r_{1}}\right) \otimes Y_{l m}\left(\Omega_{r_{2}}\right)\right\}_{00}
$$

$$
M_{K}=\sum_{J, \pi, k_{i}, k_{f}} \sum_{p n p^{\prime} n^{\prime}}(-)^{J}
$$

$$
\frac{R}{g_{A}^{2}} \int_{0}^{\infty} \frac{\mathcal{P}_{p n p^{\prime} n^{\prime}, J}^{K}(q)}{|q|\left(|q|+\left(\Omega_{J^{\prime} \pi}^{k_{i}}+\Omega_{J \pi}^{k_{f}}\right) / 2\right)} h_{K}\left(q^{2}\right) q^{2} d q \times
$$

$K=V V, M M, A A, P P, A P$
$\left\langle 0_{f}^{+}\left\|\left[c_{p^{\prime}}^{+} \tilde{c}_{n^{\prime}}\right]_{J}\right\| J^{\pi} k_{f}\right\rangle\left\langle J^{\pi} k_{f} \mid J^{\pi} k_{i}\right\rangle\left\langle J^{\pi} k_{i}\left\|\left[c_{p}^{+} \tilde{c}_{n}\right]_{J}\right\| 0_{i}^{+}\right\rangle$

$$
\begin{aligned}
& \mathcal{P}_{p n n \prime^{\prime} n^{\prime}, J}^{V V}(q)=\left\langle p\left\|\mathcal{O}_{J}^{(1)}(q)\right\| n\right\rangle\left\langle p^{\prime}\left\|\mathcal{O}_{J}^{(1)}(q)\right\| n^{\prime}\right\rangle, \\
& \mathcal{P}_{p n p^{\prime} n^{\prime}, J}^{A A}(q)=\sum_{L=J, J \pm 1}(-)^{J+L+1} \times
\end{aligned}
$$

Product of one-body matrix elements

$$
\begin{aligned}
& \mathcal{P}_{p n p^{\prime} n^{\prime}, J}^{P P}(q)=\left\langle p\left\|\mathcal{O}_{J}^{(3)}(q)\right\| n\right\rangle\left\langle p^{\prime}\left\|\mathcal{O}_{J}^{(3)}(q)\right\| n^{\prime}\right\rangle, \\
& \mathcal{P}_{p n p^{\prime} n^{\prime}, J}^{A P}(q)=\mathcal{P}_{p n p^{\prime} n^{\prime}, J}^{P P}(q), \\
& \mathcal{P}_{p n p^{\prime} n^{\prime}, J}^{M M}(q)=\mathcal{P}_{p n p^{\prime} n^{\prime}, J}^{A A}(q)-\mathcal{P}_{p n p^{\prime} n^{\prime}, J}^{P P}(q) .
\end{aligned}
$$

One two-body operators $\quad\langle p| O(1)|n\rangle\left\langle p^{\prime}\right| O(2)\left|n^{\prime}\right\rangle=\left\langle p, p^{\prime}\right| O^{\prime}(1,2)\left|n, n^{\prime}\right\rangle$
Integration over angular part of $v$ momentum

$$
\begin{gathered}
\int e^{i \vec{q}\left(\vec{r}_{1}-\vec{r}_{2}\right)} d \Omega_{q}=\int e^{i \vec{q} \cdot \vec{T}} d \Omega_{q}= \\
\sqrt{4 \pi} 4 \pi \sum_{l m} i^{i} j_{l}(q r) Y_{l m}\left(\Omega_{r}\right) \int Y_{l m}^{*}\left(\Omega_{q}\right) Y_{00}\left(\Omega_{q}\right) d \Omega_{q}=4 \pi j_{0}(q r)
\end{gathered}
$$

$$
\begin{aligned}
O_{F}\left(r_{12}, E_{J \pi}^{k}\right) & =\tau^{+}(1) \tau^{+}(2) H_{F}\left(r_{12}, E_{J \pi}^{k}\right), \\
O_{G T}\left(r_{12}, E_{J_{\pi}}^{k}\right) & =\tau^{+}(1) \tau^{+}(2) H_{G T}\left(r_{12}, E_{J \pi}^{k}\right) \sigma_{12},
\end{aligned}
$$

Neutrino potential

$$
O_{T}\left(r_{12}, E_{J^{\pi}}^{k}\right)=\tau^{+}(1) \tau^{+}(2) H_{T}\left(r_{12}, E_{J^{\pi}}^{k}\right) S_{12}
$$

$H_{K}\left(r_{12}, E_{J \pi}^{k}\right)=$

$$
\frac{2}{\pi g_{A}^{2}} R \int_{0}^{\infty} f_{K}\left(q r_{12}\right) \frac{h_{K}\left(q^{2}\right) q d q}{q+E_{J \pi}^{k}-\left(E_{i}+E_{f}\right) / 2} \quad \begin{aligned}
\sigma_{12} & =\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}, \\
S_{12} & =3\left(\vec{\sigma}_{1} \cdot \hat{r}_{12}\right)\left(\vec{\sigma}_{2} \cdot \hat{r}_{12}\right)-\sigma_{12}
\end{aligned}
$$

with $f_{F, G T}\left(q r_{12}\right)=j_{0}\left(q r_{12}\right), \quad f_{T}\left(q r_{12}\right)=-j_{2}\left(q r_{12}\right)$

Nuclear matrix element

$$
M_{K}=\sum_{J \pi, k_{i}, k_{f}, \mathcal{J}} \sum_{p n p^{\prime} n^{\prime}}(-1)^{j_{n}+j_{p^{\prime}}+J+\mathcal{J}} \times
$$

$$
M^{0 \nu}=-\frac{M_{F}}{g_{A}^{2}}+M_{G T}-M_{T}
$$

$$
\sqrt{2 \mathcal{J}+1}\left\{\begin{array}{lll}
j_{p} & j_{n} & J \\
j_{n^{\prime}} & j_{p^{\prime}} & \mathcal{J}
\end{array}\right\} \times
$$

$$
\left\langle p(1), p^{\prime}(2) ; \mathcal{J}\left\|\bar{f}\left(r_{12}\right) O_{K} \bar{f}\left(r_{12}\right)\right\| n(1), n^{\prime}(2) ; \mathcal{J}\right\rangle \times
$$

$$
\left\langle 0_{f}^{+}\left\|\left[c_{p^{\prime}}^{+} \tilde{c}_{n^{\prime}}\right]_{J}\right\| J^{\pi} k_{f}\right\rangle\left\langle J^{\pi} k_{f} \mid J^{\pi} k_{i}\right\rangle\left\langle J^{\pi} k_{f} i\left\|\left[c_{p}^{+} \tilde{c}_{n}\right]_{J}\right\| 0_{i}^{+}\right\rangle
$$

## Calculation of two-body matrix elements

## From j-j to LS

 coupling$$
\mathcal{M}^{2 b o d y}=\left\langle a(1), b(2) ; J^{\prime}\right| O(1,2)\left|c(1) d(2) ; J^{\prime}\right\rangle
$$

$$
\left|n_{c} l_{c} j_{c}, n_{d} l_{d} j_{d} ; J^{\prime} M^{\prime}\right\rangle=\sum_{S L} \hat{S}^{2} \hat{L}^{2} \hat{j}_{c} \hat{j}_{d}\left\{\begin{array}{ccc}
1 / 2 & l_{c} & j_{c} \\
1 / 2 & l_{d} & j_{d} \\
S & L & J^{\prime}
\end{array}\right\}\left|n_{c} l_{c}, n_{d} l_{d}, S L ; J^{\prime} M^{\prime}\right\rangle
$$

Moshinsky
$\begin{gathered}\text { transformation } \\ \text { to relative coordinates }\end{gathered}\left|n_{c} l_{c} n_{d} l_{d} ; L M_{L}\right\rangle=\sum_{\substack{n l \\ \mathcal{N L}}}\left\langle n l, \mathcal{N} \mathcal{L}, L \mid n_{c} l_{c}, n_{d} l_{d}, L\right\rangle\left|n l, \mathcal{N} \mathcal{L} ; L M_{L}\right\rangle$

$$
\begin{aligned}
\mathcal{M}_{F, G T}^{2 b o d y} & =\hat{J}^{\prime} \sum_{S L} \hat{S} \hat{L} \hat{j}_{a} \hat{j}_{b} \hat{j}_{c} \hat{j}_{d}\left\{\begin{array}{ccc}
1 / 2 & l_{c} & j_{c} \\
1 / 2 & l_{d} & j_{d} \\
S & L & J^{\prime}
\end{array}\right\}\left\{\begin{array}{ccc}
1 / 2 & l_{a} & j_{a} \\
1 / 2 & l_{b} & j_{b} \\
S & L & J^{\prime}
\end{array}\right\} \\
& \times \sum_{\substack{n l \\
\mathcal{N} \mathcal{L}}} \sum_{\substack{n^{\prime} l^{\prime} \mathcal{L}^{\prime}}}\left\langle n l, \mathcal{N} \mathcal{L}, L \mid n_{c} l_{c}, n_{d} l_{d}, L\right\rangle\left\langle n^{\prime} l^{\prime}, \mathcal{N}^{\prime} \mathcal{L}^{\prime}, L \mid n_{a} l_{a}, n_{b} l_{b}, L\right\rangle
\end{aligned}
$$

Two-body
m.e.

$$
\begin{aligned}
& \times\left\langle n^{\prime} l^{\prime}, \mathcal{N}^{\prime} \mathcal{L}^{\prime} ; L\left\|j_{0}\left(q \mid \vec{r}_{i, j}\right)\right\| n l, \mathcal{N} \mathcal{L} ; L\right\rangle\left\langle s_{a} s_{b} ; S\left\|\binom{1}{\overrightarrow{\sigma_{1}} \cdot \overrightarrow{\sigma_{2}}}\right\| s_{c} s_{d} ; S\right\rangle \\
&\left\langle n^{\prime} l^{\prime}, \mathcal{N}^{\prime} \mathcal{L}^{\prime} ; L\left\|j_{0}\left(q\left|\vec{r}_{i, j}\right|\right)\right\| n l, \mathcal{N} \mathcal{L} ; L\right\rangle=\delta_{l l^{\prime}} \delta_{\mathcal{N N ^ { \prime }}} \delta_{\mathcal{L L ^ { \prime }}}\left\langle n^{\prime} l\right| j_{0}\left(q\left|\vec{r}_{i, j}\right|\right)|n l\rangle \\
&\left\langle s_{a} s_{b} ; S\left\|\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right\| s_{c} s_{d} ; S\right\rangle=\hat{S}\left(\delta_{S 1}-3 \delta_{S 0}\right), \\
&\left\langle s_{a} s_{b} ; S\|1\| s_{c} s_{d} ; S\right\rangle=\hat{S}\left(\delta_{S 1}+\delta_{S 0}\right)
\end{aligned}
$$

# Many-body wave functions 

## Many-body Hamiltonian

- Start with the many-body Hamiltonian

$$
H=\sum_{i} \frac{\vec{p}_{i}^{2}}{2 m}+\sum_{i<j} V_{N N}\left(\vec{r}_{i}-\vec{r}_{j}\right)
$$

- Introduce a mean-field $\boldsymbol{U}$ to yield basis

$$
H=\sum_{i}\left(\frac{\vec{p}_{i}^{2}}{2 m}+U\left(r_{i}\right)\right)+\sum_{i<j} \underbrace{V_{N N}\left(\vec{r}_{i}-\vec{r}_{j}\right)-\sum_{i} U\left(r_{i}\right)}_{\text {Residual interaction }}
$$



The success of any nuclear structure calculation depends on the choice of the mean-field basis and the residual interaction!

- The mean field determines the shell structure
- In effect, nuclear-structure calculations rely on perturbation theory

Goeppert-Mayer and Haxel, Jensen, and Suess proposed the independent-particle shell model to explain the magic numbers 2, 8, 20, 28, 50, 82, 126, 184

## Harmonic

 oscillator with spin-orbit is a reasonable approximation to the nuclear mean field
## Shell structure of spherical nucleus


M.G. Mayer and J.H.D. Jensen, Elementary Theory of Nuclear Shell Structure,p. 58, Wiley, New York, 1955

## Nuclear many-body wave function

Single nucleon state

$$
\left.\begin{array}{rlrc}
\left(H(r, \theta, \phi)-E_{a}\right) \mid a>=0 & \ell & \text { orbital angular momentum } \\
H(r, \theta, \phi)=-\frac{\hbar^{2}}{2 m}+U(r) & j & \text { total angular momentum } j=\ell+s
\end{array}\right)
$$

Two-nucleon state (nucleons are fermions)

$$
\begin{aligned}
\Psi_{a b}(1,2) & =\frac{1}{\sqrt{2}}\left(\Psi_{a}(1) \Psi_{b}(2)-\Psi_{a}(2) \Psi_{b}(1)\right) \\
& =\frac{1}{\sqrt{2}}\left|\begin{array}{cc}
\Psi_{a}(1) & \Psi_{a}(2) \\
\Psi_{b}(1) & \Psi_{b}(1)
\end{array}\right|
\end{aligned}
$$

## Slater determinat

Ground state of A-nucleons system

$$
\left.\Psi_{a_{1} a_{2} \cdots a_{A}}(1,2, \cdots, A)\right)=\frac{1}{\sqrt{A!}}\left|\begin{array}{ccc}
\Psi_{1}(1) & \cdots & \Psi_{1}(A) \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\Psi_{A}(1) & \cdots & \Psi_{A}(A)
\end{array}\right|
$$

## Second quantization

Creation and annihilation operators

$$
c_{a}^{\dagger}\left|0>=\left|a>\quad c_{a}\right| 0>=0\right.
$$

Anticommutators

$$
\begin{aligned}
\left\{c_{a}, c_{b}^{\dagger}\right\} & =c_{a} c_{b}^{\dagger}+c_{b}^{\dagger} c_{a} \\
& =\delta(a, b)
\end{aligned}
$$

$$
\left\{c_{a}, c_{b}\right\}=\left\{c_{a}^{\dagger}, c_{b}^{\dagger}\right\}=0
$$

$$
c_{a}^{\dagger} \mid a>=0
$$

Ground state of
A-nucleons system

$$
\left|a_{1}, a_{2}, \cdots, a_{A}>=\left(\Pi_{i=1}^{A} c_{a_{i}}^{\dagger}\right)\right| 0>
$$

$$
<a \mid c_{a}=0
$$

One-body operator

$$
\begin{aligned}
c_{a}^{\dagger} \mid a> & =c_{a}^{\dagger} c_{a}^{\dagger} \mid 0> \\
& =-c_{a}^{\dagger} c_{a}^{\dagger} \mid 0>
\end{aligned}
$$

$$
\begin{aligned}
\hat{O} & =\sum_{i}^{A} \hat{O}(i) \\
& =\sum_{a, b}^{i}\langle a| O|b\rangle c_{b}^{\dagger} c_{a}
\end{aligned}
$$

Two -body operator

$$
\begin{aligned}
\hat{V} & =\sum_{i<j}^{A} \hat{V}(i, j) \\
& =\frac{1}{4} \sum_{a b c d} V_{a b c d} c_{a}^{\dagger} c_{b}^{\dagger} c_{d} c_{c}
\end{aligned}
$$

## Nuclear Hamiltonian

$$
\begin{aligned}
\hat{H} & =\sum_{i}^{A} \frac{\hat{p}^{2}}{2 m_{i}}+\sum_{i}^{A} \hat{V}(i, j) \\
\hat{H} & =\sum_{a b} t(a, b) c_{a}^{\dagger} c_{b}+\frac{1}{4} \sum_{a b c d} V_{a b c d} c_{a}^{\dagger} c_{b}^{\dagger} c_{d} c_{c} \\
\hat{H} & =\hat{H}_{0}+\hat{V}_{\text {res }} \\
\hat{H} & =\sum_{a} E_{a} c_{a}^{\dagger} c_{a}+\frac{1}{4} \sum_{a b c d} V_{a b c d}^{\text {res }} c_{a}^{\dagger} c_{b}^{\dagger} c_{d} c_{c}
\end{aligned}
$$

## BCS approximation

Pairing interaction is strongly attractive. This force acts between like nucleons in the same single particle orbit. It induces the two nucleons to couple with $\mathrm{J}=\mathbf{0}$

Two-particle state:

$$
\begin{aligned}
& \left|j^{2}, J=0\right\rangle=A^{\dagger}\left(j^{2} 00\right) \mid 0> \\
& A^{\dagger}\left(j^{2} 00\right)=\frac{1}{\sqrt{2}} \sum_{m}\langle j m j-m \mid 00\rangle c_{j m}^{\dagger} c_{j-m}^{\dagger} \\
& =\frac{1}{\sqrt{2(2 j+1)}} \sum_{m}(-1)^{j-m} c_{j m}^{\dagger} c_{j-m}^{\dagger}
\end{aligned}
$$

Ansatz for ground state with pairing correlations

$$
|\mathrm{BCS}\rangle=\prod_{j} \prod_{m>0}\left(u_{j}+v_{j} c_{j m}^{\dagger} c_{j-m}^{\dagger}\right)_{\mathrm{BCS}}|0\rangle
$$

The particle number is not conserved

$$
\begin{aligned}
|\mathrm{BCS}\rangle & \sim|-\rangle \\
& +\sum_{j, m>0} \frac{v_{j}}{u_{j}} c_{j m}^{\dagger} c_{j-m}^{\dagger}|-\rangle \\
& +\frac{1}{2} \sum_{j, m>0} \frac{v_{j}}{u_{j}} c_{j m}^{\dagger} c_{j-m}^{\dagger} \sum_{j^{\prime}, m^{\prime}>0} \frac{v_{j^{\prime}}}{u_{j^{\prime}}} c_{j^{\prime} m^{\prime}}^{\dagger} c_{j^{\prime}-m^{\prime}}^{\dagger}|-\rangle \\
& +\cdots
\end{aligned}
$$

The normalization of the BCS ground state to unity requires:

$$
u_{j}^{2}+v_{j}^{2}=1, \quad u_{j}, v_{j} \geq 0
$$

## Occupation probability

$$
\frac{1}{2 j+1}\langle\mathrm{BCS}| \sum_{m} c_{j m}^{\dagger} c_{j m}|\mathrm{BCS}\rangle=v_{j}^{2}
$$

The number operator in a single particle orbit $\mathbf{j}$

The number of particles in the single particle orbit

$$
\begin{aligned}
\widehat{N}_{j} & =\sum_{m} c_{j m}^{\dagger} c_{j m} \\
& =\sum_{m>0}\left(c_{j m}^{\dagger} c_{j m}+c_{j-m}^{\dagger} c_{j-m}\right)
\end{aligned}
$$

$$
\begin{aligned}
N_{j} & =\langle\operatorname{BCS}| \widehat{N}_{j}|\mathrm{BCS}\rangle \\
& =\sum_{j}(2 j+1) v_{j}^{2}
\end{aligned}
$$

## BCS equation

When the Hamiltonian of system is provided, the occupation amplitudes are determined by energy variation

$$
\delta\langle\mathrm{BCS}| H|\mathrm{BCS}\rangle=0
$$

The BCS ground state is expressed by considering $p$ and $n$ degrees Of freedom

$$
\begin{aligned}
|\mathrm{BCS}\rangle= & \prod_{j_{p}} \prod_{m_{p}>0}\left(u_{j_{p}}+v_{j_{p}} c_{j_{p} m_{p}}^{\dagger} c_{j_{p}-m_{p}}^{\dagger}\right) \times \\
& \prod_{j_{n}} \prod_{m_{n}>0}\left(u_{j_{n}}+v_{j_{n}} c_{j_{n} m_{n}}^{\dagger} c_{j_{n}-m_{n}}^{\dagger}\right)|0\rangle
\end{aligned}
$$

Variation with a constraint that expectation value of number operators should be equal to particle number

The modified
Hamiltonian for variation

$$
\begin{array}{ll}
\langle\mathrm{BCS}| \widehat{N}_{p}|\mathrm{BCS}\rangle & =N_{p} \\
\langle\mathrm{BCS}| \widehat{N}_{n}|\mathrm{BCS}\rangle & =N_{n}
\end{array}
$$

$$
H^{\prime}=H-\lambda_{p} \widehat{N}_{p}-\lambda_{n} \widehat{N}_{n}
$$

$u$ and $v$ are not independent. they are constrained by a normalization condition

$$
\begin{aligned}
& u_{j_{p}}^{2}+v_{j_{p}}^{2}=1 \\
\Rightarrow & \frac{\partial u_{j_{p}}}{\partial v_{j_{p}}}=-\frac{v_{j_{p}}}{u_{j_{p}}}
\end{aligned}
$$

BCS expectation value

Variation is explicitly written as

$$
\left(\frac{\partial}{\partial v_{j_{p}}}+\frac{\partial u_{j_{p}}}{\partial v_{j_{p}}} \frac{\partial}{\partial u_{j_{p}}}\right)\langle\operatorname{BCS}| H^{\prime}|\mathrm{BCS}\rangle=0
$$

The nuclear Hamiltonian

$$
\begin{aligned}
H & =H_{0}+V \\
H_{0} & =\sum_{j_{p} m_{p}} \varepsilon_{j_{p}}^{\dagger} c_{j_{p} m_{p}} c_{j_{p} m_{p}}+\sum_{j_{n} m_{n}} \varepsilon_{j_{n}} c_{j_{n} m_{n}} c_{j_{n} m_{n}} \\
V & =V_{p p}+V_{n n}+V_{p n}
\end{aligned}
$$

$$
\langle\mathrm{BCS}| H^{\prime}|\mathrm{BCS}\rangle
$$

$$
=-\frac{1}{2} \sum_{j_{p}}\left(2 j_{p}+1\right)\left(u_{j_{p}} v_{j_{p}} \Delta_{j_{p}}-v_{j_{p}}^{2} 2\left(\varepsilon_{j_{p}}-\lambda_{p}\right)\right)
$$

$$
-\frac{1}{2} \sum_{j_{n}}^{j_{P}}\left(2 j_{n}+1\right)\left(u_{j_{n}} v_{j_{n}} \Delta_{j_{n}}-v_{j_{n}}^{2} 2\left(\varepsilon_{j_{n}}+-\lambda_{n}\right)\right)
$$

$$
\left.\begin{array}{rl}
\Delta_{j_{p}} & =-\sum_{j_{p}^{\prime}}\left(2 j_{p}^{\prime}+1\right) u_{j_{p}^{\prime}} v_{j_{p}^{\prime}} V_{\Delta}\left(j_{p}^{\prime}, j_{p}\right) \\
\Delta_{j_{n}} & =-\sum_{j_{n}^{\prime}}\left(2 j_{n}^{\prime}+1\right) u_{j_{n}^{\prime}} v_{j_{n}^{\prime}} V_{\Delta}\left(j, j_{n}^{\prime}, j_{n}\right), \frac{1}{\sqrt{\text { Jedor Simkovic }}}
\end{array} j^{2}\left|V_{p p / n n}\right| j^{\prime 2}\right\rangle_{J=0}
$$

Performing the variation

$$
\left(\frac{\partial}{\partial v_{j_{p}}}+\frac{\partial u_{j_{p}}}{\partial v_{j_{p}}} \frac{\partial}{\partial u_{j_{p}}}\right)\langle\operatorname{BCS}| H^{\prime}|\operatorname{BCS}\rangle=0
$$

We obtain a set of BCS equation

$$
\begin{aligned}
2 u_{j_{p}} v_{j_{p}}\left(\varepsilon_{j_{p}}-\lambda_{p}\right)+\left(v_{j_{p}}^{2}-u_{j_{p}}^{2}\right) \Delta_{j_{p}} & =0 \\
2 u_{j_{n}} v_{j_{n}}\left(\varepsilon_{j_{n}}-\lambda_{n}\right)+\left(v_{j_{n}}^{2}-u_{j_{n}}^{2}\right) \Delta_{j_{n}} & =0
\end{aligned}
$$

We get quadratic equation for $\mathbf{v}^{2}$

$$
\begin{aligned}
4\left(\eta_{j}^{2}+\Delta_{j}^{2}\right) v_{j}^{4}-4\left(\eta_{j}^{2}+\Delta_{j}^{2}\right) v_{j}^{2}+\Delta_{j}^{2} & =0 \\
\eta_{j} & =\varepsilon_{j}-\lambda
\end{aligned}
$$

Solution for BCS amplitudes:

$$
\begin{aligned}
& v_{j}^{2}=\frac{1}{2}\left[1-\frac{\varepsilon_{j}-\lambda}{\sqrt{\left(\varepsilon_{j}-\lambda\right)^{2}+\Delta_{j}^{2}}}\right] \\
& u_{j}^{2}=\frac{1}{2}\left[1+\frac{\varepsilon_{j}-\lambda}{\sqrt{\left(\varepsilon_{j}-\lambda\right)^{2}+\Delta_{j}^{2}}}\right]
\end{aligned}
$$

## BCS algoritmus

Step 0:
Give single-particle energies for $p$ and $n$, two-body matrix elements in the nucleon basis

$$
\varepsilon_{j_{p},}, \varepsilon_{j_{n}}, \quad\left\langle j^{2}\right| V_{p p / n n}\left|j^{\prime 2}\right\rangle_{J^{\pi}=0^{+}}
$$

Calculate: $\quad V_{\Delta}\left(j, j^{\prime}\right)=\frac{1}{\sqrt{(2 j+1)\left(2 j^{\prime}+1\right)}}\left\langle j^{2}\right| V_{p p / n n}\left|j^{\prime 2}\right\rangle_{J^{\pi}=0^{+}}$,
Give also trial values of occupation amplitudes and chemical potentials

$$
\begin{aligned}
& \text { trial values : } \quad \lambda_{j_{p}}, \quad p, \quad p, \quad\left(u_{j_{p}}^{2}+v_{j_{p}}^{2}=1\right), \\
& \lambda_{j_{n}}, \quad n, \quad n, \quad\left(u_{j_{n}}^{2}+v_{j_{n}}^{2}=1\right) .
\end{aligned}
$$

## Step 1:

Calculate proton and neutron pairing gaps:

$$
\begin{aligned}
\Delta_{j_{p}} & =-\sum_{j_{p}^{\prime}}\left(2 j_{p}^{\prime}+1\right) u_{j_{p}^{\prime}} v_{j_{p}^{\prime}} V_{\Delta}\left(j_{p}, j_{p}^{\prime}\right) \\
\Delta_{j_{n}} & =-\sum_{j_{n}^{\prime}}\left(2 j_{n}^{\prime}+1\right) u_{j_{n}^{\prime}} v_{j_{n}^{\prime}} V_{\Delta}\left(j_{n}, j_{n}^{\prime}\right)
\end{aligned}
$$

Step 2:

$$
v_{j_{p, n}}^{2}=\frac{1}{2}\left[1-\frac{\varepsilon_{j_{p, n}}-\lambda}{\sqrt{\left(\varepsilon_{j_{p, n}}-\lambda\right)^{2}+\Delta_{j_{p, n}}^{2}}}\right]
$$

Calculate occupation Amplitudes:

$$
u_{j_{p, n}}^{2}=\frac{1}{2}\left[1+\frac{\varepsilon_{j_{p, n}}-\lambda}{\sqrt{\left(\varepsilon_{j_{p, n}}-\lambda\right)^{2}+\Delta_{j_{p, n}}^{2}}}\right]
$$

Step 3: $\quad \begin{gathered}\text { Calculate expectation values of the } \\ \text { number of protons and neutrons }\end{gathered} N_{p}=\sum_{j_{p}}\left(2 j_{p}+1\right) v_{j_{p}}{ }^{2}{ }^{2}$ with occupation amplitudes, which $\quad N_{n}=\sum_{j_{n}}\left(2 j_{n}+1\right) v_{j_{n}}{ }^{2}$
are evaluated in previous step

Step 4: Compare the proton and neutron numbers in the previous step and those of the nuclear under consideration. If they agree within a certain small number, the iterative calculation is converged. if not, the chemical potentials are slightly changed. A larger chemical potential results in a larger nucleon number. We then go back to Step 1 and the iterative processes from Step 1 through Step 5 are repeated again.

## Qusiparticles - Bogoliubov transforamtion

Creation and annihilation operators of quasiparticles:

$$
\begin{aligned}
a_{j m}^{\dagger} & =u_{j} c_{j m}^{\dagger}-v_{j}(-1)^{j-m} c_{j-m} \\
a_{j-m}^{\dagger} & =u_{j} c_{j-m}^{\dagger}+v_{j}(-1)^{j-m} c_{j m}
\end{aligned}
$$

$$
\begin{gathered}
\left\{a_{j m}^{\dagger}, a_{j^{\prime} m^{\prime}}\right\}=\delta_{j, j^{\prime}} \delta_{m, m^{\prime}}\left(u_{j}^{2}+v_{j}^{2}\right) \\
\left\{a_{j m}^{\dagger}, a_{j^{\prime} m^{\prime}}^{\dagger}\right\}=\left\{a_{j m}, a_{j^{\prime} m^{\prime}}\right\}=0
\end{gathered}
$$

Anticommutation relations for q.p. operators calculated by using those of particle operators

$$
\left\{a_{j m}^{\dagger}, a_{j^{\prime} m^{\prime}}\right\}=\delta_{j, j^{\prime}} \delta_{m, m^{\prime}}, \quad\left\{a_{j m}^{\dagger}, a_{j^{\prime} m^{\prime}}^{\dagger}\right\}=\left\{a_{j m}, a_{j^{\prime} m^{\prime}}\right\}=0
$$

Notation:

$$
\tilde{a}_{j m}=(-1)^{j+m} a_{j-m}
$$

Unitary transformations between particles and quasiparticles

$$
\begin{aligned}
a_{j m}^{\dagger} & =u_{j} c_{j m}^{\dagger}-v_{j} \tilde{c}_{j m} \\
\tilde{a}_{j m} & =u_{j} \tilde{c}_{j m}+v_{j} c_{j m}^{\dagger}
\end{aligned}
$$

$$
\begin{aligned}
c_{j m}^{\dagger} & =u_{j} a_{j m}^{\dagger}+v_{j} \tilde{a}_{j m} \\
\tilde{c}_{j m} & =u_{j} \widetilde{a}_{j m}-v_{j} a_{j m}^{\dagger}
\end{aligned}
$$

## BCS equation (from equation of motion)

## BCS equation:

## Quasiparticle

$\left(\begin{array}{cc}e_{\tau}-\lambda_{\tau} & \Delta_{\tau} \\ \Delta_{\tau} & -\left(e_{\tau}-\lambda_{\tau}\right)\end{array}\right)\binom{u_{\tau}}{v_{\tau}}=E_{\tau}\binom{u_{\tau}}{v_{\tau}} \quad\left|\begin{array}{cc}e_{\tau}-E_{\tau} & \Delta_{\tau} \\ \Delta_{\tau} & -e_{\tau}-E_{\tau}\end{array}\right|=0$
Pairing gap (renormalization of pairing int.):

$$
E_{\tau}^{2}=e_{\tau}^{2}+\Delta_{\tau}^{2}
$$

$$
\Delta_{\tau}=\frac{1}{\sqrt{2 j_{\tau}+1}} \sum_{\tau^{\prime}} \sqrt{2 j_{\tau^{\prime}}+1} d_{\tau^{\prime} \tau^{\prime}} G\left(\tau^{\prime} \tau^{\prime}, \tau \tau, J=0\right) u_{\tau^{\prime}} v_{\tau^{\prime}}
$$

Diagonalization:

$$
\begin{aligned}
\left(\begin{array}{cc}
e_{\tau} & \Delta_{\tau} \\
\Delta_{\tau} & -e_{\tau}
\end{array}\right) & =\left(\begin{array}{cc}
u_{\tau} & -v_{\tau} \\
v_{\tau} & u_{\tau}
\end{array}\right)\left(\begin{array}{cc}
E_{\tau} & 0 \\
0 & -E_{\tau}
\end{array}\right)\left(\begin{array}{cc}
u_{\tau} & v_{\tau} \\
-v_{\tau} & u_{\tau}
\end{array}\right) E_{\tau}=\sqrt{e_{\tau}^{2}+\Delta_{\tau}^{2}} \\
& =\left(\begin{array}{cc}
E_{\tau}\left(u_{\tau}^{2}-v_{\tau}^{2}\right) & 2 u_{\tau} v_{\tau} E_{\tau} \\
2 u_{\tau} v_{\tau} E_{\tau} & -E_{\tau}\left(u_{\tau}^{2}-v_{\tau}^{2}\right)
\end{array}\right) \quad u_{\tau}^{2}=\frac{1}{2}\left(1+\frac{e_{\tau}}{\sqrt{e_{\tau}^{2}+\Delta_{\tau}^{2}}}\right)
\end{aligned}
$$

## Experimental pairing gaps:

$$
\begin{aligned}
& \text { Experimental pairing gaps: } \\
& M(Z, N)_{\text {odd-proton }}=\mathcal{M}(Z, N)+\Delta_{p}^{e m p .} \quad v_{\tau}^{2}=\frac{1}{2}\left(1-\frac{e_{\tau}}{\sqrt{e_{\tau}^{2}+\Delta_{\tau}^{2}}}\right) \\
& M(Z, N)_{\text {odd-neutron }}=\mathcal{M}(Z, N)+\Delta_{n}^{e m p .} \text { Mass formula: } \\
& \Delta_{p}^{e m p .}=-\frac{1}{8}[M(Z+2, N)-4 M(Z+1, N)+6 M(Z, N)-4 M(Z-1, N)+M(Z-2, N)], \\
& \Delta_{n}^{e m p .}=-\frac{1}{8}[M(Z, N+2)-4 M(Z, N+1)+6 M(Z, N)-4 M(Z, N-1)+M(Z, N-2)]
\end{aligned}
$$

# Qusiparticle Random Phase Approximation (General formalism) 

## Quasiparticle RPA Models Equation of motion

The correlated ground state: |rpa>

$$
H|r p a\rangle=E_{0}|r p a\rangle
$$

Excited states are constructed on the RPA g.s. by a set of operators:

$$
Q_{\omega}^{\dagger}|r p a\rangle, \quad H|\omega\rangle=E_{\omega}|\omega\rangle
$$

$$
\begin{aligned}
{\left[H, Q_{\omega}^{\dagger}\right]|r p a\rangle } & =H Q_{\omega}^{\dagger}|r p a\rangle-Q_{\omega}^{\dagger} H|r p a\rangle \\
& =H|\omega\rangle-Q_{\omega}^{\dagger} E_{0}|r p a\rangle \\
& =\left(E_{\omega}-E_{0}\right)|r p a\rangle
\end{aligned}
$$

Equation of motion for operator $\mathbf{Q}^{+}$

$$
\begin{aligned}
{\left[H, Q_{\omega}^{\dagger}\right]|r p a\rangle } & =\omega Q_{\omega}^{\dagger}|r p a\rangle \\
\omega & =E_{\omega}-E_{0}
\end{aligned}
$$

The RPA ground state is the vacuum for the set of operators

$$
Q_{\omega}|r p a\rangle=0
$$

## Equation of motion

Instead of operator equation,
we consider expectation value $\langle r p a| \delta Q\left[H, Q_{\omega}^{\dagger}\right]|r p a\rangle=\omega\langle r p a| \delta Q Q_{\omega}^{\dagger}|r p a\rangle$ equation

Rewritten with commutators

$$
\begin{aligned}
\delta Q\left[H, Q_{\omega}^{\dagger}\right] & =\left[\delta Q,\left[H, Q_{\omega}^{\dagger}\right]\right]+\left[H, Q_{\omega}^{\dagger}\right] \delta Q \\
\delta Q Q_{\omega}^{\dagger} & =\left[\delta Q, Q_{\omega}^{\dagger}\right]+Q_{\omega}^{\dagger} \delta Q
\end{aligned}
$$

Vanishing of matrix elements

$$
\langle 0| Q_{\omega}^{\dagger}=0 \Rightarrow\langle r p a| Q_{\omega}^{\dagger} \delta Q|r p a\rangle=0
$$

$$
\begin{aligned}
\langle r p a|\left[H, Q_{\omega}^{\dagger}\right] & =\langle r p a| H Q_{\omega}^{\dagger}-\langle r p a| Q_{\omega}^{\dagger} H \\
& =\langle r p a| Q_{\omega}^{\dagger}\left(E_{0}-H\right) \\
& =0
\end{aligned}
$$

The equation of motion has been derived without any approximation, from only the eigenvalue equation

$$
\langle r p a|\left[\delta Q,\left[H, Q_{\omega}^{\dagger}\right]\right]|r p a\rangle=\omega\langle r p a|\left[\delta Q, Q_{\omega}^{\dagger}\right]|r p a\rangle
$$

## Assumption on excitation operators

We assume that the excitation operators are expressed by a sum of two-quasiparticle creation and annihilation operators

$$
Q_{\omega, J M}^{\dagger}=\sum_{p n}\left(X_{\omega, J}^{p n} A_{J M}^{\dagger}(p n)+Y_{\omega, J}^{p n} \tilde{A}_{J M}(p n)\right) \quad \begin{gathered}
\text { creates a proton-neutron } \\
\text { quasiparticle pair }
\end{gathered}
$$

## corresponding

 annihilation operator$$
A_{J M}^{\dagger}(p n)=\sum_{m_{p}, m_{n}}\left\langle j_{p} m_{p} j_{n} m_{n} \mid J M\right\rangle a_{p m_{p}}^{\dagger} a_{n m_{n}}^{\dagger}
$$

$$
\tilde{A}_{J M}(p n)=(-1)^{1+J-M} A_{J-M}(p n)
$$

The Hermitian conjugate are

$$
\begin{aligned}
\left(A_{J M}^{\dagger}(p n)\right)^{\dagger} & =A_{J M}(p n)=(-1)^{1+J+M} \tilde{A}_{J-M}(p n) \\
\left(\tilde{A}_{J M}(p n)\right)^{\dagger} & =(-1)^{1+J-M}\left(A_{J-M}(p n)\right)^{\dagger}=(-1)^{1+J-M} A_{J-M}^{\dagger}(p n)
\end{aligned}
$$

$$
\begin{aligned}
\tilde{Q}_{\omega, J M} & =(-1)^{1+J-M}\left(Q_{\omega, J-M}^{\dagger}\right)^{\dagger} \\
& =\sum_{p n}\left(Y_{\omega, J}^{p n} A_{J M}^{\dagger}(p n)+X_{\omega, J}^{p n} \tilde{A}_{J M}(p n)\right)_{\text {ic }}
\end{aligned}
$$

This is a spherical tensor of rank-J and its projection $\mathbf{M}$

## QRPA equations

$$
\langle r p a|\left[\delta Q,\left[H, Q_{\omega}^{\dagger}\right]\right]|r p a\rangle=\omega\langle r p a|\left[\delta Q, Q_{\omega}^{\dagger}\right]|r p a\rangle
$$

Equation of motion is described in a basis of proton-neutron pairs pn Operator between RPA ground state has to be a sclar
substituing $\quad \delta Q=\widetilde{A}_{J-M}\left(p^{\prime} n^{\prime}\right), \quad \delta Q=A_{J-M}^{\dagger}\left(p^{\prime} n^{\prime}\right) \quad$ we get

$$
\begin{aligned}
&\langle r p a|\left[\tilde{A}_{J-M}\left(p^{\prime} n^{\prime}\right),\left[H, Q_{\omega, J M}^{\dagger}\right]\right]|r p a\rangle=\omega\langle r p a|\left[\widetilde{A}_{J-M}\left(p^{\prime} n^{\prime}\right), Q_{\omega, J M}^{\dagger}\right]|r p a\rangle, \\
&\langle r p a|\left[A_{J-M}^{\dagger}\left(p^{\prime} n^{\prime}\right),\left[H, Q_{\omega, J M}^{\dagger}\right]\right]|r p a\rangle=\omega\langle r p a|\left[A_{J-M}^{\dagger}\left(p^{\prime} n^{\prime}\right), Q_{\omega, J M}^{\dagger}\right]|r p a\rangle, \\
& \sum_{p n} X_{\omega, J}^{p n}\langle 0|\left[\widetilde{A}_{J-M}\left(p^{\prime} n^{\prime}\right),\left[H, A_{J M}^{\dagger}(p n)\right]\right]|0\rangle \\
& \quad+\sum_{p n} Y_{\omega, J}^{p n}\langle 0|\left[\widetilde{A}_{J-M}\left(p^{\prime} n^{\prime}\right),\left[H, \widetilde{A}_{J M}(p n)\right]\right]|0\rangle
\end{aligned}
$$

More explicitely

$$
=\omega \sum_{p n} X_{\omega, J}^{p n}\langle 0|\left[\tilde{A}_{J-M}\left(p^{\prime} n^{\prime}\right), A_{J M}^{\dagger}(p n)\right]|0\rangle,
$$

$$
\begin{aligned}
& \sum_{p n} X_{\omega, J}^{p n}\langle 0|\left[A_{J-M}^{\dagger}\left(p^{\prime} n^{\prime}\right),\left[H, A_{J M}^{\dagger}(p n)\right]\right]|0\rangle \\
& \quad+\sum_{p n} Y_{\omega, J}^{p n}\langle 0|\left[A_{J-M}^{\dagger}\left(p^{\prime} n^{\prime}\right),\left[H, \tilde{A}_{J M}(p n)\right]\right]|0\rangle \\
& \quad=\omega \sum_{p n} Y_{\omega, J}^{p n}\langle 0|\left[A_{J-M}^{\dagger}\left(p^{\prime} n^{\prime}\right), \widetilde{A}_{J M}(p n)\right]|0\rangle
\end{aligned}
$$

we take the advantage of relations

$$
\begin{aligned}
{\left[A_{J-M}^{\dagger}\left(p^{\prime} n^{\prime}\right),\left[H, A_{J M}^{\dagger}(p n)\right]\right]^{\dagger} } & =\left[\tilde{A}_{J M}\left(p^{\prime} n^{\prime}\right),\left[H, \tilde{A}_{J-M}(p n)\right]\right] \\
{\left[A_{J-M}^{\dagger}\left(p^{\prime} n^{\prime}\right),\left[H, \widetilde{A}_{J M}(p n)\right]\right]^{\dagger} } & =\left[\tilde{A}_{J M}\left(p^{\prime} n^{\prime}\right),\left[H, A_{J-M}^{\dagger}(p n)\right]\right] \\
{\left[A_{J-M}^{\dagger}\left(p^{\prime} n^{\prime}\right), \widetilde{A}_{J M}(p n)\right]^{\dagger} } & =-\left[\widetilde{A}_{J M}\left(p^{\prime} n^{\prime}\right), A_{J-M}^{\dagger}(p n)\right]
\end{aligned}
$$

QRPA equations in matrix form

$$
\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\omega\left[\begin{array}{cc}
C & 0 \\
0 & -C
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]
$$

Elements of submatrices $A, B$ and $C$ are

$$
\begin{aligned}
A_{p^{\prime} n^{\prime}, p n} & =\langle r p a|\left[A_{J M}\left(p^{\prime} n^{\prime}\right),\left[H, A_{J M}^{\dagger}(p n)\right]\right]|r p a\rangle \\
B_{p^{\prime} n^{\prime}, p n} & =\langle r p a|\left[A_{J M}\left(p^{\prime} n^{\prime}\right),\left[H, \widetilde{A}_{J M}(p n)\right]\right]|r p a\rangle \\
C_{p^{\prime} n^{\prime}, p n} & =\langle r p a|\left[A_{J M}\left(p^{\prime} n^{\prime}\right), A_{J M}^{\dagger}(p n)\right]|r p a\rangle
\end{aligned}
$$

Rows of the matrices $X$ and $Y$ are labeled by pn-pairs, while columns of them by eigenvalues $\omega$. That is $X_{i j}$ represents the $i$-th component of the forward-going amplitude of $j$-th eigenstate. Excitations energies $\omega$ and amplitudes are obtained by solving QRPA equations. When number of pn-pairs is $\mathbf{n}$ in the model space for a given angular momentum $J$, submatrices $A, B$ and $C$ are nxn matrices

## Qrthonormality of excited states

The excited states, which are eigenstates of Hamiltonian H, are orthogonal
To one another, and are normalized to unity:

$$
\begin{aligned}
\left\langle\omega, J M \mid \omega^{\prime}, J^{\prime} M^{\prime}\right\rangle & =\delta_{\omega, \omega^{\prime}} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \\
& =\delta_{J, J^{\prime}} \delta_{M, M^{\prime}}\langle r p a|\left[Q_{\omega, J M}, Q_{\omega^{\prime}, J M}^{\dagger}\right]|r p a\rangle
\end{aligned}
$$

## With explicit form

$$
\begin{aligned}
Q_{\omega, J M} & =\sum_{p n}(-1)^{1+J+M}\left(X_{\omega, J}^{p n} \widetilde{B}_{J-M}(p n)+Y_{\omega, J}^{p n} B_{J-M}^{\dagger}(p n)\right) \\
Q_{\omega^{\prime}, J M}^{\dagger} & =\sum_{p^{\prime} n^{\prime}}\left(X_{\omega^{\prime}, J}^{p^{\prime} n^{\prime}} B_{J M}^{\dagger}\left(p^{\prime} n^{\prime}\right)+Y_{\omega^{\prime}, J}^{p^{\prime} n^{\prime}} \widetilde{B}_{J M}(p n)\right)
\end{aligned}
$$

the commutator is evaluated as

$$
\begin{aligned}
& \langle r p a|\left[Q_{\omega, J M}, Q_{\omega^{\prime}, J M}^{\dagger}\right]|r p a\rangle \\
& =\sum_{p n} \sum_{p^{\prime} n^{\prime}}(-1)^{1+J+M} X_{\omega, J}^{p n} X_{\omega^{\prime}, J}^{p^{\prime} n^{\prime}}\langle r p a|\left[\widetilde{A}_{J-M}(p n), A_{J M}^{\dagger}\left(p^{\prime} n^{\prime}\right)\right]|r p a\rangle \\
& \quad+\sum_{p n} \sum_{p^{\prime} n^{\prime}}(-1)^{1+J+M} Y_{\omega, J}^{p n} Y_{\omega^{\prime}, J}^{p^{\prime} n^{\prime}}\langle r p a|\left[A_{J-M}^{\dagger}(p n), \widetilde{A}_{J M}\left(p^{\prime} n^{\prime}\right)\right]|r p a\rangle \\
& =\sum_{p n} \sum_{p^{\prime} n^{\prime}} X_{\omega, J}^{p n} X_{\omega^{\prime}, J}^{p^{\prime}, J}\langle r p a|\left[A_{J M}(p n), A_{J M}^{\dagger}\left(p^{\prime} n^{\prime}\right)\right]|r p a\rangle \\
& \quad+\sum_{p n} \sum_{p^{\prime} n^{\prime}} Y_{\omega, J}^{p n} Y_{\omega^{\prime}, J}^{p^{\prime} n^{\prime}}\langle r p a|\left[A_{J-M}^{\dagger}(p n), A_{J-M}\left(p^{\prime} n^{\prime}\right)\right]|r p a\rangle
\end{aligned}
$$

with help of

$$
\begin{aligned}
\langle r p a|\left[A_{J M}(p n), A_{J M}^{\dagger}\left(p^{\prime} n^{\prime}\right)\right]|r p a\rangle & =C_{p n, p^{\prime} n^{\prime}} \\
\langle r p a|\left[B_{J-M}^{\dagger}(p n), B_{J-M}\left(p^{\prime} n^{\prime}\right)\right]|r p a\rangle & =-C_{p n, p^{\prime} n^{\prime}}
\end{aligned}
$$

The orthonormality condition is expressed as

$$
\sum_{p n} \sum_{p^{\prime} n^{\prime}}\left(X_{\omega, J}^{p n} C_{p n, p^{\prime} n^{\prime}} X_{\omega^{\prime}, J}^{p^{\prime} n^{\prime}}-Y_{\omega, J}^{p n} C_{p n, p^{\prime} n^{\prime}} Y_{\omega^{\prime}, J}^{p^{\prime} n^{\prime}}\right)=\delta_{\omega, \omega^{\prime}}
$$

In matrix form

$$
\left[\begin{array}{ll}
X_{\omega}^{T} & Y_{\omega}^{T}
\end{array}\right]\left[\begin{array}{cc}
C & 0 \\
0 & -C
\end{array}\right]\left[\begin{array}{c}
X_{\omega^{\prime}} \\
Y_{\omega^{\prime}}
\end{array}\right]=\delta_{\omega, \omega^{\prime}} I
$$

Eigenstates are thus orthonormalized not by amplitudes themselves, but with overlap matrix $C$

## Overlap matrix

Elements of overlap matrix are defined by expectation values of the commutator

$$
C_{p^{\prime} n^{\prime}, p n}=\langle r p a|\left[A_{J M}\left(p^{\prime} n^{\prime}\right), A_{J M}^{\dagger}(p n)\right]|r p a\rangle
$$

commutator is written as

$$
\begin{aligned}
& {\left[A_{J M}\left(p^{\prime} n^{\prime}\right), A_{J M}^{\dagger}(p n)\right]} \\
& \quad=\sum_{m_{p}^{\prime}, m_{n}^{\prime} m_{p}, m_{n}} \sum_{p}\left\langle j_{p}^{\prime} m_{p}^{\prime} j_{n}^{\prime} m_{n}^{\prime} \mid J M\right\rangle\left\langle j_{p} m_{p} j_{n} m_{n} \mid J M\right\rangle\left[a_{j_{n}^{\prime} m_{n}^{\prime}} a_{j_{p}^{\prime} m_{p}^{\prime}}, a_{j_{p} m_{p}}^{\dagger} a_{j_{n} m_{n}}^{\dagger}\right]
\end{aligned}
$$

## The commutator for creation and annihilation operators is

$$
\begin{aligned}
{\left[a_{j_{n}^{\prime} m_{n}^{\prime}} a_{j_{p}^{\prime} m_{p}^{\prime}}, a_{j_{p} m_{p}}^{\dagger} a_{j_{n} m_{n}}^{\dagger}\right] } & =\delta_{j_{p}, j_{p}^{\prime}} \delta_{m_{p}, m_{p}^{\prime}} \delta_{j_{n}, j_{n}^{\prime}} \delta_{m_{n}, m_{n}^{\prime}} \\
& -\delta_{j_{n}, j_{n}^{\prime}} \delta_{m_{n}, m_{n}^{\prime}} a_{j_{p} m_{p}}^{\dagger} a_{j_{p}^{\prime} m_{p}^{\prime}} \\
& -\delta_{j_{p}, j_{p}^{\prime}} \delta_{m_{p}, m_{p}^{\prime}} a_{j_{n} m_{n}}^{\dagger} a_{j_{n}^{\prime} m_{n}^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \quad a_{j_{p} m_{p}}^{\dagger} a_{j_{p}^{\prime} m_{p}^{\prime}}=\sum_{k q}\left\langle j_{p} m_{p} j_{p}^{\prime}-m_{p}^{\prime} \mid k q\right\rangle(-1)^{j_{p}^{\prime}-m_{p}^{\prime}}\left[a_{j_{p}}^{\dagger} \widetilde{a}_{j_{p}^{\prime}}\right]_{q}^{(k)} \\
& \delta_{j_{n}, j_{n}^{\prime}} \sum_{m_{p}, m_{p}^{\prime}, m_{n}}\left\langle j_{p}^{\prime} m_{p}^{\prime} j_{n} m_{n} \mid J M\right\rangle\left\langle j_{p} m_{p} j_{n} m_{n} \mid J M\right\rangle\langle r p a| a_{j_{p} m_{p}}^{\dagger} a_{j_{p}^{\prime} m_{p}^{\prime}}|r p a\rangle \\
& = \\
& \delta_{j_{p}, j_{p}^{\prime}} \delta_{j_{n}, j_{n}^{\prime}} \sum_{m_{p}, m_{n}}\left\langle j_{p} m_{p} j_{n} m_{n} \mid J M\right\rangle\left\langle j_{p} m_{p} j_{n} m_{n} \mid J M\right\rangle \\
& \quad \times\left\langle j_{p} m_{p} j_{p}-m_{p} \mid 00\right\rangle(-1)^{j_{p}-m_{p}}\langle r p a|\left[a_{j_{p}}^{\dagger} \widetilde{a}_{j_{p}}{ }_{0}^{(0)}|r p a\rangle\right. \\
& = \\
& =\delta_{j_{p}, j_{p}^{\prime}} \delta_{j_{n}, j_{n}^{\prime}} \sum_{m_{p}, m_{n}}\left\langle j_{p} m_{p} j_{n} m_{n} \mid J M\right\rangle^{2} \frac{1}{\sqrt{2 j_{p}+1}}\langle r p a|\left[a_{j_{p}}^{\dagger} \widetilde{a}_{j_{p}}\right]_{0}^{(0)}|r p a\rangle \\
& = \\
& \delta_{j_{p}, j_{p}^{\prime}} \delta_{j_{n}, j_{n}^{\prime}} \frac{1}{2 j_{p}+1}\langle r p a| \widehat{n}_{j_{p}}|r p a\rangle .
\end{aligned}
$$

$$
\widehat{n}_{j_{p}}=\sum_{m} a_{j_{p} m_{p}}^{\dagger} a_{j_{p} m_{p}} \quad \text { is number operator for the }
$$

$$
\text { quasiparticle } \mathbf{j}_{\mathbf{p}} \text { orbit }
$$

Matrix elements of the overlap matrix are

$$
C_{p^{\prime} n^{\prime}, p n}=\delta_{p^{\prime} p} \delta_{n^{\prime} n}\left(1-\rho_{p}-\rho_{n}\right)
$$

$$
\rho_{j}=\frac{1}{2 j+1}\langle r p a| \widehat{n}_{j}|r p a\rangle
$$

$\rho_{j}$ is the occupation probability of the quasiparticle j-orbit

## Hamiltonian in

 particle representation
## Quasiparticle Hamiltonian

$$
\begin{align*}
& H^{\prime}=\sum_{\tau m_{\tau}} e_{\tau} c_{\tau m_{\tau}}^{\dagger} c_{\tau m_{\tau}}-\lambda_{p} \hat{N}_{p}-\lambda_{n} \hat{N}_{n} \\
& +\frac{1}{4} \sum_{p m_{p} n m_{n} n^{\prime} m_{n^{\prime}} p^{\prime} m_{p^{\prime}}}<p m_{p} n m_{n}\left|V^{r e s}\right| p^{\prime} m_{p^{\prime}} n^{\prime} m_{n^{\prime}}>c_{p m_{p}}^{\dagger} c_{n m_{n}}^{\dagger} c_{n^{\prime} m_{n^{\prime}}} c_{p^{\prime} m_{p^{\prime}}} \\
& \underset{\text { BCS }}{\text { transformation }}\binom{a_{\tau m_{\tau}}^{\dagger}}{\tilde{a}_{\tau m_{\tau}}}=\left(\begin{array}{cc}
u_{\tau} & -v_{\tau} \\
v_{\tau} & u_{\tau}
\end{array}\right)\binom{c_{\tau m_{\tau}}^{\dagger}}{\tilde{c}_{\tau m_{\tau}}} \\
& N\left(c_{p}^{\dagger} c_{n}^{\dagger} c_{n^{\prime}} c_{p^{\prime}}\right)= \\
& +u_{p} u_{n} v_{n^{\prime}} v_{p^{\prime}} a_{p}^{\dagger} a_{n}^{\dagger} a_{n^{\prime}}^{\dagger} a_{p^{\prime}}^{\dagger}+v_{p} v_{n} u_{n^{\prime}} u_{p^{\prime}} a_{p} a_{n} a_{n^{\prime}} a_{p^{\prime}}  \tag{40,04}\\
& -u_{p} u_{n} u_{n^{\prime}} v_{p^{\prime}} a_{p}^{\dagger} a_{n}^{\dagger} \tilde{a}_{p^{\prime}}^{\dagger} a_{n^{\prime}}+v_{p} v_{n} u_{n^{\prime}} u_{p^{\prime}} a_{p}^{\dagger} \tilde{a}_{n} a_{n^{\prime}} a_{p^{\prime}}  \tag{31,13}\\
& \text { Normal product } \\
& +u_{p} u_{n} v_{n^{\prime}} u_{p^{\prime}} a_{p}^{\dagger} a_{n}^{\dagger} \tilde{a}_{n^{\prime}}^{\dagger} a_{p^{\prime}}-v_{p} u_{n} u_{n^{\prime}} u_{p^{\prime}} a_{n}^{\dagger} \tilde{a}_{p} a_{n^{\prime}} a_{p^{\prime}}  \tag{31,13}\\
& +u_{p} v_{n} v_{n^{\prime}} v_{p^{\prime}} a_{p}^{\dagger} \tilde{a}_{n^{\prime}}^{\dagger} \tilde{a}_{p^{\prime}}^{\dagger} \tilde{a}_{n}-v_{p} v_{n} u_{n^{\prime}} v_{p^{\prime}} \tilde{a}_{p^{\prime}}^{\dagger} \tilde{a}_{p} \tilde{a}_{n} a_{n^{\prime}}  \tag{31,13}\\
& -v_{p} u_{n} v_{n^{\prime}} v_{p^{\prime}} a_{n}^{\dagger} \tilde{a}_{n^{\prime}}^{\dagger} \tilde{a}_{p^{\prime}}^{\dagger} \tilde{a}_{p}+v_{p} v_{n} v_{n^{\prime}} u_{p^{\prime}} \tilde{a}_{n^{\prime}}^{\dagger} \tilde{a}_{p} \tilde{a}_{n} a_{p^{\prime}}  \tag{31,13}\\
& +u_{p} u_{n} u_{n^{\prime}} u_{p^{\prime}} a_{p}^{\dagger} a_{n}^{\dagger} a_{n^{\prime}} a_{p^{\prime}}+v_{p} v_{n} v_{n^{\prime}} v_{p^{\prime}} \tilde{a}_{n^{\prime}}^{\dagger} \tilde{a}_{n}^{\dagger} \tilde{a}_{p} \tilde{a}_{n}  \tag{22}\\
& +u_{p} v_{n} u_{n^{\prime}} v_{p^{\prime}} a_{p}^{\dagger} \tilde{a}_{p^{\prime}}^{\dagger} \tilde{a}_{n} a_{n^{\prime}}+v_{p} u_{n} v_{n^{\prime}} u_{p^{\prime}} a_{n}^{\dagger} \tilde{a}_{n^{\prime}}^{\dagger} \tilde{a}_{p} a_{p^{\prime}}  \tag{22}\\
& -u_{p} v_{n} v_{n^{\prime}} u_{p^{\prime}} a_{p}^{\dagger} \tilde{a}_{n^{\prime}}^{\dagger} \tilde{a}_{n} a_{p^{\prime}}-v_{p} u_{n} u_{n^{\prime}} v_{p^{\prime}} a_{n}^{\dagger} \tilde{a}_{p^{\prime}}^{\dagger} \tilde{a}_{p} a_{n^{\prime}} \tag{22}
\end{align*}
$$

## Hamiltonian in

$$
H_{q . p .}^{\prime}=\sum_{\tau m_{\tau}} E_{\tau} a_{\tau m_{\tau}}^{\dagger} a_{\tau m_{\tau}}+H_{22}+H_{40}+H_{04}+H_{31}+H_{13}
$$

## quasi-particle

 representation$$
\begin{aligned}
H_{22} & =-\frac{1}{2} \sum_{p n, p^{\prime} n^{\prime}, J M}\left(G_{p n, p^{\prime} n^{\prime}, J}\left(u_{p} u_{n} u_{p^{\prime}} u_{n^{\prime}}+v_{p^{\prime}} v_{n} v_{p^{\prime}} v_{n^{\prime}}\right)\right. \\
& \left.+4 F_{p n, p^{\prime} n^{\prime}, J} u_{p} v_{n} u_{p^{\prime}} v_{n^{\prime}}\right) A_{p n, J M}^{\dagger} A_{p^{\prime} n^{\prime}, J M}, \\
H_{40} & =\frac{1}{2} \sum_{p n, p^{\prime} n^{\prime}, J M} G_{p n, p^{\prime} n^{\prime}, J} u_{p} u_{n} v_{p^{\prime}} v_{n^{\prime}} A_{p n, J M}^{\dagger} \tilde{A}_{p^{\prime} n^{\prime}, J M}^{\dagger}, \\
H_{31} & =\sum_{p n, p^{\prime} n^{\prime}, J M} G_{p n, p^{\prime} n^{\prime}, J}\left(u_{p} u_{n} u_{p^{\prime}} v_{n^{\prime}}+v_{p^{\prime}} v_{n} v_{p^{\prime}} u_{n^{\prime}}\right) A_{p n, J M}^{\dagger} \tilde{B}_{p^{\prime} n^{\prime}, J M}, \\
H_{04} & =\left(H_{40}\right)^{\dagger}, \quad H_{13}=\left(H_{31}\right)^{\dagger} .
\end{aligned}
$$

$$
A_{p n, J M}^{\dagger}=\left[a_{p}^{\dagger} a_{n}^{\dagger}\right]^{J M}=\sum_{m_{p}, m_{n}} C_{j_{p} m_{p} j_{n} m_{n}}^{J M} a_{p m_{p}}^{\dagger} a_{n m_{n}}^{\dagger},
$$

two-quasiparticle
operators

$$
\begin{aligned}
A_{p n, J M} & =\left(A_{p n, J M}^{\dagger}\right)^{\dagger} \\
\tilde{A}_{p n, J M} & =-\left[\tilde{a}_{p} \tilde{a}_{n}\right]^{J M}=(-1)^{J-M} A_{p n, J-M} \\
& =(-1)^{J-M} \sum_{m_{p}, m_{n}} C_{j_{p} m_{p} j_{n} m_{n}}^{J-M} \alpha_{p m_{p}} \alpha_{n m_{n}}
\end{aligned}
$$

$$
B_{p n, J M}=\left[a_{p}^{\dagger} \tilde{a}_{n}\right]^{J M}
$$

## QRPA matrices

Definition:

Calculated:

$$
\begin{aligned}
\mathcal{A}_{p n, p^{\prime} n^{\prime}, J M}= & \langle\mathrm{rpa}|\left[A_{p n, J M}, H, A_{p^{\prime}, n^{\prime}, J M}^{\dagger}\right]|\mathrm{rpa}\rangle, \\
\mathcal{B}_{p n, p^{\prime} n^{\prime}, J M}= & -\langle\mathrm{rpa}|\left[A_{p n, J M}, H, \tilde{A}_{p^{\prime} n^{\prime}, J M}\right]|\mathrm{rpa}\rangle, \\
\mathcal{C}_{p n, p^{\prime} n^{\prime}, J M}= & \langle\mathrm{rpa}|\left[A_{p n, J M}, A_{p^{\prime} n^{\prime}, J M}^{\dagger}\right]|\mathrm{rpa}\rangle \\
\mathcal{A}_{p n, p^{\prime} n^{\prime}, J}= & \delta_{p p^{\prime}} \delta_{n n^{\prime}}\left(E_{p}+E_{n}\right)\left(1-\rho_{p}-\rho_{n}\right) \\
& -2\left(G_{p n, p^{\prime} n^{\prime}, J}\left(u_{p} u_{n} u_{p^{\prime}} u_{n^{\prime}}+v_{p} v_{n} v_{p^{\prime}} v_{n^{\prime}}\right)\right. \\
& \left.+F_{p n, p^{\prime} n^{\prime}, J}\left(u_{p} v_{n} u_{p^{\prime}} v_{n^{\prime}}+v_{p} u_{n} v_{p^{\prime}} u_{n^{\prime}}\right)\right) \times \\
& \left(1-\rho_{p}-\rho_{n}\right)\left(1-\rho_{p^{\prime}}-\rho_{n^{\prime}}\right) \\
\mathcal{B}_{p n, p^{\prime} n^{\prime}, J}= & 2\left(G_{p n, p^{\prime} n^{\prime}, J}\left(u_{p} u_{n} v_{p^{\prime}} v_{n^{\prime}}+v_{p} v_{n} u_{p^{\prime}} u_{n^{\prime}}\right)\right. \\
& \left.-F_{p n, p^{\prime} n^{\prime}, J}\left(u_{p} v_{n} v_{p^{\prime}} u_{n^{\prime}}+v_{p} u_{n} u_{p^{\prime}} v_{n^{\prime}}\right)\right) \times \\
& \left(1-\rho_{p}-\rho_{n}\right)\left(1-\rho_{p^{\prime}}-\rho_{n^{\prime}}\right) \\
\mathcal{C}_{p n, p^{\prime} n^{\prime}, J}= & \delta_{p p^{\prime}} \delta_{n n^{\prime}}\left(1-\rho_{p}-\rho_{n}\right)
\end{aligned}
$$

For numerical calculation we need:

Solution of BCS equation: $E_{p}, E_{n}, u_{p}, v_{p}, u_{n}, v_{n}$ G-matrix elements of realistic NN interaction $\rho_{\mathrm{p}}, \rho_{\mathrm{n}}$ not yet determined

# Standard QRPA <br> Renormalized QRPA <br> Selfconsistent Renormalized QRPA 

## Standard QRPA

Quasiboson

$$
\begin{aligned}
{\left[A_{p n, J M}, A_{p^{\prime} n^{\prime}, J M}^{\dagger}\right] } & \approx\langle\mathrm{BCS}|\left[A_{p n, J M}, A_{p^{\prime} n^{\prime}, J M}^{\dagger}\right]|\mathrm{BCS}\rangle \\
& =\delta_{p p^{\prime}} \delta_{n n^{\prime}}
\end{aligned}
$$

QRPA equation: $\quad\left(\begin{array}{cc}A & B \\ B & A\end{array}\right)\binom{X^{m}}{Y^{m}}=\omega_{\mathrm{RPA}}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{X^{m}}{Y^{m}}$

$$
\mathcal{A}_{p n, p^{\prime} n^{\prime}, J}=\delta_{p p^{\prime}} \delta_{n n^{\prime}}\left(E_{p}+E_{n}\right)
$$

$$
-2\left(g_{p p} G_{p n, p^{\prime} n^{\prime}, J}\left(u_{p} u_{n} u_{p^{\prime}} u_{n^{\prime}}+v_{p} v_{n} v_{p^{\prime}} v_{n^{\prime}}\right)\right.
$$

RPA matrices:

$$
\left.+g_{p h} F_{p n, p^{\prime} n^{\prime}, J}\left(u_{p} v_{n} u_{p^{\prime}} v_{n^{\prime}}+v_{p} u_{n} v_{p^{\prime}} u_{n^{\prime}}\right)\right)
$$

$$
\begin{aligned}
\mathcal{B}_{p n, p^{\prime} n^{\prime}, J}=2 & \left(g_{p p} G_{p n, p^{\prime} n^{\prime}, J}\left(u_{p} u_{n} v_{p^{\prime}} v_{n^{\prime}}+v_{p} v_{n} u_{p^{\prime}} u_{n^{\prime}}\right)\right. \\
& \left.-g_{p h} F_{p n, p^{\prime} n^{\prime}, J}\left(u_{p} v_{n} v_{p^{\prime}} u_{n^{\prime}}+v_{p} u_{n} u_{p^{\prime}} v_{n^{\prime}}\right)\right)
\end{aligned}
$$

## $\mathrm{g}_{\mathrm{pp}}$ - renormalization of particle-particle NN interaction $\mathrm{g}_{\mathrm{ph}}$ - renormalization of particle-hole NN interaction

Operator changing neutron to proton:

$$
\hat{\mathcal{O}}_{J M}=\frac{1}{\sqrt{2 J+1}} \sum_{p, n}<p\|\mathcal{O}\| n>C_{p n, J M}
$$

proton particle - neutron hole operator $\left[c_{p}^{\dagger} \tilde{c}_{n}\right]_{J M}=u_{p} v_{n} A_{p n, J M}^{\dagger}+v_{p} u_{n} \tilde{A}_{p n, J M}$
$\quad$ rewritten with quasiparticles

$$
+u_{p} u_{n} B_{p n, J M}^{\dagger}-v_{p} v_{n} \tilde{B}_{p n, J M}
$$

Transition amplitude to excited state

$$
<m, J M\left|\hat{\mathcal{O}}_{J M}\right| r p a>=\frac{1}{2 J+1} \sum_{p, n}<p\|\mathcal{O}\| n><r p a\left|\left[Q_{J M}^{m}, C_{p n, J M}\right]\right| r p a>
$$

One-body density within the QRPA:

$$
<r p a\left|\left[Q_{J M}^{m}, C_{p n, J M}^{\dagger}\right]\right| r p a>=u_{p} v_{n} X_{p n, J}+v_{p} u_{n} Y_{p n, J}
$$

## Diagonalization of the QRPA equation

QRPA equation: $\quad\left[\begin{array}{cc}A & B \\ B & A\end{array}\right]\left[\begin{array}{l}X \\ Y\end{array}\right]=\left[\begin{array}{c}X \\ -Y\end{array}\right] \omega$

$$
\begin{gathered}
A X+B Y=X \omega, \quad(+): \quad(A+B)(X+Y)=(X-Y) \omega \\
B X+A Y=-Y \omega, \quad(-): \quad(A-B)(X-Y)=(X+Y) \omega \\
(A+B)(A-B)(X-Y)=(X-Y) \omega^{2}
\end{gathered}
$$

Cholesky decomposition: $\quad A-B=L L^{T}$
Standard eigenvalue problem:

$$
\begin{gathered}
L^{T}(A+B) L L^{T}(X-Y)=L^{T}(X-Y) \omega^{2} \\
M g=g \omega^{2}
\end{gathered}
$$

QRPA amplitudes

$$
\begin{aligned}
& X=\frac{1}{2}\left(L g \omega^{-1 / 2}+\left(L^{-} 1\right)^{T} g \omega^{1 / 2}\right) \\
& Y=\frac{1}{2}\left(L g \omega^{-1 / 2}-\left(L^{-1}\right)^{T} g \omega^{1 / 2}\right)
\end{aligned}
$$

## Renormalized QRPA

Renormalized QBA: $\quad\left[A_{p n, J M}, A_{p^{\prime} n^{\prime}, J M}^{\dagger}\right] \approx\langle\mathrm{rpa}|\left[A_{p n, J M}, A_{p^{\prime} n^{\prime}, J M}^{\dagger}\right]|\mathrm{rpa}\rangle$

$$
=\delta_{p p^{\prime}} \delta_{n n^{\prime}}\left(1-\rho_{p}-\rho_{n}\right)
$$

$$
=\delta_{p p^{\prime}} \delta_{n n^{\prime}} D_{p n}{ }^{2}
$$

Diagonal elements of the overlap matrix can be used to scale various quantities

$$
D_{p^{\prime} n^{\prime}, p n}=\delta_{p^{\prime} p} \delta_{n^{\prime} n} D_{p n}
$$

$$
D^{2}=C
$$

$$
D_{p n}=\sqrt{1-\rho_{p}-\rho_{n}}
$$

Using the diagonal matrix $D$, the RPA equation can be written as

$$
\begin{aligned}
& {\left[\begin{array}{cc}
D^{-1} & 0 \\
0 & D^{-1}
\end{array}\right]\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]\left[\begin{array}{cc}
D^{-1} & 0 \\
0 & D^{-1}
\end{array}\right]\left[\begin{array}{ll}
D & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right] . } \\
= & \omega\left[\begin{array}{cc}
D^{-1} & 0 \\
0 & D^{-1}
\end{array}\right]\left[\begin{array}{cc}
C & 0 \\
0 & -C
\end{array}\right]\left[\begin{array}{cc}
D^{-1} & 0 \\
0 & D^{-1}
\end{array}\right]\left[\begin{array}{cc}
D & 0 \\
0 & D
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right] .
\end{aligned}
$$

Defining scaled submatrices and scaled amplitudes

$$
\begin{aligned}
& \mathcal{A}=D^{-1} A D^{-1}, \quad \mathcal{B}=D^{-1} B D^{-1} \\
& \mathcal{X}=D X, \quad \mathcal{Y}=D Y
\end{aligned}
$$

The well-known form of RPA matrix equation

$$
\left[\begin{array}{rr}
\mathcal{A} & \mathcal{B} \\
-\mathcal{B} & \mathcal{A}
\end{array}\right]\left[\begin{array}{l}
\mathcal{X} \\
\mathcal{Y}
\end{array}\right]=\omega\left[\begin{array}{l}
\mathcal{X} \\
\mathcal{Y}
\end{array}\right]
$$

The excitation operators and their hermitian conjugates:

$$
\begin{aligned}
& Q_{\omega, J M}^{\dagger}=\sum_{p n} \frac{1}{D_{p n}}\left(\mathcal{X}_{\omega, J}^{p n} A_{J M}^{\dagger}(p n)+\mathcal{Y}_{\omega, J}^{p n} \tilde{A}_{J M}(p n)\right), \\
& \widetilde{Q}_{\omega, J M}=\sum_{p n} \frac{1}{D_{p n}}\left(\mathcal{Y}_{\omega, J}^{p n} A_{J M}^{\dagger}(p n)+\mathcal{X}_{\omega, J}^{p n} \tilde{A}_{J M}(p n)\right)
\end{aligned}
$$

Inverse
relations:

$$
\begin{aligned}
& A_{J M}^{\dagger}(p n)=\sum_{\omega} D_{p n}\left(\mathcal{X}_{\omega, J}^{p n} Q_{\omega, J}^{\dagger}-\mathcal{Y}_{\omega, J}^{p n} \tilde{Q}_{\omega, J}\right) \\
& \tilde{A}_{J M}(p n)=\sum_{\omega} D_{p n}\left(\mathcal{X}_{\omega, J}^{p n} \widetilde{Q}_{\omega, J}-\mathcal{Y}_{\omega, J}^{p n} Q_{\omega, J}^{\dagger}\right)
\end{aligned}
$$

Gamow-Teller transition amplitudes written with scaled amplitudes and scaling factors:

$$
\begin{aligned}
\left\langle\omega\left\|t_{-} \boldsymbol{\sigma}\right\|-\right\rangle & =\sum_{p n}\left\langle p\left\|t_{-} \boldsymbol{\sigma}\right\| n\right\rangle D_{p n}\left(u_{p} v_{n} \mathcal{X}_{J}^{\omega}(p n)+v_{p} u_{n} \mathcal{Y}_{J}^{\omega}(p n)\right) \\
{ }^{6 / 25}\left\langle\omega\left\|t_{+} \boldsymbol{\sigma}\right\|-\right\rangle & =\sum_{p n}\left\langle n\left\|t_{+} \boldsymbol{\sigma}\right\| p\right\rangle D_{p n}\left(v_{p} u_{n} \mathcal{X}_{J}^{\omega}(p n)+u_{p} v_{n} \mathcal{Y}_{J}^{\omega}(p n)\right)
\end{aligned}
$$

## QRPA ground state wave function

The RPA g.s. wave function is connected by a canonical transformation to quasiparticle ground state
$|r p a>=U| B C S>$

$$
\begin{gathered}
U=N e^{S}, \quad S=\frac{1}{2} \sum_{J M, p^{\prime} n^{\prime} p n} Z_{p^{\prime} n^{\prime}, p n}^{J}(-1)^{J-M} A_{J M}^{\dagger}\left(p^{\prime} n^{\prime}\right) A_{J-M}^{\dagger}(p n) \\
Z_{p^{\prime} n^{\prime}, p n}^{J}=Z_{p n, p^{\prime} n^{\prime}}^{J}
\end{gathered}
$$

Coefficients Z are evaluated by using the fact that the ground state is the vaccum for excitations operators

$$
\begin{array}{r}
Q_{\omega}|r p a\rangle=0 \quad \sum_{p n}\left(Y_{\omega, J}^{p n} A_{J M}^{\dagger}(p n)+X_{\omega, J}^{p n} U^{-1} \tilde{A}_{J M}(p n) U\right)|B C S\rangle=0 \\
\mathrm{e}^{-A} B \mathrm{e}^{A}=B-[A, B]+\frac{1}{2}[A,[A, B]]-\cdots \\
6 / 25 / 2015 \\
Y=Z X \\
Z=D^{-1} \mathcal{Y} \mathcal{X}^{-1} D
\end{array}
$$

## Occupation probabilities of quasiparticle states

Occupation probability (matrix element of number op.)

$$
\begin{aligned}
\rho_{p}=\langle r p a| \hat{n}_{p}|r p a\rangle & =N\langle r p a| \hat{n}_{p} \mathrm{e}^{S}|B C S\rangle \\
& =N\langle r p a|\left[\hat{n}_{p}, \mathrm{e}^{S}\right]|B C S\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{e}^{S} \hat{n}_{p} \mathrm{e}^{-S}=\hat{n}_{p}+\left[S, \hat{n}_{p}\right] \\
& \mathrm{e}^{S} \hat{n}_{p}=\hat{n}_{p} \mathrm{e}^{S}+\left[S, \hat{n}_{p}\right] \mathrm{e}^{S} \\
& {\left[\hat{n}_{p}, \mathrm{e}^{S}\right] }=\left[\hat{n}_{p}, S\right] \mathrm{e}^{S} \\
&\langle r p a| \hat{n}_{p}|r p a\rangle=\langle r p a|\left[\hat{n}_{p}, S\right]|r p a\rangle \\
& {\left[\hat{n}_{p}, S\right]=\sum_{J M, p^{\prime} n^{\prime} n}(-1)^{J-M} Z_{p n, p^{\prime} n^{\prime}}^{J} A_{J M}^{\dagger}(p n) A_{J-M}^{\dagger}\left(p^{\prime} n^{\prime}\right) }
\end{aligned}
$$

## Occupation probabilities

of proton and neutron quasiparticle orbits

$$
\rho_{p}=\sum_{J} \frac{2 J+1}{2 j_{p}+1} \sum_{\omega, n}\left(D_{p n} \mathcal{Y}_{\omega, J}^{p n}\right)^{2}, \quad \rho_{n}=\sum_{J} \frac{2 J+1}{2 j_{n}+1} \sum_{\omega, p}\left(D_{p n} \mathcal{Y}_{\omega, J}^{p n}\right)^{2}
$$

## QRPA-like aproaches

## (QRPA, RQRPA, SRQRPA)

Particle number condition
i) Uncorrelated BCS ground state

$$
\mathrm{Z}=\langle\mathrm{BCS}| \mathrm{Z} \mid \mathrm{BCS}>
$$

N=<BCS|N|BCS>
QRPA, RQRPA
ii) Correlated RPA ground state

Z $=$ <RPA|Z|RPA $>$
$\mathrm{N}=<\mathrm{BCS}|\mathrm{N}| \mathrm{BCS}>$ SRQRPA

Complex numerical procedure BCS and QRPA equations are coupled

Pauli exclusion principle
i) violated (QBA)
$\left[\mathrm{A}, \mathrm{A}^{+}\right]=<\mathrm{BCS}\left|\left[\mathrm{A}, \mathrm{A}^{+}\right]\right| \mathrm{BCS}>$
QRPA
ii) Partially restored (RQBA)

$$
\left[\mathbf{A}, \mathbf{A}^{+}\right]=<\mathbf{R P A}\left|\left[\mathbf{A}, \mathbf{A}^{+}\right]\right| \mathbf{R P A}>
$$

RQRPA, SRQRPA

## Overlap factor - Two QRPA diagonalizations

$$
\mathcal{O}_{m_{f} m_{i}}(J M)=<J M, m_{f} \mid J M, m_{i}>
$$

Two sets of states

$$
\begin{aligned}
& \left|J M, m_{i}>=Q_{m_{i}}^{\dagger}(J M)\right| R P A>_{i} \quad \text { initial } \\
& \left|J M, m_{f}>=Q_{m_{f}}^{\dagger}(J M)\right| R P A>_{f} \quad \text { final } \\
& \text { Phonon operators } \\
& Q_{m_{i}}^{\dagger}(J M)=\sum_{p n}\left[X_{(p n) J}^{m_{i}} A^{\dagger}(p n J M)-Y_{(p n) J}^{m_{i}} \tilde{A}(p n J M)\right] \\
& Q_{m_{f}}^{\dagger}(J M)=\sum_{p n}\left[X_{(p n) J}^{m_{f}} B^{\dagger}(p n J M)-Y_{(p n) J}^{m_{f}} \tilde{B}(p n J M)\right] \\
& \binom{a_{p m_{\tau}}^{\dagger}}{a_{\overrightarrow{p m m_{\tau}}}}=\left(\begin{array}{cc}
\tilde{u}_{\tau} & \widetilde{v}_{\tau} \\
-\widetilde{v}_{\tau} & \widetilde{u}_{\tau}
\end{array}\right)\binom{b_{p m_{\tau}}^{\dagger}}{b_{\overrightarrow{p m_{\tau}}}}, \quad\binom{b_{p m_{\tau}}^{\dagger}}{b_{\widetilde{p m_{\tau}}}}=\left(\begin{array}{cc}
\tilde{u}_{\tau} & -\widetilde{v}_{\tau} \\
\widetilde{v}_{\tau} & \widetilde{u}_{\tau}
\end{array}\right)\binom{a_{p m_{\tau}}^{\dagger}}{a_{\overrightarrow{p m_{\tau}}}}
\end{aligned}
$$

Unitary transformation $\quad \tilde{u}_{\tau}=u^{i}{ }_{\tau} u^{f}{ }_{\tau}+v_{\tau}^{i} v^{f}{ }_{\tau} \quad \tilde{v}_{\tau}=u^{i}{ }_{\tau} v^{f}{ }_{\tau}-v^{i}{ }_{\tau} u^{f}{ }_{\tau}$, between quasiparticles

$$
\tilde{u}_{\tau}^{2}+\tilde{v}_{\tau}^{2}=1
$$

## By neglecting scattering terms

$$
\begin{aligned}
Q_{m_{i}}^{\dagger}(J M) & =\sum_{m_{f}}\left[a_{m_{i} m_{f}} Q_{m_{f}}^{\dagger}(J M)+b_{m_{i} m_{f}} \widetilde{Q}_{m_{f}}(J M)\right] \\
Q_{m_{f}}^{\dagger}(J M) & =\sum_{m_{i}}\left[a_{m_{f} m_{i}} Q_{m_{i}}^{\dagger}(J M)+b_{m_{f} m_{i}} \widetilde{Q}_{m_{i}}(J M)\right]
\end{aligned}
$$

With help of above expresion

$$
\begin{aligned}
<J M, m_{f} \mid J M, m_{i}>= & f<R P A\left|Q_{m_{f} f}(J M) Q_{m_{i}}^{\dagger}(J M)\right| R P A>_{i} \\
= & \sum_{m_{f}^{\prime} f}\left[a_{m_{i} m_{f}^{\prime} f} \delta_{m_{i} m_{f}^{\prime} f}<R P A \mid R P A>_{i}\right. \\
& \left.+b_{m_{i} m^{\prime} f f}<R P A\left|Q_{m_{f}}(J M) \tilde{Q}_{m_{f} f}(J M)\right| R P A>_{i}\right]
\end{aligned}
$$

## Frequently considered overlap factor of two sets of states

$$
\begin{aligned}
<J M, m_{f} \mid J M, m_{i}> & \approx a_{m_{i} m_{f}} \\
& \approx \sum_{p n}\left[X_{(p n) J}^{m_{i}} X_{(p n) J}^{m_{f}}-Y_{(p n) J}^{m_{i}} Y_{(p n) J}^{m_{f}}\right]
\end{aligned}
$$

second term neglected

$$
<J M, m_{f}\left|J M, m_{i}>=\left[X_{(p n) J}^{m_{i}} X_{(p n) J}^{m_{f}}-Y_{(p n) J}^{m_{i}} Y_{(p n) J}^{m_{f}}\right] \tilde{u}_{p} \tilde{u}_{n f}<B C S\right| B C S>_{i}
$$

## BCS overlap of intial and final states

$$
\begin{aligned}
{ }_{f}<R P A \mid R P A>_{i} & \approx{ }_{f}<B C S \mid B C S>_{i} \\
& =\Pi_{p}\left(u^{f}{ }_{p} u^{i}{ }_{p}+v^{f}{ }_{p} v^{i}{ }_{p}\right) \Pi_{n}\left(u^{f}{ }_{n} u^{i}{ }_{n}+v^{f}{ }_{n} v^{i}{ }_{n}\right)
\end{aligned}
$$

For spherical nuclei BCS overlap about 0.8
For deformed nuclei might be smaller
=> Can not be neglected!

## Instead of Conclusions



> We are at the beginning of the Road...


The future of neutrino physics is bright.

## The World Neutrino Experimental Program

(4) Parameter Measurement
$>\theta_{23}$ Octant ( $>,<45^{\circ}$ )
$>$ Mass hierarchy
$>$ Mass scale
$>$ CP violation $\delta$
$>$ Dirac or Majorana?
$>$ More accuracy for $\theta_{12}$, $\theta_{23}, \theta_{13}, \Delta \mathbf{m}_{32}, \Delta \mathbf{m}^{2}{ }_{21}$

Questions with answers
$\stackrel{\leftrightarrow}{4}$ Paradigm testing
$>$ Sterile neutrinos?
$>$ Non standard Interactions?
$>$ Lorentz violation?
CPT violation?
$>$ Non-Unitarity of PMNS matrix?

Questions which might or might not have answers

> Like most people, physicists enjoy a good mystery.

When you start investigating a mystery you rarely know where it is going


Mathematics is Egyptian


Neutrino physics is Babylonian

## The truth is covered in $v$-experiments.

Thanks to neutrinos we understand Sun, Supernova, Earth (nuclear reactions)

