Laboratori Nazionali del Gran Sasso Thursday 25, 2015

I. Massive Neutrinos in Nuclear Processes

Fedor Šimkovic

OUTLINE

- Introduction
- Neutrino mass and single β-decay
- Effective Majorana neutrino mass in vacuum and nuclear matter
- 0vββ-decay mechanisms
- distinguishing 0νββ-decay mechanisms
- OvECEC-decay
- Partly bosonic neutrino
- Conclusion

S.M. Bilenky, R. Dvornický (JINR Dubna),
Amand Faesler, V. Rodin, Th. Gutsche,
P. Vogel (Caltech), S. Kovalenko (Valparaiso U.),
M. Krivoruchenko, S. Barabash (ITEP Moscow),
E. Moya de Guerra, P. Sarrigurren, O. Moreno (Madrid U.),
J.D. Vergados (U. Ioannina), R. Dvornický, R. Hodák (Comenius U.),
J. Engel (North Caroline U.), S. Petcov (SISSA Trieste),
A. Smirnov (ICTP Trieste), A. Dolgov (Bologna U.)...

After 59 years we know

3 families of light (V-A) neutrinos: ν_e, ν_µ, ν_τ
ν are massive: we know mass squared differences
relation between flavor states and mass states (neutrino mixing)

No answer yet

Are v Dirac or Majorana?
Is there a CP violation

- in v sector?
- Are neutrinos stable?
- What is the magnetic moment of v?
- Sterile neutrinos?
- Statistical properties of v? Fermionic or partly bosonic?

Currently main issue

Nature, Mass hierarchy, CP-properties, sterile v

The observation of neutrino oscillations has opened a new excited era in neutrino physics and represents a big step forward in our knowledge of neutrino properties Why is neutrino mass so small? Need right-handed neutrinos to generate neutrino mass

$$V_{MNS} \sim \begin{pmatrix} 0.8 & 0.5 & 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} \qquad V_{CKM} \sim \begin{pmatrix} 1 & 0.2 & 0.001 \\ 0.2 & 1 & 0.01 \\ 0.001 & 0.01 & 1 \end{pmatrix}$$

0.01

FEDMIONO	matter	constitue	ents
FERMIONS	spin =	1/2, 3/2,	5/2, .

Lep	tons spin =1/		Quark	S spin	=1/2	
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge
𝒫 lightest neutrino*	(0-0.13)×10 ⁻⁹	0	(up up	0.002	2/3
e electron	0.000511	-1		d) down	0.005	-1/3
\mathcal{V}_{M} middle neutrino*	(0.009-0.13)×10 ⁻⁹	0		charm	1.3	2/3
µ muon	0.106	-1		S strange	0.1	-1/3
\mathcal{V}_{H} heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0		top	173	2/3
tau	1.777	-1		bottom	4.2	-1/3

ET EMENTADV		Stand	ard M	odel	Lep	ton	Un	ive	rsa	lity
PARTICLES	Parti	cle	Symbol	Anti - p.	mas	s	L_e	L_{μ}	L_{τ}	life-time
	-				[MeV]					[s]
	electron		e^-	e^+	0.511		1	0	0	stable
	el.neutrino		ν_e	$\overline{\nu}_e$	$< 2.2 \ 1$	$< 2.2 \ 10^{-6}$		0	0	stable
	muon	,	μ^-	μ^+	105.	6	0	1	0	$2.2 \ 10^{-6}$
θ μ τ Μ ο	muon	neutr.	$ u_{\mu}$	$\overline{ u}_{\mu}$	< 0.1	19	0	1	0	stable
I III IIII Three Generations of Matter	tau		τ^{-}	τ^+	1777	7.	0	0	1	$2.9 \ 10^{-13}$
	tau n	eutrino	$ u_{ au}$	$\overline{ u}_{ au}$	< 18	.2	0	0	1	stable
Lepton Family	I	Ν	EW PI	IVSICS		r	Fota	l Le	pto	n
Number Violati	on	massi	ve neutr	inos SUS		Nu	mbe	er Vi	iolat	tion
_					7 1 • • •					7 7
$ \nu_{e,\mu\tau} \leftrightarrow \nu_{e,\mu\tau}, \nu_{e,\mu\tau} \leftarrow $	$\nu_{e,\mu\tau}$	observ	ed	$\nu_{e,\mu\tau} \leftrightarrow \nu$	'e,μτ			1	not o	bserved
$\mu^+ ightarrow e^+ + \gamma$		$R \leq 1$	2×10^{-11}	$K^+ \to \pi^-$	$^{-} + e^{+} +$	μ^+			$R \leq 5$	5×10^{-10}
$\mu^+ \rightarrow e^+ + e^- + e^+$	$\mu^+ \rightarrow e^+ + e^- + e^+ \qquad \qquad R \le 1$			$\tau^- \to \pi^-$	$+\pi^{+}+$	e^+			$R \leq 1$	1.9×10^{-6}
$K^+ \to \pi^+ + e^- + \mu^+$		$R \leq 4$	$.7 \times 10^{-12}$	$W^- + W$	$ \rightarrow e^{-} $	$+e^{-}$				
$\tau^- \to e^- + \mu^+ + \mu^-$		$R \leq 1$	$.8 \times 10^{-6}$	$(A, Z) \rightarrow$	(A, Z +	2) + 6	e ⁻ +	e- '	$T^{0\nu} \geq$	
$Z^0 \to e^{\pm} + \mu^{\mp}$		$R \leq 1$	7×10^{-6}	$\mu_b^- + (A,$	$Z) \to (A$	A, Z -	2) +	e+ .	$R \leq 3$	3.6×10^{-11}
$\mu_b^- + (A, Z) \to (A, Z)$	$+ e^{-}$	$R \leq 1$	2×10^{-11}	$e^- + e^-$ -	$\rightarrow \pi^- + \tau$	τ-			?	
6/25/2015			Fedor	Simkovic						6

The observed small neutrino masses have profound implications for our understanding of the Universe and are now a major focus in astro, particle and nuclear physics and in cosmology.

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$

$$= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$$

- 3 neutrino mixing angles are measured and non-zero
- Large θ_{13} opens door for searching of CP-violation in lepton sector
- Large θ₁₃ gives good chances for measurement of mass hierarchy (MH) and CP violation in neutrino oscillations using present neutrino beams and detectors
- Time to start **MH** and δ measurements

The size of $\theta_{13} \rightarrow$ Future Program of neutrino physics

No ranges for single parameters (all data included):

[F. Capozzi, G.L. Fogli, E. Lisi, D. Montanino, A. Marrone, and A. Palazzo, arXiv:1312.2878]

TABLE I: Results of the global 3ν oscillation analysis, in terms of best-fit values and allowed 1, 2 and 3σ ranges for the 3ν mass-mixing parameters. See also Fig. 3 for a graphical representation of the results. We remind that Δm^2 is defined herein as $m_3^2 - (m_1^2 + m_2^2)/2$, with $+\Delta m^2$ for NH and $-\Delta m^2$ for IH. The CP violating phase is taken in the (cyclic) interval $\delta/\pi \in [0, 2]$. The overall χ^2 difference between IH and NH is insignificant ($\Delta \chi^2_{I-N} = +0.3$).

2 $θ_{23}, θ_{13}, δ$ ange 2	$= \Delta m_{21}^2$ $= as in PDB$ $= [0, 2\pi] (oth)$ $= (\Delta m_{31}^2 + \Delta m)$	ers prefer [-π,+π]) I ² ₃₂)/2	δm^2 Δm^2 $\sin^2 \theta_{12}$ $\sin^2 \theta_{13}$ $\sin^2 \theta_{23}$	efined as 1/6 2.6 % 3.0 % 5.4 % 8.5 % ~ 11 %	6 of 3σ ranges): An indication of in neutring	f CP violati o sector			
2	- Am2		ainties (d ⁻ ôm²	efined as 1/6 2.6 %	6 of 3σ ranges):				
	Fractio	anal uncort	aintiaa (d	5 I A 4					
δ/π (IH)		1.35	0.96	- 1.59	$0.00 - 0.04 \oplus 0.65 - 2.00$				
δ/π (NH	$\frac{\sin^2 \theta_{23} / 10^{-1} (\text{NH})}{\sin^2 \theta_{23} / 10^{-1} (\text{IH})} \qquad 4.25$ $\frac{\delta}{\pi} (\text{NH}) \qquad 1.39$		1.12	- 1.72	$0.00 - 0.11 \oplus 0.88 - 2.00$ —				
$\sin^2 \theta_{23}/1$			4.08 – 4.96	$\oplus 5.31 - 6.10$	3.76 - 5.06 3.84 - 6.37	3.63 - 6.59			
$\frac{\sin^2 \theta_{13}/1}{\sin^2 \theta_{13}/1}$	10^{-2} (IH)	2.39	2.18 - 2.60		1.98 - 2.80	1.78 - 3.00			
$\sin^2 \theta_{13}/1$	10^{-2} (NH)	2.34	2.16	-2.56	1.97-2.76	1.77 - 2.97			
$\Delta m^2/10^2$	$\frac{\Delta m^2/10^{-3} \text{ eV}^2 \text{ (NH)}}{\Delta m^2/10^{-3} \text{ eV}^2 \text{ (IH)}} \qquad 2.44$ 2.40		2.33	-2.47	2.25 - 2.54	2.17 - 2.61			
$\Delta m^2/10^2$			2.38	-2.52	2.30 - 2.59	2.22 - 2.66			
$\sin^2 \theta_{12}/10^{-1}$ (NH or IH)		3.08	2.91	- 3.25	2.75 - 3.42	2.59 - 3.59			
$\frac{\sin^2 \theta_{\rm co}}{10}$	~ ev- (NH or IH)	7.54	7.32	- 7.80	7.15 - 8.00	6.99 - 8.18			
$\frac{\delta m^2/10^-}{\sin^2 \theta_{\rm eq}/10^-}$	5 1/2 (1111 . 111)	DC00 II0	10	range	20 range	Jo range			

Left-right symmetric models SO(10)

Probability of Neutrino Oscillations

As N increases, the formalism gets rapidly more complicated!

Ν	∆m _{ij} ²	θ _{ij}	СР	-
2	1	1	0+1	
3	2	3	1+2	
6	5	15	10+9	
				フ

See-saws

A natural theoretical way to understand why 3 v-masses are very small.

Type-I Seesaw: a right-handed Majorana neutrinos is added into the SM.

Type-II Seesaw: a few right-handed Majorana neutrinos and one Higgs triplet are both added into the SM.

Measuring mass of neutrinos with β-decays of ³H, ¹⁸⁷Re, ¹¹⁵In and electron capture of ¹⁶³Ho

6/25/2015

Fedor Simkovic

Tritium beta decay:
$${}^{3}H \rightarrow {}^{3}He + e^{-} + \bar{v}_{a}$$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}T} = \frac{\left(\cos\vartheta_C G_{\mathrm{F}}\right)^2}{2\pi^3} |\mathcal{M}|^2 F(E) p E \left(Q - T\right) \sqrt{\left(Q - T\right)^2 - m_{\nu_e}^2}$$

1934 – Fermi pointed out that shape of electron spectrum in β -decay near the endpoint is sensitive to neutrino mass

First measured by Hanna and Pontecorvo with estimation m_v ~ 1 keV [Phys. Rev. 75, 983 (1940)]

$$m_{eta} = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2} m_i^2$$

Evidence for neutrino mass signal KATRIN discovery potential:

No neutrino mass signal KATRIN sensitivity

$$m_{\beta} = 0.35 \text{ eV} (5\sigma)$$

 $m_{\beta} = 0.30 \text{ eV} (3\sigma)$

$$m_{\beta} = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2} < 0.2 \ eV$$

 $m_{eta} pprox m_1$

Standard approach
non-relativistic nuclear w.f.
nuclear recoil neglected
phase space analysis

$$E_e^{\max} = M_i - M_f - m$$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}T} = \frac{\left(\cos\vartheta_C G_{\mathrm{F}}\right)^2}{2\pi^3} |\mathcal{M}|^2 F(E) p E \left(Q - T\right) \sqrt{\left(Q - T\right)^2 - m_{\nu_e}^2}$$

Relativistic EPT approach (Primakoff)

- Analogy with n-decay
 (³H,³He) ↔ (n,p)
- nuclear recoil of 3.4 eV by E_e^{max}
- relevant only phase space

$$E_{e}^{\max} = \frac{1}{2M_{f}} \left[M_{i}^{2} + m_{e}^{2} - \left(M_{f}^{2} - m_{v}^{2} \right) \right]$$

Relativistic approach to ³H decay nuclear recoil (3.4 eV) taken into account

$$\frac{d\Gamma}{dE_{e}} = \frac{1}{(\pi)^{3}} (G_{F} \cos \theta_{c})^{2} F(Z, E_{e}) p_{e} \\ \times \frac{M_{i}^{2}}{(m_{12})!} \sqrt{y \left(y + 2m_{\nu} \frac{M_{f}}{M_{i}}\right)} \\ \times \left[(g_{V} + g_{A})^{2} y \left(y + m_{\nu} \frac{M_{f}}{M_{i}}\right) \frac{M_{i}^{2} (E_{e}^{2} - m_{e}^{2})}{3(m_{12})^{4}} \right] \\ (g_{V} + g_{A})^{2} (y + m_{\nu} \frac{M_{f} + m_{\nu}}{M_{i}}) \frac{(M_{i}E_{e} - m_{e}^{2})}{m_{12}^{2}} \\ \times (y + M_{f} \frac{M_{f} + m_{\nu}}{M_{i}}) \frac{(M_{i}^{2} - M_{i}E_{e})}{m_{12}^{2}} \\ - (g_{V}^{2} - g_{A}^{2}) M_{f} \left(y + m_{\nu} \frac{(M_{f} + M_{\nu})}{M_{i}}\right) \\ \times \frac{(M_{i}E_{e} - m_{e}^{2})}{(m_{12})^{2}} \\ + (g_{V} - g_{A})^{2} E_{e} \left(y + m_{\nu} \frac{M_{f}}{M_{i}}\right) \right] \\ y = E_{e}^{max} - E_{e} \\ (m_{12})^{2} = M_{i}^{2} - 2M_{i}E_{e} + m_{e}^{2} \\ \text{Ior Simkovic} \qquad F.S., R. Dvornický, A. Faessler, PRC 77 (2008) 055502 \\ \end{array}$$

Numerics: Practically the same dependence of Kurie function on m_v for $E_e \approx E_e^{max}$

Kurie plots for tritium, rhenium and indium single β-decay

 $p^{2} \frac{F_{1}(Z,E)}{F_{0}(Z,E)} \cong 1 + 2 \frac{E - m_{e}}{m_{e}} \cong 1$ **K(E)/B_{Re}, K(E)/B_{In} \cong K(y)/B_T**

ECHO exp.: Measuring electron-capture in ¹⁶³Ho

1 S 1,	$_{2} 2S_{1/2}$	2P _{1/2}	2P _{3/2} 3	S _{1/2} 3P	/2 3P _{3/2}	3D _{3/2}	3D _{5/2}	 	5/2-		7/2	63	⁰ 457	О у
K	L _I	L _{II}	L _{III}	M ₁ M	II MIII	M _{1V}	M_{V}	····	16	³ ₆ Dy	EC	₆₇ HC	0	
EI	к	L ₁	L ₂	L ₃	M ₁	M ₂	M ₃	M_4	M ₅	N ₁	N ₂	N ₃	N ₄	N ₅
66 Dy 67 Ho	53.7885 55.6177	9.0458 9.3942	8.5806 8.9178	7.7901 8.0711	2.0468 2.1283	1.8418 1.9228	1.6750 1.7412	6 1.3325 2 1.3915	1.2949 1.3514	0.4163 0.4357	0.3318 0.3435	0.2929 0.3066	0.1542 0.1610	0.1542 0.1610
EI	N ₆	N ₇	0 ₁	O ₂	O ₃	0 ₄	0 ₅	O ₆	O ₇	P ₁	P ₂	P ₃	P_4	P ₅
67 Ho	0.0037	0.0037	0.0512	0.0203	0.0203		·	Level	E_i [e	eV]	Γ; [eV	/] [/	$\beta_{i}^{2}/\beta_{M}^{2}$	-
The	same	endpo	oint by	y capti	ure of	any		M_1	204	17 17	13.2	2	$\frac{1}{1.0}$	-
tomic	electi	ron de	etermi	ned by	y the (Q-val u	ie	M_2	184	42	6.0	(0.0526	
								N_1	414	.2	5.4	().2329	
Capt	ure of	K-ele	ectron	also p	ossibl	e and		N_2	333	3.5	5.3	(0.0119	
real	ized tl	nroug	h inte	rmedi	ate vir	tual		O_1	49	.9	3.0	(0.0345	
	state j	possib	ole, bu	t supp	ressed	l		O_2	26	.3	3.0	(0.0015	_

Neutrino in s_{1/2}-wave

Progress in theoretical description needed

$$^{163}\text{Ho} \rightarrow ^{163}\text{Dy*}$$

Atoms in mettallic compounds X-ray spectrum Auger electron emission

FIG. 10: The names of electron-ejection de-excitations. The holes left by EC are the hollow circles. The n_i are principal quantum numbers, which in the right-most figure all coincide.

¹⁶³Ho₆₇ electron shell

X-rays spectrum

In the process of de-excitation, X-ray photons are emitted with energies clustered around

$$\omega_{\rm X-ray} = E' - E$$

50⁵⁰ 3M¹⁸ In transitions of such type, dipole transitions are dominant Total energy distribution?

A. Faessler, Ch. Enss, L. Gastaldo, F.Š., PRC 91, 064302 (2015) (two and 3 holes)

IOP PUBLISHING

REPORTS ON PROGRESS IN PHYSICS

Rep. Prog. Phys. 75 (2012) 106301 (52pp)

doi:10.1088/0034-4885/75/10/106301

Theory of neutrinoless double-beta decay

J D Vergados^{1,2}, H Ejiri^{3,4} and F Šimkovic^{5,6}

- ¹ Theoretical Physics Division, University of Ioannina, GR-451 10, Ioannina, Greece
- ² CERN, Theory Division, Geneva, Switzerland
- ³ RCNP, Osaka University, Osaka, 567-0047, Japan
- ⁴ Nuclear Science, Czech Technical University, Brehova, Prague, Czech Republic
- ⁵ Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow region, Russia
- ⁶ Department of Nuclear Physics and Biophysics, Comenius University, Mlynská dolina F1,
- SK-842 15 Bratislava, Slovakia

E-mail: vergados@uoi.gr, ejiri@rcnp.osaka-u.ac.jp and Fedor.Simkovic@fmph.uniba.sk

Received 24 November 2011, in final form 26 April 2012 Published 7 September 2012 Online at stacks ion ore/RoPP/75/106301

The answer to the question whether neutrinos are their own antiparticles is of central importance, not only to our understanding of neutrinos, but also to our understanding of the origin of mass.

What is the nature of neutrinos?

Actually, when NMEs will be needed to analyze data?

Only the $0\nu\beta\beta$ -decay can answer this fundamental question

Analogy with kaons: K_0 and \overline{K}_0

Could we have both? (light Dirac and heavy Majorana)

Analogy with π_0

1937 Beginning of Majorana neutrino physics

Ettore Majorana discoveres the possiility of existence of truly neutral fermions

Charged fermion (electron) + electromagnetic field $\begin{aligned} (i\gamma^{\mu}\partial_{\mu} - e\gamma^{\mu}A_{\mu} - m)\Psi &= 0 \\ (i\gamma^{\mu}\partial_{\mu} + e\gamma^{\mu}A_{\mu} - m)\Psi^{c} &= 0 \end{aligned}$ $\Psi^{c} = \Psi \quad \text{forbidden}$

Neutral fermion (neutrino) + electromagnetic field

$$(i\gamma^{\mu}\partial_{\mu} - m) \nu = 0 \qquad \qquad \nu^{c} = \nu \quad \text{allowed}$$
$$(i\gamma^{\mu}\partial_{\mu} - m) \nu^{c} = 0 \qquad \qquad \text{Majorana condition}$$

Symmetric Theory of Electron and Positron Nuovo Cim. 14 (1937) 171

Here is the beginning of Nonstandard Neutrino Properties

Light ν-exchange 0vββ–decay mechanism

S.M. Bilenky, S. Petcov, Rev. Mod. Phys. 59, 671 (1987)

Majorana condition $C \ \overline{\chi_k}^T(x) = \xi_k \ \chi_k(x)$ Majorana particle
propagator $< \chi_{\alpha}(x_1)\overline{\chi}_{\beta}(x_2) > = \frac{-1}{(2\pi)^4} \int \left(\frac{1}{\gamma p - im}\right)_{\alpha\beta} e^{ip(x_1 - x_2)} dp$ $= S_{\alpha\beta}(x_1 - x_2)$

$$\langle \chi(x_1)\chi^{T}(x_2) \rangle = -\xi S(x_1 - x_2)C$$

 $\langle \overline{\chi}^{T}(x_1)\overline{\chi}(x_2) \rangle = \xi C^{-1}S(x_1 - x_2)$

Weak β-decay Hamiltonian

$$\mathcal{H}_W^\beta = \frac{G_F}{\sqrt{2}} \ \overline{e} \gamma_\alpha (1 + \gamma_5) \nu_e \ j_\alpha + h.c.$$

Neutrino mixing
$$\nu_{eL} = \sum_{k} U_{lk}^{L} \chi_{kL}$$

6/25/2015

Fedor Simkovic

S-matrix term

$$S^{(2)} = -\frac{(-i)^2}{2} 4 \left(\frac{G_F}{\sqrt{2}}\right)^2 \int N\left[\overline{e_L}(x_1)\gamma_{\alpha} < \nu_{eL}(x_1)\nu_{eL}^T(x_2) > \gamma_{\beta}^T \overline{e_L}^T(x_2)\right] \times T\left(j_{\alpha}(x_1)j_{\beta}(x_2)e^{-i\int \mathcal{H}_{str}(x)dx}\right) dx_1 dx_2$$

Contraction of v-fields

$$< \nu_{eL}(x_1)\nu_{eL}{}^T(x_2) > = -\sum_k \left(U_{ek}^L\right)^2 \xi_k \frac{1+\gamma_5}{2} S_k(x_1-x_2) \frac{1+\gamma_5}{2} C$$
$$= \frac{i}{(2\pi)^4} \sum_k \left(U_{ek}^L\right)^2 \xi_k m_k \int \frac{e^{iq(x_1-x_2)} dq}{q^2+m_k^2} \frac{1+\gamma_5}{2} C$$

Effective mass of Majorana neutrinos $m_{\beta\beta} = \sum_{k} \left(U_{ek}^{L} \right)^{2} \xi_{k} m_{k}$

6/25/2015

Fedor Simkovic

0νββ-decay matrix element

$$< f|S^{(2)}|i> = m_{\beta\beta} \left(\frac{G_F}{\sqrt{2}}\right)^2 N_{p_1} N_{p_2} \overline{u}(p_1) \gamma_{\alpha} (1+\gamma_5) \gamma_{\beta} C \overline{u}^T(p_2) \times \int e^{-ip_1 x_1} e^{-ip_2 x_2} \frac{-i}{(2\pi)^4} \int \frac{e^{iq(x_1-x_2)} dq}{q^2} \times A' |T[J_{\alpha}(x_1) J_{\beta}(x_2)] |A> dx_1 dx_2 - (p_1 \leftrightarrow p_2)$$

Use of completness $1=\Sigma_n |n><n|$

$$< A'|J_{\alpha}(x_1)J_{\beta}(x_2)|A> = \sum_{n} < A'|J_{\alpha}(0,\vec{x}_1)|n> < n|J_{\beta}(0,\vec{x}_2)|A> \times e^{-i(E'-E_n)x_{10}}e^{-i(E_n-E)x_{20}}$$

$$< f|S^{(2)}|i> = im_{\beta\beta} \left(\frac{G_F}{\sqrt{2}}\right)^2 N_{p_1} N_{p_2} \overline{u}(p_1) \gamma_{\alpha}(1+\gamma_5) \gamma_{\beta} C \overline{u}^T(p_2) \times \int d\vec{x_1} d\vec{x_2} e^{-i\vec{p_1}\cdot\vec{x_1}} e^{-i\vec{p_2}\cdot\vec{x_2}} \frac{1}{(2\pi)^3} \int \frac{e^{i\vec{q}\cdot(\vec{x_1}-\vec{x_2})} d\vec{q}}{\vec{q}^2} \times \\\sum_n \left(\frac{\langle A'|J_{\alpha}(0,\vec{x_1})|n \rangle \langle n|J_{\beta}(0,\vec{x_2})|A \rangle}{E_n + q_0 + p_{20} - E} + \frac{\langle A'|J_{\beta}(0,\vec{x_1})|n \rangle \langle n|J_{\alpha}(0,\vec{x_2})|A \rangle}{E_n + q_0 + p_{10} - E} \right) \\\times 2\pi\delta(E' + p_{10} + p_{20} - E)$$

After integration over time variable

6/25/2015

Approximations and simplifications

 Non-relativistic impulse approx. for nuclear current
 Long-wave approximation for lepton wave functions
 Closure approximation

$$\begin{aligned} J_{\alpha}(0,\vec{x}) &= \sum_{n} \tau_{n}^{+} (\delta_{\alpha 4} + ig_{A}(\vec{\sigma})_{k} \delta_{\alpha k}) \delta(\vec{x} - \vec{x}_{n}) \\ e^{-i\vec{p}_{1} \cdot \vec{x}_{1} - i\vec{p}_{2} \cdot \vec{x}_{2}} \to 1 \end{aligned}$$

$$< f|S^{(2)}|i> = \overline{u}(p_1)\gamma_{\alpha}(1+\gamma_5)\gamma_{\beta}C\overline{u}^T(p_2)A_{\alpha\beta}, \quad A_{\alpha\beta} = A_{\beta\alpha}$$

contribute

Hadron part is
symmetric
$$J_{\alpha}(0, \vec{x}_{1})J_{\beta}(0, \vec{x}_{2}) = J_{\beta}(0, \vec{x}_{2})J_{\alpha}(0, \vec{x}_{1})$$
$$\gamma_{\alpha}\gamma_{\beta} = \delta_{\alpha\beta} + \frac{1}{2}(\gamma_{\alpha}\gamma_{\beta} - \gamma_{\beta}\gamma_{\alpha})$$

 $E_n \rightarrow \langle E_n \rangle$

$0\nu\beta\beta$ -decay matrix element

$$< f|S^{(2)}|i> = i \, m_{\beta\beta} \left(\frac{G_F}{\sqrt{2}}\right)^2 N_{p_1} N_{p_2} \overline{u}(p_1)(1-\gamma_5) C \overline{u}^T(p_2) \frac{1}{R} \\ \times \left(M_F - g_A^2 M_{GT}\right) \delta(p_{10} + p_{20} + M' - M)$$

6/25/2015

Fedor Simkovic
$$\begin{split} \text{Nuclear matrix elements} & M_F = \langle A' | \sum_{n,m} \tau_n^+ \tau_m^+ h(|\vec{x}_n - \vec{x}_m|) | A \rangle \\ M_F = \langle A' | \sum_{n,m} \tau_n^+ \tau_m^+ h(|\vec{x}_n - \vec{x}_m|) | \sigma_n \cdot \vec{\sigma}_m | A \rangle \\ \text{Neutrino exchange potential} \\ & h(|\vec{x}_n - \vec{x}_m|) = \frac{1}{2\pi^2} \int \frac{e^{i\vec{q}\cdot\vec{x}}d\vec{q}}{q_0(q_0 + \langle E_n \rangle - (E + E')/2)} \\ & \approx \frac{1}{|\vec{x}|} \\ \text{Differential } 0v\beta\beta\text{-decay rate} \\ & d\Gamma_{0\nu} = \frac{1}{2} \frac{G_F^4 m_e^5}{(2\pi)^5} |m_{\beta\beta}|^2 \frac{1}{R^2} |M_F - g_A^2 M_{GT}|^2 (1 - \cos\theta) \\ F^2(Z)(\varepsilon_0 - \varepsilon + 1)^2 (\varepsilon + 1) d\varepsilon \sin\theta d\theta \\ & F(Z) = \frac{2\pi\alpha(Z + 2)}{1 - exp[-2\pi\alpha(Z + 2)]} \qquad \varepsilon_0 = \frac{1}{m_e} (M - M' - 2m_e) \\ \text{Full } 0v\beta\beta\text{-decay rate} \\ & \Gamma_{0\nu} = \frac{1}{2} \frac{G_F^4 m_e^5}{(2\pi)^5} |m_{\beta\beta}|^2 \frac{1}{R^2} |M_F - g_A^2 M_{GT}|^2 F^2(Z) \\ & \qquad \times \frac{1}{15} \left(\varepsilon_0^5 + 10\varepsilon_0^4 + 40\varepsilon_0^3 + 60\varepsilon_0^2 + 30\varepsilon_0\right) \end{split}$$

The answer to the question whether neutrinos are their own antiparticles is of central importance, not only to our understanding of neutrinos, but also to our understanding of the origin of mass.

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \left|\frac{m_{\beta\beta}}{m_e}\right|^2 g_A^4 \left|M_{\nu}^{0\nu}\right|^2 G^{0\nu}$$

Absolute v
mass scaleNormal or inverted
hierarchy of v massesCP-violating phases

$$\begin{array}{c} & & \\ \mathbf{F}_{i} \mathbf{c}_{i} \mathbf{c}_{i$$

 $= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix}$

An accurate knowledge of the nuclear matrix elements, which is not available at present, is however a pre-requisite for exploring neutrino properties.

Effective mass of Majorana neutrinos

$$m_{\beta\beta}^{\rm vac} = \sum_i (U^L_{ei})^2 m_i$$

Majorana phases

$$P = diag(e^{-i\alpha_1/2}, e^{-i\alpha_2/2}, e^{-i\alpha_3/2}) \qquad |m_{\beta\beta}| = |c_{12}^2 c_{13}^2 e^{i\alpha_1} m_1 + s_{12}^2 c_{13}^2 e^{i\alpha_2} m_2 + s_{13}^2 m_3|$$

0

$$\begin{array}{l} \textbf{Measured} \\ \textbf{quantity} \end{array} \begin{vmatrix} |m_{\beta\beta}|^2 &= c_{12}^4 c_{13}^4 m_1^2 + s_{12}^4 c_{13}^4 m_2^2 + s_{13}^4 m_3^2 \\ &+ 2c_{12}^2 s_{12}^2 c_{13}^4 m_1 m_2 \cos\left(\alpha_1 - \alpha_2\right) \\ &+ 2c_{12}^2 c_{13}^2 s_{13}^2 m_1 m_3 \cos\alpha_1 + 2s_{12}^2 c_{13}^2 s_{13}^2 m_2 m_3 \cos\alpha_2. \end{aligned}$$

Issue: Lightest neutrino mass m₀

Complementarity of 0vββ-decay, β-decay and cosmology

 β -decay (Mainz, Troitsk) $m_{\beta}^2 =$

 $\sum_{i} |U_{ei}^{L}|^{2} m_{i}^{2} \stackrel{r}{\leq} (2.2 \text{ eV})^{2}$

KATRIN: (0.2 eV)²

Cosmology (Planck)

$$\sum_i m_i \le 0.23 - 1.08 \text{ eV}$$

 $m_0 \le 0.07 \text{ eV}$

(3+1) mixing	(3+2) mixing
6 angles 3+3 =6 phases	10 angles 6+4 =10 phases
$U = R_{34}\tilde{R}_{24}\tilde{R}_{14} R_{23}\tilde{R}_{13} R_{12}P P = diag\left(e^{i\alpha_{1}/2}, e^{i\alpha_{2}/2}, e^{i(\alpha_{3}/2 + \delta_{13})}, e^{i\delta_{14}}\right)$	$U = R_{45}$ $\tilde{R}_{35}R_{34}$ $\tilde{R}_{25}\tilde{R}_{24}R_{23}$ $\tilde{R}_{15}\tilde{R}_{14}\tilde{R}_{13}R_{12}P$ $P = diag\left(e^{i\alpha_{1}/2}, e^{i\alpha_{2}/2}, e^{i(\alpha_{3}/2+\delta_{13})}, e^{i(\alpha_{4}/2+\delta_{14})}, e^{i\delta_{15}}\right)$
$m_{\beta\beta}^{(3+1)} = c_{12}^2 c_{13}^2 c_{14}^2 e^{i\alpha_1} m_1 + c_{13}^2 c_{14}^2 s_{12}^2 e^{i\alpha_2} m_2 + c_{14}^2 s_{13}^2 e^{i\alpha_3} m_3 + s_{14}^2 m_4$	$m_{\beta\beta}^{3+2} = c_{12}^2 c_{13}^2 c_{14}^2 c_{15}^2 e^{i\alpha_1} m_1 + c_{13}^2 c_{14}^2 c_{15}^2 s_{12}^2 e^{i\alpha_2} m_2 + c_{14}^2 c_{15}^2 s_{13}^2 e^{i\alpha_3} m_3 + c_{15}^2 s_{14}^2 e^{i\alpha_4} m_4 + s_{15}^2 m_5$
4 masses3 angles6/25/203 phasesFe	dor Simkovic 5 masses 4 angles 4 phases 43

If (or when) the 0vββ decay is observed two theoretical problems must be resolved

How to relate the observed decay rate to the fundamental parameters, i.e., what is the value of the corresponding nuclear matrix elements.

What is the mechanism of the decay, i.e., what kind of virtual particle is exchanged between the affected nucleons (quarks).

Historically, there are > 100 experimental limits on $T_{1/2}$ of the $0\nu\beta\beta$ decay.

During the last decade the complexity and costs of $0\nu\beta\beta$ -decay experiments increased dramatically

Could multiple $0\nu\beta\beta$ measurements be helpful to extract $m_{\beta\beta}$?

Problem: Uncertainties in NME from different nuclei are highly Correlated.

Calculations: varying method (QRPA, RQRPA), the value g_A^{eff} (1.0 and 1.25), the treatment of src (Jastr. and UCOM), the size of model space (3 choices)

The comparison involves the NME and their errors as well as their correlations

Horizontal band:range prefered by claim. Slanted band: constraint place by our QRPA estimates. The combination provides the shaded ellipse, whose projection on the abscissa gives the range preferred at 90% C.L. for the ¹³⁶Xe half-life.

Range of $m_{\beta\beta}$ allowed by the $0\nu\beta\beta$ claim of evidence compared with the limits placed by other experiments (All at 90% C.L.).

Nuclear medium effect on the light neutrino mass exchange mechanism of the $0\nu\beta\beta$ decay

S.G. Kovalenko, M.I. Krivoruchenko, F. Š., Phys. Rev. Lett. 112 (2014) 142503

A novel effect in $0\nu\beta\beta$ decay related with the fact, that its underlying mechanisms take place in the nuclear matter environment:

- + Low energy 4-fermion $\Delta L \neq 0$ Lagrangian
- + In-medium Majorana mass of neutrino
- + $0\nu\beta\beta$ constraints on the universal scalar couplings

Non-standard interactions might be easily detected in nucleus rather than in vacuum

Classification of the vertices gO_A and gO'_A

$$\mathcal{L}_{\text{free},\nu} = \frac{1}{4} \sum_{i} \bar{\nu}_{i} i \gamma^{\mu} \overleftrightarrow{\partial}_{\mu} \nu_{i} - \frac{1}{2} \sum_{i} m_{i} \bar{\nu}_{i} \nu_{i}. \qquad \mathcal{L}_{\text{eff}} = \frac{g_{\chi}}{m_{\chi}^{2}} \bar{q} q \sum_{a=1}^{6} \sum_{ij} g_{ij}^{a} J_{ij}^{a}$$

In nuclei, mean fields are created by scalar and vector currents (σ , ω). Vector currents do not flip the spin of neutrinos and do not contribute to the $0\nu\beta\beta$ decay.

Symmetric and antisymmetric scalar neutrino currents J^a_{ii}

 g^{a}_{ij} are real symmetric for a = 1,2,3,4 and imaginary antisymmetric for a = 5,6. In the limit of $R = \infty$, the currents a = 3,5 vanish.

Mean field approximation

Mean field:

$$\overline{q}q \rightarrow \langle \overline{q}q \rangle$$
 and

$$\left\langle \overline{q}q\right\rangle \approx 0.5 \left\langle q^{\dagger}q\right\rangle \approx 0.25 \,\mathrm{fm}^{-3}$$

The effect depends on the product

$$\langle \chi \rangle = -\frac{g_{\chi}}{m_{\chi}^2} \langle \overline{q}q \rangle$$

To compare with weak interaction:

$$\frac{g_{\chi}g_{ij}^{a}}{m_{\chi}^{2}} = \frac{G_{F}}{\sqrt{2}}\varepsilon_{ij}^{a}$$

Typical scale:

$$\langle \chi \rangle g_{ij}^{a} = -\frac{G_{F}}{\sqrt{2}} \langle \overline{q}q \rangle \varepsilon_{ij}^{a} \approx -25 \varepsilon_{ij}^{a} \,\mathrm{eV}$$

We expect:

 $25\varepsilon_{ij}^{a} < 1 \rightarrow m_{\chi}^{2} > 25\frac{g_{\chi}g_{ij}^{a}\sqrt{2}}{G_{r}} \sim 1 \text{TeV}^{2}$

Radiative corrections

The Majorana v mass in vaccum and the 4-fermion operators should originate from the same LNV physics at the energy scale above Λ_{LNV} . However, mechanisms generating these two effective Lagrangian terms may be very different.

The direct contribution of the LNV operators to v mass (quark bubble attached to neutrino line)

$$\delta m_{\nu} \sim g^q / (4\pi \Lambda_{LNV})^2 m_q^3 \log(\Lambda_{LNV} / m_q)$$

For Λ_{LNV} =2.4 TeV, m_d = 5 MeV and g^q =1 we find δm_v =10⁻⁶ eV

Thus there must be another mechanism of neutrino mass generation compatible with the neutrino oscillation data.

6/25/2015

Fedor Simkovic

Regions of admissible values of $\langle \chi \rangle g_1$ and m_0 ($m_{\beta\beta}$ =0.2 eV)

$$\langle \chi \rangle = 0.17 \ fm^{-3} = \frac{0.17}{(5.07)^3} GeV^3$$

 $\Lambda_{LNV} \ge 2.4 \,\mathrm{TeV} \,(\mathrm{Planck})$

 $1.1 \,\mathrm{TeV}\,(\mathrm{Tritium})$

 $\varepsilon_{ij} \leq 0.02$ (Planck), 0.1 (Tritium)

Using experimental data on the $0\nu\beta\beta$ decay in combination with β -decay and cosmological data we evaluated the characteristic scales of 4-fermion neutrino-quark operators, which is $\Lambda_{LNV} > 2.4$ TeV.

Pion decay: BR($\pi^0 \rightarrow \nu \nu$) $\leq 2.7 \ 10^{-7}$

 $\Lambda_{LNV} \ge 560 \text{ GeV}$

6/25/2015

Phase-space factor

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \left|\frac{m_{\beta\beta}}{m_e}\right|^2 g_A^4 \left|M_{\nu}^{0\nu}\right|^2 G^{0\nu}$$

6/25/2015

Fedor Simkovic

consideration of electron screening

6/25/2015

Fedor Simkovic

Nucleus is considered to be spherical

Nuclear Matrix Elements (NMEs)

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \left|\frac{m_{\beta\beta}}{m_e}\right|^2 g_A^4 \left|M_{\nu}^{0\nu}\right|^2 G^{0\nu}$$

6/25/2015

The Ovββ-decay Nuclear Matrix Elements Systematic and statistical errors

In double beta decay two neutrons bound in the ground state of an initial even-even nucleus are simultaneously transformed into two protons that are bound in the ground state or excited (0⁺, 2⁺) states of the final nucleus

It is necessary to evaluate, with a sufficient accuracy, wave functions of both nuclei, and evaluate the matrix element of the Ovßß-decay operator connecting them

This can not be done exactly, some approximation and/or truncation is always needed. Moreover, there is no other analogues observable that can be used to judge directly the quality of the result.

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \left|\frac{m_{\beta\beta}}{m_e}\right|^2 g_A^4 \left|M_{\nu}^{0\nu}\right|^2 G^{0\nu}$$
6/25/2015 Fedor Simkovic

67

Quenching of g_A (systematic error)

 $g_A^4 = (1.269)^4 = 2.6$

$(g_{A}^{eff})^{4} = 1.0$	Strength of GT	trans. has to be	e quenched to	reproduce	experiment
---------------------------	----------------	------------------	---------------	-----------	------------

$$g_{A=}1.269 \implies g^{eff}_{A=}0.75 \ g_{A} \approx 1$$

$$(g_{A}^{eff})^{4} = (0.8)^{4} = 0.41$$

 $(g^{eff})^4 = (0.7)^4 = 0.24$

In QRPA g_{A}^{eff} and isoscalar force were fitted to reproduce the $2\nu\beta\beta$ -decay half-life, β^- decay rate and β^+/EC rate => g_{A}^{eff} is smaller than unity.

Faessler, Fogli, Lisi, Rodin, Rotunno, F. Š, J. Phys. G 35, 075104 (2008).

$$g_A^{eff-ISM} = 0.57-0.90$$

 $g_A^{eff-IBM} = 0.35-0.71$

g_A^{eff} is highly dependent on the model calculations and assumptions made

Barea, Kotila, Iachello, PRC 87, 014315 (2013)

Is g_A^{eff} different for different (A,Z) and different spin-dependent transition operators?

2-body current predicted by EFT. The 2-body current contributions are related to the quenching of Gamow-Teller transitions found in nuclear structure calc.

Quenching of g_A , two-body currents and QRPA (Suppression of about 20%)

The OvßB-decay with emission of electrons in $p_{1/2}$ wave state D. Štefánik, R. Dvornický, F.Š., Nuclear Theory 33 (2014) 115 and to be submitted

$$\begin{split} \psi(\mathbf{r}, p, s) &\simeq \psi_{s_{1/2}}(\mathbf{r}, p, s) + \psi_{p_{1/2}}(\mathbf{r}, p, s) = \\ \begin{pmatrix} g_{-1}(\varepsilon, r)\chi_s \\ f_{+1}(\varepsilon, r)\left(\vec{\sigma} \cdot \hat{\mathbf{p}}\right)\chi_s \end{pmatrix} + \begin{pmatrix} ig_{+1}(\varepsilon, r)\left(\vec{\sigma} \cdot \hat{\mathbf{r}}\right)\left(\vec{\sigma} \cdot \hat{\mathbf{p}}\right)\chi_s \\ -if_{-1}(\varepsilon, r)\left(\vec{\sigma} \cdot \hat{\mathbf{r}}\right)\chi_s \end{pmatrix} \end{split}$$

>

Exact relativ. electron w.f.

ns

(

$$J^{\rho}(\mathbf{x}) = \sum_{n} \tau_{n}^{+} \delta(\mathbf{x} - \mathbf{r}_{n}) \left[(g_{V} - g_{A}C_{n}) g^{\rho 0} + g^{\rho k} \right]$$

$$\times \left(g_{A} \sigma_{n}^{k} - g_{V} D_{n}^{k} - g_{P} \left(p_{n}^{k} - p_{n}^{'k} \right) \frac{\vec{\sigma}_{n} \cdot \left(\mathbf{p}_{n} - \mathbf{p}_{n}^{'} \right)}{2m_{N}} \right) \right]$$

$$K_{n} = \left[\frac{\vec{\sigma}_{n} \left(\mathbf{p}_{n} + \mathbf{p}_{n}^{'} \right)}{2m_{N}} - i \left(1 + \frac{g_{M}}{g_{V}} \right) \frac{\vec{\sigma}_{n} \times \left(\mathbf{p}_{n} - \mathbf{p}_{n}^{'} \right)}{2m_{N}} \right]$$

$$K_{n} = \left[\frac{\mathbf{p}_{n} + \mathbf{p}_{n}^{'} \right] - i \left(1 + \frac{g_{M}}{g_{V}} \right) \frac{\vec{\sigma}_{n} \times \left(\mathbf{p}_{n} - \mathbf{p}_{n}^{'} \right)}{2m_{N}} \right]$$

$$\begin{aligned} & \left[T_{1/2}^{0\nu\beta\beta} \right]^{-1} = \frac{|m_{\beta\beta}|^2}{m_e^2} g_A^4 \left(2Re \left\{ M_s M_r^* \right\} G_{sr} \right. \\ & \left[T_{1/2}^{0\nu\beta\beta} \right]^{-1} = \frac{|m_{\beta\beta}|^2}{m_e^2} g_A^4 \left(2Re \left\{ M_s M_r^* \right\} G_{sr} \right. \\ & \left. + 2Re \left\{ M_s M_p^* \right\} G_{sp} + 2Re \left\{ M_r M_p^* \right\} G_{rp} \right. \\ & \left. + 2Re \left\{ M_s M_p^* \right\} G_{sp} + 2Re \left\{ M_r M_p^* \right\} G_{rp} \right. \\ & \left. + G_{ss} \left| M_s \right|^2 \right\} + G_{rr} \left| M_r \right|^2 + G_{pp} \left| M_p \right|^2 \right), \\ \\ \left(M_s \right) = -\frac{M_F}{g_A^2} + M_{GT} + M_T \right] M_{F,GT,T} = \sum_{r,s} \left\langle 0 \right| h_{F,GT,T} (r_-) \mathcal{O}_{F,GT,T} \left| 0 \right\rangle \\ \\ M_p = -\frac{M_F'}{g_A^2} + M_{GT}' + M_T' + M_V + M_A + M_A' \right] \\ M_V = i \sum_{r,s} \left\langle 0 \right| \frac{h_{AV}(r_-) + h_{VP}(r_-)}{2R^2} \tau_r^+ \tau_s^+ (\mathbf{r}_- \times \mathbf{r}_+) \cdot \vec{\sigma}_r \left| 0 \right\rangle \\ \\ M_F'_{F,GT,T} = \sum_{r,s} \left\langle 0 \right| h_{F,GT,T} (r_-) \mathcal{O}_{F,GT,T} \left(\frac{|\mathbf{r}_-|^2 - |\mathbf{r}_+|^2}{4R^2} \right) \\ M_A = \sum_{r,s} \left\langle 0 \right| \frac{h_{AP}(r_-) + h_{AA}(r_-) + h_{MM}(r_-)}{2R^2} \\ \\ \times \tau_r^+ \tau_s^+ (\vec{\sigma}_r \cdot \mathbf{r}_-) (\vec{\sigma}_s \cdot \mathbf{r}_+) \left| 0 \right\rangle \\ \\ M_r = \sum_{r,s} \left\langle 0 \right| \left(h_R(r_-) + h_R'(r_-) \right) \mathcal{O}_T - 2h_R(r_-) \mathcal{O}_{\mathcal{G}T} \left| 0 \right\rangle \end{aligned}$$

⁴⁸ C	a ⁷⁶ Ge	⁸² Se	⁹⁶ Zr	$^{100}\mathrm{Mo}$	¹¹⁰ Pd
$Q_{\beta\beta}$ [MeV] 4.2722	6 2.03904	2.99512	3.35037	3.03440	2.01785
$G_{ss} \left[10^{-18} yr^{-1} \right] = 24\ 834$	4. 2 368.1	$10\ 176.$	$20\ 621.$	15 953.	4 828.5
$G_{sr} \left[10^{-18} yr^{-1} \right] -4 \ 138.$	3 - 529.26	$-2\ 499.4$	-5 929.3	-4738.2	-1 504.8
$G_{rr} [10^{-18} yr^{-1}] = 690.2$	6 118.37	614.25	$1\ 705.7$	$1 \ 407.9$	469.16
$G_{sp} \left[10^{-18} yr^{-1} \right] -171.0$	1 - 29.513	-152.98	-424.86	-350.88	-117.07
$G_{rp} [10^{-18} yr^{-1}] = 28.55$	3 6.6047	37.619	122.29	104.31	36.518
$G_{pp} \left[10^{-18} yr^{-1} \right] = 1.182$	4 0.36878	2.3055	8.7718	7.7325	2.8437
	¹¹⁶ Cd	124 Sn	¹³⁰ Te	¹³⁶ Xe	¹⁵⁰ Nd
Calculated phase-space	2.8135	2.28697	2.52697	2.45783	3.37138
factor for $0\nu\beta\beta$ -decay with emission of $s_{1/2}$ and $p_{1/2}$	16 734.	$9\ 063.5$	14 255.	14 619.	63 163.
electrons	-5569.5	-3 082.8	$-5 \ 071.1$	-5 385.7	$-26\ 409.$
(m _{ββ} mechanism)	1 854.5	$1 \ 049.0$	$1 \ 804.7$	$1 \ 984.9$	$11 \ 045.$
	-462.44	-261.74	-450.22	-495.23	-2754.1
	154.05	89.101	160.29	182.59	$1\ 152.3$
6/25/2015	12.802	7.5711	14.242	16.803	120.25

Heavy/sterile v's and 0v\bb-decay

LHC (scale!?) and L-R symmetric models

Discrete LR symmetry to parity (U=V)

6/25/2015

Fedor Simkovic

PHFB: K. Rath et al., PRC 85 (2012) 014308Fedor SimkSQRPA: Vergados, Ejiri, F. Š., RPP 75 (2012) 106301IBM: Barea, Kotila, Iachello, PRC (2013) 014315Fedor SimkISM: Menendez, privite communications

Multipole decomposition of NMEs normalized to unity

Majorana neutrino mass eigenstate N with arbitrary mass m_N

$$N = \sum_{\alpha = s, e, \mu, \tau} U_{N\alpha} \, \nu_{\alpha}$$

Faessler, Gonzales, Kovalenko, F. Š., PRD 90 (2014) 096010]

$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu}g_{\rm A}^4 \left| \sum_{\rm N} \left(U_{e\rm N}^2 m_{\rm N} \right) m_{\rm p} M'^{0\nu}(m_{\rm N}, g_{\rm A}^{\rm eff}) \right|^2$$

General case

$$\begin{split} M'^{0\nu}(m_{\rm N}, g_{\rm A}^{\rm eff}) &= \frac{1}{m_{\rm p} m_{\rm e}} \frac{R}{2\pi^2 g_A^2} \sum_n \int d^3x \, d^3y \, d^3p \qquad M'^{0\nu}(m_{\rm N} \to 0, g_{\rm A}^{\rm eff}) = \frac{1}{m_{\rm p} m_{\rm e}} M'^{0\nu}_{\nu}(g_{\rm A}^{\rm eff}) \\ \times e^{i \mathbf{p} \cdot (\mathbf{x} - \mathbf{y})} \frac{\langle 0_F^+ | J^{\mu \dagger}(\mathbf{x}) | n \rangle \langle n | J^{\dagger}_{\mu}(\mathbf{y}) | 0_I^+ \rangle}{\sqrt{p^2 + m_N^2} (\sqrt{p^2 + m_N^2} + E_n - \frac{E_I - E_F}{2})} M'^{0\nu}(m_{\rm N} \to \infty, g_{\rm A}^{\rm eff}) = \frac{1}{m_{\rm N}^2} M'^{0\nu}_{\rm N}(g_{\rm A}^{\rm eff}) \end{split}$$

Particular cases

$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} g_{\rm A}^4 \times \qquad \qquad \langle m_{\nu} \rangle = \sum_{\rm N} U_{\rm eN}^2 m_{\rm N} \\ \times \begin{cases} \left| \frac{\langle m_{\nu} \rangle}{m_{\rm e}} \right|^2 \left| M_{\nu}^{\prime 0\nu} (g_{\rm A}^{\rm eff}) \right|^2 & \text{for } m_{\rm N} \ll p_{\rm F} \\ \left| \langle \frac{1}{m_{\rm N}} \rangle m_{\rm P} \right|^2 \left| M_{\rm N}^{\prime 0\nu} (g_{\rm A}^{\rm eff}) \right|^2 & \text{for } m_{\rm N} \gg p_{\rm F} \end{cases} \qquad \qquad \begin{cases} \langle \frac{1}{m_{\rm N}} \rangle = \sum_{\rm N} \frac{U_{\rm eN}^2}{m_{\rm N}} \\ \langle \frac{1}{m_{\rm N}} \rangle = \sum_{\rm N} \frac{M_{\rm eN}^2}{m_{\rm N}} \end{cases}$$

Improvements: i) QRPA (constrained Hamiltonian by 2νββ half-life, self-consistent treatment of src, restoration of isospin symmetry ...), ii) More stringent limits on the 0νββ half-life

The θvββ-decay with right-handed currents revisited D. Štefánik, R. Dvornický, F.Š., P. Vogel, to be submitted

Assumption M _R	» m _D	Eigenvalues and eige	envectors
$\begin{pmatrix} \overline{ u}_L & \overline{(u_R)^c} \end{pmatrix} \begin{pmatrix} 0 \\ m_D \end{pmatrix}$	$egin{array}{c} m_{\mathcal{D}} \ M_{\mathcal{R}} \end{array} ight) \left(egin{array}{c} (u_L)^c \ u_R \end{array} ight)$	$m_1 = m_D^2 / M_R \ll m_D m_2^2$ $\nu_1 = \nu_L - m_D / M_R (\nu_R)^c \nu_2^2$	$\approx \mathbf{M}_{\mathrm{R}}$ $= \nu_{\mathrm{R}} + m_{\mathrm{D}} / \mathbf{M}_{\mathrm{R}} (\nu_{\mathrm{L}})^{\mathrm{c}}$
	eft-right symmeti	ric models SO(10)	
Two-charged	$W_1^{\pm} = \cos \zeta W_I$	$\pm \pm \sin \zeta W_{R}^{\pm}$	
vector bosons	$\mathbf{W}_2^{\pm} = -\mathbf{sin} \zeta \mathbf{W}_L$	$\pm + \cos \zeta \mathbf{W}_{\mathbf{R}}^{\pm}$	
Parameters	$\zeta \leq 2$	2.5 10 ⁻³ , 1.3 10 ⁻²	
	M ₁ =81 GeV, M ₂ >2	.9 TeV, $(M_1/M_2)^2 < 10$	-3 LHC
Currents	$j_L^{\ \rho} = \bar{e}\gamma_\rho (1 - \gamma_5)$	$j_R^{\ \rho} = \bar{e}\gamma_{\rho}(1)$	$(+\gamma_5)\nu_{eR}$
See-saw scenario			
$\nu_{eL} = \sum_{i=1}^{light} \frac{U_{ei}\chi_{iL}}{\Box}$	$+\sum_{i=1}^{heavy} \frac{U_{ei}N_{iL}}{\bullet}$	$(\nu_{eR})^c = \sum_{i=1}^{light} V_{ei} \chi_{iL}$	$+\sum_{i=1}^{heavy} V_{ei} N_{iL}$
6/25/2015 large	small Fedor Simi	kovic small	large 85

d ↓ V L,R V d	u v e v e u	$H^{\beta} = +$	$\frac{G_{\beta}}{\sqrt{2}} \left[j_L^{\rho} \\ \eta j_R^{\rho} J_{L\rho}^{\dagger} \right]$ $P_L \frac{\hat{q} + i}{q^2 + i}$ $P_L \frac{\hat{q} + i}{q^2 + i}$ $P_L, R \frac{\hat{q}}{q^2}$	$J_{L\rho}^{\dagger} + \chi j_{L}^{\rho} + \lambda j_{R}^{\rho} J_{R\rho}^{\dagger} + \lambda j_{R}^{\rho} J_{R\rho}^{\dagger}$ $\frac{im}{m^{2}} P_{L}$ $\frac{im}{m^{2}} P_{R}$ $\frac{+iM}{2+M^{2}} P_{L,R}$	$J^{\dagger}_{R\rho} + h.c.]$ $\Rightarrow \frac{im}{q^2} $ $\Rightarrow \frac{i\hat{q}}{q^2} $ $\Rightarrow \frac{i\hat{q}}{M}$	$\eta \simeq -\tan\zeta$ $\lambda \simeq (M_{W_1}/M_1)$ Light neutrino exchange $n \qquad e^{-p}$ $n \qquad e^{-p}$ two-pion exchange (heavy neutrino)	$\chi = \eta$ $W_2)^2$ Heavy neutrino exchange $N(-) = 0$ P P P P
quark	level		M	echanism		nucleo	n level
neutrino	lept.v.	quarkv.	hadr.m.	supp.	f.	LNVp.	limit
light	LL	LL	2n			$\sum^{light} UUm$	${ m m}_{etaeta} \le 0.5 \; eV$
	LR	LR	2n	(M_1/M_2)	$(2)^2$	$\sum^{light} UV$	$<\!\!\lambda>\leq 7~10^{-7}$
	LR	LL	2n	$ an \zeta$		$\sum^{light} UV$	$<\!\eta> \le 4 \ 10^{-9}$
heavy	LL	LL	2n	_		\sum^{heavy} UUM $_p/M$	$\eta_N \leq 8 \ 10^{-8}$
	RR	RR	2n	(M_1/M_2)	$(2)^4$	$\sum_{p=1}^{heavy} V V m_p / M$	
	RR	LL	2n	$(an\zeta)$	4	$\sum_{p=1}^{heavy} V V m_p / M$	
	RR	RL	2π	$ an\zeta~(M_1/$	$(M_2)^2$	$\sum^{heavy} V V m_p / M$	

3x3 block matrices
U, S, T, V are
generalization of PMNS matrix6x6 neutrino mass matrixBasis
$$\mathcal{U} = \begin{pmatrix} U & S \\ T & V \end{pmatrix}$$
 $(\nu_L, (N_R)^{C^{-}})^T$ $\mathcal{M} = \begin{pmatrix} M_L & M_D \\ M_D^{-} & M_R \end{pmatrix}$ Decomposition $\mathcal{U} = \begin{pmatrix} 1 & 0 \\ 0 & U_0 \end{pmatrix} \begin{pmatrix} A & R \\ S & B \end{pmatrix} \begin{pmatrix} V_0 & 0 \\ 0 & 1 \end{pmatrix}$ Type seesaw IApproximation $A \approx 1, B \approx 1, R \approx \frac{m_D}{m_{LNV}} 1, S \approx -\frac{m_D}{m_{LNV}} 1$ $U_0 \approx V_0$ LNV parameters $\langle \lambda \rangle \approx (M_{W_1}/M_{W_2})^2 \frac{m_D}{m_{LNV}} |\xi|$ $|\xi| = |c_{23}c_{12}^2c_{13}s_{13}^2 - c_{13}^2c_{13}^3 - c_{13}c_{23}c_{12}^2s_{13}^2 - c_{12}c_{13}(c_{13}^2s_{12}^2 + s_{13}^2)|$
 $\simeq 0.82$ 6/25/2015Fedor Simkovic87

The $0\nu\beta\beta$ -decay rate with right-handed currents

$$\begin{bmatrix} T_{1/2}^{0\nu\beta\beta} \end{bmatrix}^{-1} = g_A^4 |M_{GT}|^2 \begin{cases} C_1 \left(\frac{|m_{\beta\beta}|}{m_e} \right)^2 + C_4 \langle \lambda \rangle^2 \\ + C_2 \frac{|m_{\beta\beta}|}{m_e} \langle \lambda \rangle \cos \psi_1 + C_3 \frac{|m_{\beta\beta}|}{m_e} \langle \eta \rangle \cos \psi_2 \end{cases}$$

$$\begin{array}{l} \text{Two additional phase-space factor G_{010} and G_{011}} \\ \text{(For w.f. A G_{010}=G_{03}, G_{011}=G_{04})} \\ \text{(For w.f. A G_{010}=G_{03}, G_{01}=G_{04})} \\ \text{(For w.f. A G_{01}=G_{03}, G_{01}=G_{04})} \\ \text{(For w.f. A G_{$$

Different types of electron wave functions $\Psi(\varepsilon, \mathbf{r}) = \Psi^{(s_{1/2})}(\varepsilon, \mathbf{r}) + \Psi^{(p_{1/2})}(\varepsilon, \mathbf{r})$

w.f. A (Doi et al.), uniform charge distribution, only the lowest term in expansion r/R

$$\begin{pmatrix} g_{-1}(\varepsilon,r) \\ f_{+1}(\varepsilon,r) \end{pmatrix} \approx \sqrt{F_0(Z_f,\varepsilon)} \begin{pmatrix} \sqrt{\frac{\varepsilon+m_e}{2\varepsilon}} \\ \sqrt{\frac{\varepsilon-m_e}{2\varepsilon}} \end{pmatrix} \begin{pmatrix} g_{+1}(\varepsilon,r) \\ f_{-1}(\varepsilon,r) \end{pmatrix} \approx \sqrt{F_0(Z_f,\varepsilon)} \begin{pmatrix} \sqrt{\frac{\varepsilon-m_e}{2\varepsilon}} [\alpha Z_f/2 + (\varepsilon+m_e)r/3] \\ -\sqrt{\frac{\varepsilon+m_e}{2\varepsilon}} [\alpha Z_f/2 + (\varepsilon-m_e)r/3] \end{pmatrix}$$

w.f. B, the analytical solution of the Dirac equation for a point-like nucleus

$$g_{\kappa}(\varepsilon,r) = \frac{1}{pr} \sqrt{\frac{\varepsilon + m_e}{2\varepsilon}} \frac{|\Gamma(1 + \gamma_k + iy)|}{\Gamma(1 + 2\gamma_k)} (2pr)^{\gamma_k} \qquad f_{\kappa}(\varepsilon,r) = \frac{1}{pr} \sqrt{\frac{\varepsilon - m_e}{2\varepsilon}} \frac{|\Gamma(1 + \gamma_k + iy)|}{\Gamma(1 + 2\gamma_k)} (2pr)^{\gamma_k} \\ \Im\left\{e^{i(pr+\xi)} \ _1F_1(\gamma_k - iy, 1 + 2\gamma_k, -2ipr)\right\} \qquad \Re\left\{e^{i(pr+\xi)} \ _1F_1(\gamma_k - iy, 1 + 2\gamma_k, -2ipr)\right\}$$

w.f. C, the exact Dirac wave functions with finite nuclear size corrections, which are taken into account in by a uniform charge distribution in a sphere of nucleus

w.f. D, the same as w.f. C but the screening of atomic electrons included

6/25/2015

Fedor Simkovic

Radial components of electron wave functions at nuclear surface

Effect of Coulomb corrections more important as of finite nuclear size

w.f. A (Doi et al.), uniform charge distribution, only the lowest term in expansion r/Rw.f. B, the analytical solution of the Dirac equation for a point-like nucleus

w.f. C, exact Dirac wave functions with finite nuclear size

w.f. C, exact Dirac wave functions with finite nuclear size and electron screening

		$^{76}\mathrm{Ge}$				$^{130}\mathrm{Te}$				$^{150}\mathrm{Nd}$		
w.f.	А	В	\mathbf{C}	D	А	В	\mathbf{C}	D	А	В	\mathbf{C}	D
$G_{01}.10^{14}$	0.261	0.244	0.240	0.237	1.807	1.535	1.453	1.425	8.827	6.986	6.432	6.316
$G_{02}.10^{14}$	0.428	0.404	0.397	0.391	4.683	4.064	3.851	3.761	40.190	32.401	29.869	29.187
$G_{03}.10^{15}$	1.478	1.340	1.316	1.305	12.237	9.566	9.065	8.967	70.032	49.465	45.593	45.130
$G_{04}.10^{15}$	0.501	0.489	0.477	0.470	3.625	3.315	3.086	3.021	18.343	16.000	14.348	14.066
$G_{05}.10^{13}$	0.791	0.727	0.572	0.566	6.390	5.185	3.842	3.790	28.537	21.183	15.061	14.873
$G_{06}.10^{12}$	0.605	0.547	0.536	0.531	3.091	2.398	2.258	2.227	11.922	8.323	7.591	7.497
$G_{07}.10^{10}$	0.365	0.345	0.274	0.270	2.713	2.383	1.788	1.755	13.625	11.362	8.233	8.085
$G_{08}.10^{11}$	0.245	0.236	0.151	0.149	2.877	2.653	1.579	1.549	16.833	14.996	8.564	8.405
$G_{09}.10^{10}$	1.360	1.263	1.238	1.223	6.398	5.354	5.063	4.972	27.582	21.530	19.799	19.454
$G_{010}.10^{15}$	1.478	1.531	1.423	1.410	12.237	14.602	11.616	11.455	70.032	105.415	72.249	71.154
$G_{011}.10^{15}$	0.501	0.500	0.484	0.476	3.625	3.564	3.220	3.148	18.343	18.334	15.376	15.055

Phase-space factors for ¹⁵⁰Nd

Phase space factors for a given distribution of beta decays in a nucleus

Phase-space factors for nuclei of experimental interest in the case of left and right-handed current mechanisms of the 0vββ-decay (light neutrino exchange)

	^{48}Ca	$^{76}\mathrm{Ge}$	$^{82}\mathrm{Se}$	$^{96}\mathrm{Zr}$	$^{100}\mathrm{Mo}$	$^{110}\mathrm{Pd}$	$^{116}\mathrm{Cd}$	^{124}Sn	$^{130}\mathrm{Te}$	136 Xe	$^{150}\mathrm{Nd}$
$Q_{\beta\beta}$ [MeV]	4.27226	2.03904	2.99512	3.35037	3.03440	2.01785	2.8135	2.28697	2.52697	2.45783	3.37138
$G_{01}.10^{14}$	2.483	0.237	1.018	2.062	1.595	0.483	1.673	0.906	1.425	1.462	6.316
$G_{02}.10^{14}$	16.229	0.391	3.529	8.959	5.787	0.814	5.349	1.967	3.761	3.679	29.187
$G_{03}.10^{15}$	18.907	1.305	6.913	14.777	10.974	2.672	11.128	5.403	8.967	9.047	45.130
$G_{04}.10^{15}$	5.327	0.470	2.141	4.429	3.400	0.978	3.569	1.886	3.021	3.099	14.066
$G_{05}.10^{13}$	3.007	0.566	2.004	4.120	3.484	1.400	4.060	2.517	3.790	4.015	14.873
$G_{06}.10^{12}$	3.984	0.531	1.733	3.043	2.478	0.934	2.563	1.543	2.227	2.275	7.497
$G_{07}.10^{10}$	2.682	0.270	1.163	2.459	1.927	0.599	2.062	1.113	1.755	1.812	8.085
$G_{08}.10^{11}$	1.109	0.149	0.708	1.755	1.420	0.462	1.703	0.939	1.549	1.657	8.405
$G_{09}.10^{10}$	16.246	1.223	4.779	8.619	6.540	1.939	6.243	3.301	4.972	4.956	19.454
$G_{010}.10^{14}$	2.116	0.141	0.801	1.855	1.359	0.309	1.418	0.660	1.146	1.165	7.115
$G_{011}.10^{15}$	5.376	0.476	2.183	4.557	3.502	1.010	3.704	1.955	3.148	3.238	15.055

6/25/2015

Fedor Simkovic

94

Current constraints on the effective neutrino mass and							
effective right-handed		The basic scale					
	76	Ge	136 Xe			of the LRSM	
w.f.	А	D	А	D		is TeV scale	
		QR	PA				
$ m_{\beta\beta} $ [eV]	0.321	0.333	0.285	0.315		$\sim 2.09 \times 10^{-9}$	
$ m_{\beta\beta} $ [eV] (for $\langle \eta \rangle = \langle \lambda \rangle = 0$)	0.271	0.284	0.251	0.285	$\langle \eta \rangle$	$\rangle \ge 2.98 \times 10^{-1}$	
$\langle \eta \rangle \times 10^{-9}$	3.093	3.239	2.077	2.337	m_L	$p/m_{LNV} = 2.8 \times 10^{-7}$	
$\langle \eta \rangle \times 10^{-9} \text{ [eV]} (\text{for } \langle \eta \rangle = \langle \lambda \rangle = 0)$	2.652	2.807	1.840	2.118			
$\langle \lambda \rangle \times 10^{-7}$	4.943	5.163	3.822	4.370			
$\langle \lambda \rangle \times 10^{-7} \text{ [eV]} (\text{for } \langle \eta \rangle = \langle \lambda \rangle = 0)$	4.841	5.068	3.792	4.349			
		IS	М		$\langle \lambda \rangle$	$< 3.34 \times 10^{-7}$	
$ m_{\beta\beta} $ [eV]	0.515	0.535	0.222	0.245	\// -	$\leq 0.04 \times 10$	
$ m_{\beta\beta} $ [eV] (for $\langle \eta \rangle = \langle \lambda \rangle = 0$)	0.436	0.458	0.194	0.220	m_{D}	$m_{LNV} = 5.0 \times 10$	
$\langle \eta \rangle \times 10^{-9}$	6.370	6.760	2.975	3.291	mr	$_{\rm MV}/{ m ToV}$	
$\langle \eta \rangle \times 10^{-9} \text{ [eV]} (\text{for } \langle \eta \rangle = \langle \lambda \rangle = 0)$	5.464	5.863	2.628	2.976	m_L	NV/ICV	
$\langle \lambda \rangle \times 10^{-7}$	8.462	8.841	3.000	3.378	= ($0.3 - 2 \ m_D / { m MeV}$	
$\langle \lambda \rangle \times 10^{-7} \text{ [eV]} (\text{for } \langle \eta \rangle = \langle \lambda \rangle = 0)$	8.304	8.694	2.949	3.336			

	76	Ge	136 Xe		
w.f.	А	D	А	D	
		QR	RPA		
$ m_{\beta\beta} $ [eV]	0.321	0.333	0.285	0.315	
$ m_{\beta\beta} $ [eV] (for $\langle \eta \rangle = \langle \eta \rangle = 0$)	0.271	0.284	0.251	0.285	
$\langle \eta \rangle \times 10^{-9}$	3.093	3.239	2.077	2.337	
$\langle \lambda \rangle \times 10^{-7}$	4.943	5.163	3.822	4.370	
		IS	M		
$ m_{\beta\beta} $ [eV]	0.515	0.535	0.222	0.245	
$ m_{\beta\beta} $ [eV] (for $\langle \eta \rangle = \langle \eta \rangle = 0$)	0.436	0.458	0.193	0.220	
$\langle \eta \rangle \times 10^{-9}$	6.370	6.760	2.975	3.291	
$\langle \lambda \rangle \times 10^{-7}$	8.462	8.841	3.000	3.378	

Current constraints on the effective neutrino mass and effective right-handed current parameters

 $^{136}Xe T_{1/2}^{0\nu} \ge 3.4 \times 10^{25}$ QRP K. Muto, E. Bender and H.V. Klapdor, Z. Phys. A 334, 187 (1989)

The single differential decay rate normalized to the total decay rate as function of electron energy for 3 limiting cases: Results do not depend on isotope, NME and type of w.f. i) Case $m_{\beta\beta} \neq 0$ $(\langle \lambda \rangle = 0 \text{ and } \langle \eta \rangle = 0)$ ii) Case $\langle \lambda \rangle \neq 0$ $(m_{\beta\beta} = 0 \text{ and } \langle \eta \rangle = 0)$ iii) Case $\langle \eta \rangle \neq 0$ $(m_{\beta\beta} = 0 \text{ and } \langle \lambda \rangle = 0)$ $\varepsilon_1 = \tilde{\varepsilon}_1 Q_{\beta\beta} + m_e$ $\varepsilon_2 = Q_{\beta\beta} + 2m_e - \varepsilon_1)$

Minimal Supersymmetric Standard Model

Normal partie	cles / fields	Supersymmetric particles / fields						
		Interaction eigenstates		Mass eigen	states			
Symbol	Name	Symbol	Name	Symbol	Name			
q = d, c, b, u, s, t	quark	\tilde{q}_L, \tilde{q}_R	squark	\tilde{q}_1, \tilde{q}_2	squark			
$l = e, \mu, \tau$	lepton	\tilde{l}_L, \tilde{l}_R	slepton	\tilde{l}_1, \tilde{l}_2	slepton			
$v = v_e, v_\mu, v_\tau$	neutrino	v	sneutrino	v	sneutrino			
g	gluon	ğ	gluino	ĝ	gluino			
W^{\pm}	W-boson	\tilde{W}^{\pm}	wino	} _v ĩ ±	chargino			
H^{\mp}	Higgs boson	$\tilde{H}_{1/2}^{\mp}$	Higgsino) v b	chargino			
В	B-field	Ď	bino	J				
W^3	W ³ -field	\tilde{W}^3	wino					
H_1^0	Higgs boson	$\tilde{\mu}^0$	Higgsino	$\{\tilde{\chi}^{0}_{1,2,3,4}$	neutralino			
H_2^0	Higgs boson	\tilde{r}_1^0	Higgsino					
H_{31}^{0}	Higgs boson	H_2	1118851110	J				
R	=+1			R=-1				

R-parity: $R=(-1)^{3B+L+2S}$

Neutrino-Neutralino mixing matrix (see-saw structure)

$$\mathcal{M}_{\boldsymbol{\nu}} = \begin{pmatrix} 0 & m \\ m^T & M_{\chi} \end{pmatrix} \qquad \qquad \Psi_{(0)}^{T} = (\boldsymbol{\nu}_{\boldsymbol{e}}, \, \boldsymbol{\nu}_{\mu}, \, \boldsymbol{\nu}_{\tau}, \, -i\lambda', \, -i\lambda_{3}, \, \tilde{H}_{1}^{0}, \, \tilde{H}_{2}^{0}),$$

Radiative corrections to neutrino mass

$$\mathcal{M}_{
u} = \mathcal{M}^{tree} + \mathcal{M}^l + \mathcal{M}^q$$

Gozdz, Kaminski, Šimkovic, PRD 70 (2004) 095005 _

6/25/2015

gluino/neutralino exchange R-parity breaking SUSY mechanism of the 0vββ–decay

1968 Pontecorvo proposed $\pi^- \rightarrow \pi^+ + 2e^-$, superweak int. We identified with R-parity breaking SUSYmechanism

Squark mixing SUSY mechanism

Mixing between scalar superpartners of the left- and right-handed fermions

Effective SUSY v-e Lagrangian

Neutrino vertex

$$\mathcal{L}^{LH} = \frac{G_F}{\sqrt{2}} \sum_i U_{ei} \left(\overline{e} \gamma_\alpha (1 - \gamma_5) \nu \right) \left(\overline{u} \gamma^\alpha (1 - \gamma_5) d \right) + h.c. \quad (V - A)$$

R-parity violating SUSY vertex

Hirsch,Klapdor-Kleingrothaus, Kovalenko PLB 372 (1996) 181

d

 $\dot{\lambda}_{1\kappa 1}$

 $\bar{v} = v$

Ŵ

δĸ

u

 $\lambda_{11\kappa}$

$$\mathcal{L}_{SUSY}^{eff} = \frac{G_F}{\sqrt{2}} \left(\frac{1}{4} \eta_{(q)LR} \sum_i U_{ei}^* \left(\overline{\nu} (1+\gamma_5) e \right) \left(\overline{u} (1+\gamma_5) d \right) \right)$$

$$+ \frac{1}{8} \eta_{(q)LR} \sum_i U_{ei}^* \left(\overline{\nu} \sigma_{\alpha\beta} (1+\gamma_5) e \right) \left(\overline{u} \sigma^{\alpha\beta} (1+\gamma_5) d \right) + h.c. \right)$$

$$(Tensor)$$

Paes, Hirsch, Klapdor-Kleingrothaus, PLB 459 (1999) 450

LN-violating parameter

$$\eta_{(q)LR} = \sum_{k} \frac{\lambda'_{11k} \lambda'_{1k1}}{8\sqrt{2}G_F} \sin 2\theta^d_{(k)} \left(\frac{1}{m^2_{\tilde{d}_1(k)}} - \frac{1}{m^2_{\tilde{d}_2(k)}}\right)$$

Limits on R-breaking parameters

TABLE II: Nuclear matrix elements (NMEs) of the squark-neutrino \mathcal{R}_p SUSY mechanism of $0\nu\beta\beta$ -decay. The NMEs of the 2N-mode are calculated for the two cases of the nucleon form factors: Quark Bag Model (QBM) and Non-Relativistic Quark Model (NRQM). The quantities M_{2N} , M_{π} are the 2N and pion mode nuclear matrix elements averaged over small, medium and large model spaces (see the text) with their variance σ given in parentheses.

	QBM NRQM	_
nuc	cl. $M_{VT}^{\tilde{q}} M_{MT}^{\tilde{q}} M_{AP}^{\tilde{q}} M_{2N}^{\tilde{q}} M_{VT}^{\tilde{q}} M_{MT}^{\tilde{q}} M_{AP}^{\tilde{q}} M_{2N}^{\tilde{q}} M_{MT}^{\tilde{q}} M_{AP}^{\tilde{q}} M_{2N}^{\tilde{q}}$	$\frac{\tilde{q}}{\pi}$
⁷⁶ (Ge -46.2 61.5 14.8 27.8 (4.6) -25.5 64.6 15.6 52.4 (2.7) 302.	(37)
100	Mo -54.9 61.0 16.5 22.9 (1.8) -30.3 64.1 17.4 51.0 (0.3 297.	(40)
130	Te -44.9 51.6 14.2 19.3 (3.4) -24.8 54.2 14.9 42.4 (2.6) 257.	(16)
2n mode	TABLE III: Upper bounds on the \not{R}_p SUSY parameter $\eta^{11}_{(q)L}$ as well as on the related products of the trilinear \not{R}_p -coupling $\lambda'_{11k}\lambda'_{1k1}$ (k=1,2,3) for $\Lambda_{SUSY} = 100$ GeV (see scaling law i Eq. (37)) deduced from the current lower bounds on the hall life of $0\nu\beta\beta$ -decay for ${}^{76}Ge$, ${}^{100}Mo$ and ${}^{130}Te$.	R gs n f-
A. Faessler,		Pion mode
Th. Gutsche,	nucl. $T_{1/2}^{0\nu-exp}$ [Ref.] $\eta_{(q)LR}^{11} = \lambda'_{111}\lambda'_{111} \lambda'_{112}\lambda'_{121} \lambda'_{113}\lambda'_{13}$	1
S. Kovalenko, F.Š.,	(years)	
PRD 77, 113012 (20	08) ${}^{76}Ge \ge 1.9 \ 10^{25} \ [2] \ 8.5 \ 10^{-9} \ 1.5 \ 10^{-5} \ 8.0 \ 10^{-7} \ 3.3 \ 10^{-7}$	8
	$^{100}Mo \ge 5.8 \ 10^{23} \ [4] \ 1.8 \ 10^{-8} \ 3.2 \ 10^{-5} \ 1.7 \ 10^{-6} \ 7.0 \ 10^{-6}$	8
6/25/2015	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⁸ 107

Co-existence of few mechanisms of the 0vββ-decay

It may happen that in year 201? (or 2???) the 0vββ-decay will be detected for 2-3 or more isotopes ...

(If there will be enough money for enrichment of isotopes!?)

6/25/2015

Fedor Simkovic
Probing the see-saw mechanism

Bilenky, Faessler, Potzel, F.Š, Eur. Phys. J. C 71 (2011) 1754

There exist heavy Majorana neutral leptons N_i (singlet of SU(2)xU(1) group)

$$\mathcal{L} = -\sqrt{2} \sum_{i,l} Y_{li} \overline{L}_{lL} N_{iR} \tilde{H} + \text{h.c.} \qquad \qquad L_{lL} = \begin{pmatrix} \nu_{lL} \\ l_L \end{pmatrix} \qquad \qquad N_i = N_i^c = C \overline{N}_i^T$$

Effective interaction for processes with virtual N_i at electroweak scale

$$\mathcal{L}_{\text{eff}} = -\frac{1}{\Lambda} \sum_{l',l,i} \overline{L_{l'L}} \tilde{H} \sum_{i} (Y_{l'i} \frac{\Lambda}{M_i} Y_{li}) C \tilde{H}^T (\overline{L_{lL}})^T + \text{h.c.}$$

After spontaneous violation of the electroweak symmetry the left-handed Majorana mass term is generated

6/25/2015

$$\boldsymbol{M^L} = \boldsymbol{Y} \frac{\boldsymbol{v}^2}{\boldsymbol{M}} \boldsymbol{Y}^T = \boldsymbol{U} \ \boldsymbol{m} \ \boldsymbol{U}^T$$

$$\mathcal{L}^{\mathbf{M}} = -\frac{1}{2} \sum_{l',l} \overline{\nu}_{l'L} M_{l'l}^{L} (\nu_{lL})^{c} + \text{h.c.}$$
$$= -\frac{1}{2} \sum_{i} m_{i} \overline{\nu}_{i} \nu_{i},$$

109

Co-existence of 2, 3 or more interferring mechanisms of $0\nu\beta\beta$ -decay

It is well-known that there exist many mechanisms that may contribute to the $0\nu\beta\beta$. Let consider 3 mechanisms: i) light v-mass mechanism, ii) heavy v-mass mechanism, iii) R-parity breaking SUSY mechanism with gluino exchange and CP conservation

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}(E_0, Z) \left| \frac{m_{\beta\beta}}{m_e} M_{\nu}^{0\nu} + \eta_N^L M_N^{0\nu} + \eta_{\lambda'_{111}} M_{\lambda'_{111}}^{0\nu} \dots \right|^2$$

$$m_{\beta\beta} = \sum_k \left(U_{ek}^L \right)^2 \xi_k m_k \qquad \eta_N^L = \sum_k^{heavy} U_{ek}^2 \frac{m_p}{M_k} \qquad \eta_{\lambda'_{111}} = \frac{\pi \alpha_s}{6} \frac{\lambda_{11}^2}{G_F^2 m_{d_R}^4} \frac{m_p}{m_g} \left[1 + \left(\frac{m_{d_R}}{m_{\tilde{u}_L}} \right)^2 \right]^2.$$

$$M_{\mu} = \sum_k^{d} U_{ek}^2 \frac{m_p}{M_k} \qquad \eta_{\lambda'_{111}} = \frac{\pi \alpha_s}{6} \frac{\lambda_{11}^2}{G_F^2 m_{d_R}^4} \frac{m_p}{m_g} \left[1 + \left(\frac{m_{d_R}}{m_{\tilde{u}_L}} \right)^2 \right]^2.$$

$$M_{\mu} = \sum_k^{d} U_{ek}^2 \frac{m_p}{M_k} \qquad \eta_{\lambda'_{111}} = \frac{\pi \alpha_s}{6} \frac{\lambda_{111}^2}{G_F^2 m_{d_R}^4} \frac{m_p}{m_g} \left[1 + \left(\frac{m_{d_R}}{m_{\tilde{u}_L}} \right)^2 \right]^2.$$

$$M_{\mu} = \sum_k^{d} U_{ek}^2 \frac{m_p}{M_k} \qquad \eta_{\lambda'_{111}} = \frac{\pi \alpha_s}{6} \frac{\lambda_{111}^2}{G_F^2 m_{d_R}^4} \frac{m_p}{m_g} \left[1 + \left(\frac{m_{d_R}}{m_{\tilde{u}_L}} \right)^2 \right]^2.$$

$$M_{\mu} = \sum_k^{d} U_{ek}^2 \frac{m_p}{M_k} \qquad \eta_{\lambda'_{111}} = \frac{\pi \alpha_s}{6} \frac{\lambda_{111}^2}{G_F^2 m_{d_R}^4} \frac{m_p}{m_g} \left[1 + \left(\frac{m_{d_R}}{m_{\tilde{u}_L}} \right)^2 \right]^2.$$

$$M_{\mu} = \sum_k^{d} U_{ek}^2 \frac{m_p}{M_k} \qquad \eta_{\lambda'_{111}} = \frac{\pi \alpha_s}{6} \frac{\lambda_{111}^2}{G_F^2 m_{d_R}^4} \frac{m_p}{m_g} \left[1 + \left(\frac{m_{d_R}}{m_{\tilde{u}_L}} \right)^2 \right]^2.$$

$$M_{\mu} = \sum_k^{d} U_{ek}^2 \frac{m_p}{M_k} \qquad \eta_{\lambda'_{111}} = \frac{\pi \alpha_s}{6} \frac{\lambda_{111}^2}{G_F^2 m_{d_R}^4} \frac{m_p}{m_g} \left[1 + \left(\frac{m_{d_R}}{m_{\tilde{u}_L}} \right)^2 \right]^2.$$

$$M_{\mu} = \sum_k^{d} U_{ek}^2 \frac{m_p}{M_k} \qquad \eta_{\lambda'_{111}} = \frac{\pi \alpha_s}{6} \frac{\lambda_{11}}{G_F^2 m_{d_R}^4} \frac{m_p}{m_g} \left[1 + \left(\frac{m_{d_R}}{m_{\tilde{u}_L}} \right)^2 \right]^2.$$

$$M_{\mu} = \sum_k^{d} U_{\mu}^2 \frac{m_p}{(1/2)} \left(\frac{\pi \alpha_s}{1/2} + \frac{\pi \alpha_s}{1/2} \frac{m_p}{1/2} \right] \qquad M_{\mu} = \sum_{k'}^{d} U_{\mu}^2 \frac{m_p}{1/2} \left[\frac{\pi \alpha_s}{1/2} + \frac{\pi \alpha_s}{1/2} \frac{m_p}{1/2} \frac{m_p}{1/2} \right] \qquad M_{\mu} = \sum_{k'}^{d} U_{\mu}^2 \frac{m_p}{1/2} \left[\frac{\pi \alpha_s}{1/2} + \frac{\pi \alpha_s}{1/2} \frac{m_p}{1/2} \frac{m_p}{1/2} \frac{m_p}{1/2} \frac{m_p}{1/2} \frac{m_p}{1/2} \right] \qquad M_{\mu} = \sum_{k'}^{d} U_{\mu}^2 \frac{m_p}{1/2} \frac{m_p}{1$$

$$\begin{array}{ll}
\textbf{4 sets of two linear eq.} & \textbf{2 different solutions CP-conservation assumed} \\
\frac{\pm 1}{\sqrt{T_1 \ G_1}} = \frac{m_{\beta\beta}}{m_e} M_1^{\nu} + \eta M_1^{\eta} \\
\frac{\pm 1}{\sqrt{T_2 \ G_2}} = \frac{m_{\beta\beta}}{m_e} M_2^{\nu} + \eta M_2^{\eta} \\
\end{array} = \begin{array}{ll}
\textbf{2 different solutions CP-conservation assumed} \\
|m_{\beta\beta}| & = \begin{array}{ll}
\frac{m_e}{M_1^{\nu} \sqrt{T_1 \ G_1}} \frac{M_1^{\nu} \ M_2^{\eta}}{(M_1^{\nu} M_2^{\eta} - M_2^{\nu} M_1^{\eta})} \\
\qquad \pm \frac{m_e}{M_2^{\nu} \sqrt{T_2 \ G_2}} \frac{M_2^{\nu} \ M_1^{\eta}}{(M_1^{\nu} M_2^{\eta} - M_2^{\nu} M_1^{\eta})}
\end{array}$$

2 active mechanisms of the 0vββ-decay: Light and heavy v-mass mechanism

Non-observation of the $0\nu\beta\beta$ -decay for some isotopes might be in agreement with non- zero m_{$\beta\beta$}

6/25/2015

Two interfering mechanisms of the $0\nu\beta\beta$ -decay (Light neutrino and gluino exchange)

 $\frac{1}{T_{1/2\,i}^{0\nu}G_{i}^{0\nu}(E,Z)} = |\eta_{\nu}|^{2}|M_{i,\nu}^{\prime 0\nu}|^{2} + |\eta_{\lambda'}|^{2}|M_{i,\lambda'}^{\prime 0\nu}|^{2} + 2\cos\alpha|M_{i,\lambda'}^{\prime 0\nu}||M_{i,\nu'}^{\prime 0\nu}||\eta_{\nu}||\eta_{\lambda'}|$

Neutrinoless Double-Electron Capture (A,Z)→(A,Z-2)**

 $\begin{array}{c} \mbox{Additional} \\ \mbox{modes of the 0vECEC-decay:} \\ e_b + e_b + (A,Z) \rightarrow (A,Z-2) + & \gamma \\ & + & 2\gamma \\ & + & e^+e^- \\ & + & M \end{array}$

6/25/2015

Fedor Simkovic

Neutrinoless double electron capture (resonance transitions) (A,Z)→(A,Z-2)*^{HH'}

J. Bernabeu, A. DeRujula, C. Jarlskog, Nucl. Phys. B 223, 15 (1983)

DEC transitions, abundance, daughter nuclear excitation, atomic vacancies and figure of merit of some isotopes [10]

Atom mixing amplitude	Transition $Z \rightarrow Z - 2$	Z-natural abundance in %	Nuclear excitation E^* (in MeV), J^P	Atomic vacancies H, H'	Figure of merit $Q - E$ (in keV)
ΔM	$^{74}_{34}$ Se $\rightarrow ^{74}_{32}$ Ge	0.87	1.204 (2+)	2S(P), 2S(P)	2 ± 3
	$^{78}_{36}$ Kr $\rightarrow ^{78}_{34}$ Se	0.36	2.839 (2 ⁺) 2.864 (?)	1 S , 1 S	$\frac{19}{-6} \pm 10$
$E\simeq E^*+E_{\rm H}+E_{\rm H'},$	$^{102}_{46}$ Pd $\rightarrow ^{102}_{44}$ Ru	I	1.103 (2 ⁺) 1.107 (4 ⁺)	1S, 1S	$\frac{29}{25} \pm 9$
	¹⁰⁶ ₄₈ Cd → ¹⁰⁶ ₄₆ Pd	1.25	2.741 (?)	15, 15	-8 ± 10
$\Gamma \simeq \Gamma^* + \Gamma_{\mu} + \Gamma_{\mu'}$	${}^{112}_{50}$ Sn $\rightarrow {}^{112}_{48}$ Cd	1.01	1.871 (0+)	15, 15	-3 ± 10
- n - n ·	$^{130}_{56}\text{Ba} \rightarrow ^{130}_{54}\text{Xe}$	0.11	2.502 (?) 2.544 (?)	1S, 1S 1S, 2S(P)	$\frac{8}{-6} \pm 13$
Decay rate	$^{152}_{64}\text{Gd} \rightarrow ^{152}_{62}\text{Sm}$	0.20	0 (0+)	15, 25	4 ± 4
	$^{162}_{68}$ Er $\rightarrow ^{162}_{66}$ Dy	0.14	1.783 (2+)	15, 25	1 ± 6
$(\Lambda M)^2$	$^{164}_{68}$ Er $\rightarrow ^{164}_{66}$ Dy	1.56	0 (0+)	28, 28	9 ± 5
$\frac{1}{\tau} \simeq \frac{(\Delta M)}{\left(Q - E\right)^2 + \frac{1}{4}\Gamma^2} \Gamma,$	$^{168}_{70}$ Yb $\rightarrow ^{168}_{68}$ Er	0.14	1.355 (1 ⁻) 1.393 (?)	15, 25 25, 25	$\frac{1}{8} \pm 4$
	$^{180}_{~74} W \rightarrow ^{180}_{~72} Hf$	0.13	0 (0 ⁺) 0.093 (2 ⁺)	1S, 1S 1S, 3S	$\frac{26}{-4} \pm 17$
2vECEC-background depends strongly	$^{196}_{80}$ Hg $\rightarrow ^{186}_{78}$ Pt	0.15	0.689 (2+)	15, 25	26 ± 9
on Q-value					

Resonance enhancement of neutrinoless double electron capture M.I. Krivoruchenko, F. Šimkovic, D. Frekers, and A. Faessler, Nucl. Phys. A 859, 140-171 (2011)

- New physical phenomenon, oscillations of atoms, was proposed. A connection to process of resonant neutrinoless double electron capture (0vɛɛ) estsblished.
- The process of the 0vɛɛ has been revisited for those cases where the two participating atoms are nearly degenerate in mass. New 0vɛɛ transitions with parity violation to ground and excited states of final atom/nucleus were found. Selection rules for the 0vɛɛ transitions were established. The explicit form of corresponding NMEs was derived.
- Available data of atomic masses, as well as nuclear and atomic excitations were used to select the most likely candidates for resonant 0vεε transitions. Assuming an effective Majorana neutrino mass of 1 eV, some half-lives has been predicted to be as low as 10²² years in the unitary limit. According to obtained estimates, in the case of ¹⁵²Gd the sensitivity can be comparable to the favored 0vββ decays of nuclei.
- More accurate atomic mass measurements in the context of the 0vɛɛ were initialized, which have been partially accomplished using the modern high-precision ion traps. In addition, new 0vɛɛ experiments were initialized (TGV, R. Bernabei group at Gran Sasso, Muenster-Bratislava)

Oscillations of atoms

Different types of Oscillations (Effective Hamiltonian)

$$H_{eff}^{K_{0}\overline{K_{0}}} = \begin{pmatrix} M - \frac{i}{2}\Gamma & M_{12} - \Gamma_{12} \\ M_{12}^{*} - \Gamma_{12}^{*} & M - \frac{i}{2}\Gamma \end{pmatrix}$$

$$Gscillation of K_{0}-anti{K_{0}} (lepton flavor)$$

$$Gscillation of K_{0}-anti{K_{0}} (strangeness)$$

$$H_{eff}^{n\overline{n}} = \begin{pmatrix} M & V^{BNV} \\ V^{BNV} & M - \frac{i}{2}\Gamma \end{pmatrix}$$

$$Gscillation of n-anti{n} (baryon number)$$

$$H_{eff}^{atom} = \begin{pmatrix} M_{i} & V^{LNV} \\ V^{LNV} & M_{f} - \frac{i}{2}\Gamma \end{pmatrix}$$

$$Gscillation of Atoms (OoA) (total lepton number)$$

$$F.S., M. Krivoruchenko, Phys.Part.Nucl.Lett. 6 (2009) 485.$$

$$Full width of unstable atom/nucleus$$

$$\lambda_{+} = M_{i} + \Delta M - \frac{i}{2}\Gamma_{1},$$

$$\lambda_{-} = M_{f} - \frac{i}{2}\Gamma - \Delta M + \frac{i}{2}\Gamma_{1}$$

$$Fedor: \Gamma_{1} = \frac{V^{2}(M_{i} - M_{f})}{(M_{i} - M_{f})^{2} + \frac{1}{4}\Gamma^{2}},$$

$$120$$

Light v-exchange potential for the 0vEEC

$$\Gamma^{0\nu ECEC}(J^{\pi}) = \frac{|V_{\alpha\beta}(J^{\pi})|^2}{(M_i - M_f)^2 + \Gamma^2_{\alpha\beta}/4} \Gamma_{\alpha\beta}$$

β-decay Hamiltonian

v-mixing decay

$$\mathcal{H}^{\beta}(x) = \frac{G_{\beta}}{\sqrt{2}}\bar{e}(x)\gamma^{\mu}(1-\gamma_5)\nu_e(x)j_{\mu}(x) + \text{h.c.}$$

$$u_{eL}(x) = \sum_{i=1}^{3} U_{ek} \chi_{kL}(x)$$

(2)

Potential

$$\begin{aligned} \mathbf{\hat{\alpha}\beta} &= im_{\beta\beta} \left(\frac{G_{\beta}}{\sqrt{2}}\right)^2 \frac{1}{\sqrt{1+\delta_{\alpha\beta}}} \sum_{m_{\alpha}m_{\beta}} C_{j_{\alpha}m_{\alpha}j_{\beta}m_{\beta}}^{JM} \int d\vec{x}_1 d\vec{x}_2 \\ &\times \Psi_{\alpha m_{\alpha}}{}^T(\vec{x}_1) C \gamma^{\mu} \gamma^{\nu} (1-\gamma_5) \Psi_{\beta m_{\beta}}(\vec{x}_2) \int \frac{e^{-i\vec{q}\cdot(\vec{x}_1-\vec{x}_2)}}{2q_0} \frac{d\vec{q}}{(2\pi)^3} \\ &\times \sum_n \left[\frac{\langle A, Z-2|J_{\mu}(\vec{x}_1)|n \rangle \langle n|J_{\nu}(\vec{x}_2)|A, Z \rangle}{q_0 + E_n - M_i - \varepsilon_{\beta}} \right. \\ &+ \frac{\langle A, Z-2|J_{\nu}(\vec{x}_2)|n \rangle \langle n|J_{\mu}(\vec{x}_1)|A, Z \rangle}{q_0 + E_n - M_i - \varepsilon_{\alpha}} - (\alpha \leftrightarrow \beta) \end{aligned}$$

6/2

OvEEC potential - approximations

Non-relativistic impulse approximation for nucleon current

$$J^{\mu}(0, \vec{x}) = \sum_{n=1}^{A} \tau_n^{-} [g_V g^{\mu 0} + g_A(\sigma_k)_n g^{\mu k}] \delta(\vec{x} - \vec{x}_n)$$
Closure approximation
$$E_n - M_i \Rightarrow < E > \approx 8 \ MeV$$

$$\sum |n > < n| = 1$$

n

$$V^{\alpha\beta}(J_f^{\pi}) = \frac{1}{4\pi} \ G_{\beta}^2 m_{\beta\beta} \frac{g_A^2}{R} \sqrt{2J_f + 1} \mathcal{M}_{\alpha\beta}(J_f^{\pi})$$

Factorization of atomic and nuclear part

$$\mathcal{M}_{\alpha\beta}(J_f^{\pi}) \approx \mathcal{A}_{\alpha\beta} \ M^{0\nu}(J_f^{\pi})$$

Similar form as for $0\nu\beta\beta$ -decay

$$\begin{split} M^{0\nu}(0_{f}^{+}) &= < 0_{f}^{+} \parallel \sum_{nm} \tau_{n}^{-} \tau_{m}^{-} h(r_{nm}) [-\frac{g_{V}^{2}}{g_{A}^{2}} + (\vec{\sigma}_{n} \cdot \vec{\sigma}_{m})] \parallel 0_{i}^{+} >, \\ M^{0\nu}(0_{f}^{-}) &= < 0_{f}^{-} \parallel \sum_{nm} \tau_{n}^{-} \tau_{m}^{-} h(r_{nm}) (\hat{r}_{n} - \hat{r}_{m}) \cdot [\frac{g_{V}}{g_{A}} (\vec{\sigma}_{n} - \vec{\sigma}_{m}) - i(\vec{\sigma}_{n} \times \vec{\sigma}_{m})] \parallel 0_{i}^{+} > \\ \\ \hline 6/25/2015 \qquad \qquad h(r_{nm}) = \frac{2}{\pi} R \int_{0}^{\infty} j_{0} (qr_{nm}) \frac{q_{0}}{q_{0} + \langle E \rangle - m} dq. \end{split}$$

Capture of s_{1/2} and p_{1/2} atomic electrons is prefered

$\Psi_{\alpha m_{lpha}}(ec{x})$	=	$\frac{1}{\sqrt{4\pi}}\left($	$ \begin{array}{c} f_{\alpha}(r) \ \chi_{m_{\alpha}} \\ -ig_{\alpha}(r) \ (\vec{\sigma} \cdot \hat{r}) \ \chi_{m_{\alpha}} \end{array} \right) $	$(\alpha = n_{\alpha}s_{1/2})$	+ 1
$\Psi_{lpha m_lpha}(ec x)$	=	$\frac{1}{\sqrt{4\pi}}\left($	$ \begin{array}{c} -if_{\alpha}(r) \left(\vec{\sigma} \cdot \hat{r} \right) \chi_{m_{\alpha}} \\ -g_{\alpha}(r) \chi_{m_{\alpha}} \end{array} \right) $	$(\alpha = n_{\alpha}p_{1/2})$	' , 1 ⁻

Shell		^{78}Se	^{112}Cd	^{124}Te	^{130}Xe	^{156}Gd
$1s_{1/2}$	< f >	3.45×10^{3}	6.80×10^{3}	8.83×10^{3}	1.09×10^{4}	1.33×10^{4}
	< g >	-4.34×10^{2}	-1.23×10^{3}	-1.81×10^{3}	-2.47×10^{3}	-3.30×10^{3}
$2s_{1/2}$	$\langle f \rangle$	1.25×10^{3}	2.54×10^{3}	3.35×10^3	4.19×10^{3}	5.20×10^{3}
	< g >	-1.58×10^{2}	-4.59×10^{2}	-6.87×10^{2}	-9.48×10^{2}	-1.29×10^{3}
$3s_{1/2}$	< f >	6.83×10^{2}	1.39×10^{3}	1.83×10^{3}	2.29×10^{3}	2.85×10^{3}
	< g >	-8.60×10^{1}	-2.51×10^{2}	-3.76×10^{2}	-5.18×10^{2}	-7.05×10^{2}
$4s_{1/2}$	$\langle f \rangle$	4.43×10^{2}	$8.99{ imes}10^2$	$1.19{ imes}10^3$	1.48×10^{3}	1.84×10^{3}
	< g >	-5.58×10^{1}	-1.63×10^{2}	-2.43×10^{2}	-3.36×10^{2}	-4.57×10^{2}
$2p_{1/2}$	< f >	-1.72×10^{1}	-7.22×10^{1}	-1.23×10^{2}	-1.87×10^{2}	-2.78×10^{2}
	< g >	-1.37×10^{2}	-3.99×10^{2}	-5.97×10^{2}	-8.25×10^{2}	-1.12×10^{3}
$2p_{3/2}$	< f >	8.06×10^{-1}	2.38×10^{0}	3.48×10^{0}	4.62×10^{0}	6.31×10^{0}
	< g >	-5.02×10^{-2}	-2.10×10^{-1}	-3.46×10^{-1}	-5.03×10^{-1}	-7.47×10^{-1}

	Norm	For 0v	<mark>compar</mark> ββ-half-	ison life								
$\tilde{T}_{1/2} = T_{1/2} \left \frac{m_{\beta\beta}}{1 \text{ eV}} \right ^2 \left \frac{M^{0\nu}(J_f^{\pi})}{M^{0\nu}(0_f^{+})} \right ^2. \qquad \qquad \tilde{T}_{1/2}^{0\nu\beta\beta} = (1.4, 9.7) \times 10^{24} \ y (^{76}Ge) = (0.14, 1.8) \times 10^{24} \ y (^{100}Me) = ($												
$T_{1/2}^{\min}: M_{i} = M_{f} (full degeneracy) = (1.8, 15.6) \times 10^{24} y (^{130}Te)$											(^{130}Te)	
18	$\Delta M^2 = (M_{A,Z-2}^{**} - M_{A,Z})^2 + \Delta M_{\text{expt}}^2$											
	7_{76} US $\rightarrow 104_{74}$	W (0.02%))		$\Delta M_{\rm exp}^2$. =	$\delta M_{A,Z}^2$	$_{-2} + $	$\delta M^2_{A,Z}$	$+\delta R^2_{A,Z}$	-2•	
$\frac{J_f^{\pi}}{(0^+)}$	$M_f^* - M_f$	$M_{f}^{**} - \frac{M_{f}^{**}}{2} + \frac{11.2 \pm 1.2 \pm 1.2}{2}$	$-M_i$ (n	$\frac{2jl}{\alpha}$	$(n2jl)_{\beta}$	ϵ_{α}^{*}	ϵ^*_{β}	$\left \begin{array}{c c} \epsilon_C \\ \hline 21 & 6.7 \end{array} \right $	$\frac{\Gamma_{\alpha\beta}}{\Gamma_{\alpha\beta}}$	$\frac{\tilde{T}_{1/2}^{\min}}{2 \times 10^{22}}$	$\tilde{T}_{1/2}^{\max}$	
(0^{+})	1322.132±0.022	$(0^{+}) 1322.152 \pm 0.022 -11.3 \pm 1.3 \pm 0.9 110 110 69.53 69.53 1.31 6.7 \times 10^{-2} 2 \times 10^{22} 3 \times 10^{27} 3 \times 10$										
$^{180}_{74}W \rightarrow ^{184}_{72}Hf (0.13\%)$ Half-lives in years												
18	$^{0}_{74}W \rightarrow ^{184}_{72}H$	If (0.13%)							Hal	f-lives in y	ears	
18 J_f^{π}	$\begin{array}{c} {}^{0}_{74}\mathbf{W} \longrightarrow {}^{184}_{72}\mathbf{H} \\ \hline M_{f}^{*} - M_{f} \end{array}$	If (0.13%) $M_f^{**} - M_i$	$(n2jl)_{\alpha}$	(n2)	$(jl)_{\beta} = \epsilon_{\alpha}^*$	ϵ^*_{eta}	ϵ_C	Γ.	Hal	f-lives in y $\tilde{T}_{1/2}^{\min}$	$ ilde{T}_{1/2}^{\max}$	
$ \begin{bmatrix} J_f^{\pi} \\ 0^+ \end{bmatrix} $	$\begin{array}{c} {}^{0}_{74}\mathbf{W} \longrightarrow {}^{184}_{72}\mathbf{H} \\ \hline M_{f}^{*} - M_{f} \\ \hline 0 & 12. \end{array}$	If (0.13%) $M_f^{**} - M_i$ $0 \pm 3.9 \pm 2.1$	$\frac{(n2jl)_{\alpha}}{110}$	(<i>n</i> 2 <i>j</i>	$\frac{jl)_{\beta}}{0} \frac{\epsilon_{\alpha}^*}{65.3}$	$\begin{array}{c c} \epsilon^*_{\beta} \\ 5 & 65.3 \end{array}$	$\frac{\epsilon_C}{5 1.26}$	Γ. 5.9 ×	$\begin{array}{c c} \mathbf{Hal} \\ \hline \mathbf{x} \mathbf{\beta} \\ < 10^{-2} \end{array}$	$ ilde{T}_{1/2}^{\min}$ $ ilde{3} imes 10^{22}$	The ears $\tilde{T}_{1/2}^{\max}$ 5×10^{27}	
$ \begin{bmatrix} J_{f}^{\pi} \\ 0^{+} \\ 10 \end{bmatrix} $	$ \begin{array}{c} {}^{0}_{74}\mathbf{W} \rightarrow {}^{184}_{72}\mathbf{H} \\ \hline M_{f}^{*} - M_{f} \\ \hline 0 & 12. \\ \\ {}^{6}_{48}\mathbf{Cd} \rightarrow {}^{106}_{46} \end{array} $	If (0.13%) $M_f^{**} - M_i$ $0 \pm 3.9 \pm 2.1$ Pd (1.25%)	$(n2jl)_{\alpha}$ 110	(<i>n</i> 2 <i>j</i> 11	$\frac{jl}{\beta} = \frac{\epsilon_{\alpha}^*}{65.3}$	$\begin{array}{c c} \epsilon^*_{\beta} \\ 5 & 65.3 \end{array}$	$\frac{\epsilon_C}{5 1.26}$	Γ. 5.9 ×	Hal αβ < 10 ⁻²	$ ilde{T}_{1/2}^{\min}$ $ ilde{J} imes 10^{22}$ $ ilde{ses/energie}$	The ears $\tilde{T}_{1/2}^{\max}$ 5×10^{27} The ears of the ears	
$ \begin{bmatrix} J_{f}^{\pi} \\ 0^{+} \\ \end{bmatrix} $ $ \begin{bmatrix} 0^{+} \\ J_{f}^{\pi} \\ J_{f}^{\pi} \end{bmatrix} $		If (0.13%) $M_f^{**} - M_i$ $0 \pm 3.9 \pm 2.1$ Pd (1.25%) $M_f^{**} -$	$\begin{array}{c c} (n2jl)_{\alpha} \\ \hline 110 \\ \hline \\ M_i & (n \\ \hline \end{array}$	$(n2j$ 11 $2jl)_{\alpha}$	$\frac{jl)_{\beta}}{0} \frac{\epsilon_{\alpha}^{*}}{65.3}$ $(n2jl)_{\beta}$	$\frac{\epsilon_{\beta}^{*}}{5 65.3}$	$\frac{\epsilon_C}{5 1.26}$	$ \Gamma_{c} $ $5.9 \times$ ϵ_{C}	Hal $\alpha\beta$ $< 10^{-2}$ All mass $\Gamma_{\alpha\beta}$	f-lives in y $\tilde{T}_{1/2}^{\min}$ 3×10^{22} ses/energie $\tilde{T}_{1/2}^{\min}$	$\tilde{T}_{1/2}^{\max}$ 5×10^{27} $\tilde{T}_{1/2}^{\max}$ $\tilde{T}_{1/2}^{\max}$	
$ \begin{bmatrix} J_{f}^{\pi} \\ 0^{+} \\ \end{bmatrix} $ $ \begin{bmatrix} J_{f}^{\pi} \\ J_{f}^{\pi} \\ \end{bmatrix} $		If (0.13%) $M_f^{**} - M_i$ $0 \pm 3.9 \pm 2.1$ Pd (1.25%) $M_f^{**} 3.0 \pm 5.9 \pm$	$(n2jl)_{\alpha}$ 110 $M_i (n)$ 4.1	$\frac{(n2j)}{11}$	$ \begin{array}{c c} jl)_{\beta} & \epsilon_{\alpha}^{*} \\ \hline 0 & 65.3 \\ \hline (n2jl)_{\beta} \\ \hline 110 \end{array} $	$\frac{\epsilon_{\beta}^{*}}{5 65.3}$ $\frac{\epsilon_{\alpha}^{*}}{24.35}$	$\begin{array}{c c} \epsilon_{C} \\ 5 & 1.26 \\ \hline \\ \epsilon_{\beta}^{*} \\ 24.35 \end{array}$	Γ. 5.9 × ε _c 0.74	Hal $\alpha\beta$ $\langle 10^{-2}$ All mass $\Gamma_{\alpha\beta}$ $7.1 \ 10^{-1}$	f-lives in y $\tilde{T}_{1/2}^{\min}$ 3×10^{22} ses/energie $\tilde{T}_{1/2}^{\min}$ -3 2 2 10^{23}	$\tilde{T}_{1/2}^{max}$ 5×10^{27} es in keV $\tilde{T}_{1/2}^{max}$ 8 10^{29}	
$ \begin{bmatrix} J_{f}^{\pi} \\ 0^{+} \\ \end{bmatrix} $ $ \begin{bmatrix} J_{f}^{\pi} \\ J_{f}^{\pi} \\ \end{bmatrix} $		If (0.13%) $M_f^{**} - M_i$ $0 \pm 3.9 \pm 2.1$ Pd (1.25%) $M_f^{**} -$ $3.0 \pm 5.9 \pm$ $-16.5 \pm 5.9 \pm$	$(n2jl)_{\alpha}$ 110 M_i (n 4.1 4.1 4.1	$ \begin{array}{c c} (n2j)_{\alpha} \\ \hline (11) \\ \hline (2jl)_{\alpha} \\ \hline (110) \\ \hline$	$(n2jl)_{\beta}$ ϵ^*_{α} $(n2jl)_{\beta}$ (110) 110	$\begin{array}{c c} \epsilon_{\beta}^{*} \\ \hline 5 & 65.3 \\ \hline \\ \hline \\ 24.35 \\ \hline \\ 24.35 \\ \hline \\ 24.35 \\ \hline \end{array}$	ϵ_{C} 5 1.26 ϵ_{β}^{*} 24.35 24.35	Γ. 5.9 > ε _c 0.74 0.74	Hal $\alpha\beta$ $\langle 10^{-2} \rangle$ All mass $\Gamma_{\alpha\beta}$ 7.1 10 ⁻⁷ 7.1 10 ⁻⁷	f-lives in y $\tilde{T}_{1/2}^{\min}$ 3×10^{22} ses/energie $\tilde{T}_{1/2}^{\min}$ -3 $2 \ 10^{23}$ -3 $2 \ 10^{23}$	$\tilde{T}_{1/2}^{max}$ 5×10^{27} es in keV $\tilde{T}_{1/2}^{max}$ 8 10^{29} 4 10^{30}	
$ \begin{bmatrix} J_{f}^{\pi} \\ 0^{+} \\ \end{bmatrix} $ $ \begin{bmatrix} J_{f}^{\pi} \\ J_{f}^{\pi} \end{bmatrix} $		If (0.13%) $M_f^{**} - M_i$ $0 \pm 3.9 \pm 2.1$ Pd (1.25%) $M_f^{**} -$ $3.0 \pm 5.9 \pm$ $-16.5 \pm 5.9 \pm$ $4.8 \pm 5.9 \pm$	$(n2jl)_{\alpha}$ 110 M_i (n 4.1 4.1 4.1 4.1	$ \begin{array}{c c} (n2j)_{\alpha} \\ \hline (11) \\ \hline (110) \\ 110 \\ 1$	$(n2jl)_{\beta}$ ϵ^*_{α} $(n2jl)_{\beta}$ (110) 110 210 211	ϵ_{β}^{*} 5 65.3 ϵ_{α}^{*} 24.35 24.35 24.35 24.35	ϵ_{C} 5 1.26 ϵ_{β}^{*} 24.35 24.35 3.60 2.60	Γ. 5.9 > ε _c 0.74 0.74 0.23	Hal $\alpha\beta$ (10^{-2}) All mass $\Gamma_{\alpha\beta}$ $7.1 \ 10^{-7}$ $7.1 \ 10^{-7}$ $3.6 \ 10^{-7}$	$\tilde{T}_{1/2}^{\min}$ $\tilde{T}_{1/2}^{\min}$ 3×10^{22} ses/energie $\tilde{T}_{1/2}^{\min}$ $^{-3}$ 2 $^{-3}$ 2 $^{-3}$ 2 $^{-3}$ 2 $^{-3}$ 2 $^{-3}$ 3 $^{-3}$ 3 $^{-3}$ 3 $^{-3}$ 10^{23}	$\tilde{T}_{1/2}^{max}$ $\tilde{T}_{1/2}^{max}$ 5×10^{27} es in keV $\tilde{T}_{1/2}^{max}$ $8 \ 10^{29}$ $4 \ 10^{30}$ $7 \ 10^{30}$ $2 \ 10^{27}$	
$ \begin{bmatrix} J_{f}^{\pi} \\ 0^{+} \end{bmatrix} $ $ \begin{bmatrix} J_{f}^{\pi} \\ J_{f}^{\pi} \end{bmatrix} $		If (0.13%) $M_f^{**} - M_i$ $0 \pm 3.9 \pm 2.1$ Pd (1.25%) $M_f^{**} -$ $3.0 \pm 5.9 \pm$ $-16.5 \pm 5.9 \pm$ $4.8 \pm 5.9 \pm$ $5.1 \pm 5.9 \pm$ $7.0 \pm 5.0 \pm$	$(n2jl)_{\alpha}$ 110 M_i (n 4.1	$ \begin{array}{c c} (n2j)_{\alpha} \\ \hline 2jl)_{\alpha} \\ \hline 110 \\$	$(n2jl)_{\beta}$ ϵ^*_{α} $(n2jl)_{\beta}$ (110) 110 210) 211 210)	ϵ_{β}^{*} 5 65.3 ϵ_{α}^{*} 24.35 24.35 24.35 24.35 24.35 24.35	$\epsilon_{\mathcal{C}}$ 5 1.26 ϵ_{β}^{*} 24.35 24.35 3.60 3.33 0.67	Γ. 5.9 >	Hal $\alpha\beta$ (10^{-2}) All mass $\Gamma_{\alpha\beta}$ $7.1 \ 10^{-1}$ $3.6 \ 10^{-1}$ $3.1 \ 10^{-1}$	$\tilde{T}_{1/2}^{\min}$ $\tilde{T}_{1/2}^{\min}$ 3×10^{22} ses/energie $\tilde{T}_{1/2}^{\min}$ -3 $2 \ 10^{23}$ -3 $2 \ 10^{23}$ -3 $2 \ 10^{23}$ -3 $3 \ 10^{23}$ -3 $5 \ 10^{25}$ -3 $1 \ 10^{24}$	$\tilde{T}_{1/2}^{max}$ $\tilde{T}_{1/2}^{max}$ 5×10^{27} es in keV $\tilde{T}_{1/2}^{max}$ $8 \ 10^{29}$ $4 \ 10^{30}$ $7 \ 10^{30}$ $2 \ 10^{33}$ $4 \ 10^{31}$	
$ \begin{bmatrix} J_{f}^{\pi} \\ 0^{+} \end{bmatrix} $ $ \begin{bmatrix} J_{f}^{\pi} \\ J_{f}^{\pi} \end{bmatrix} $		If (0.13%) $M_f^{**} - M_i$ $0 \pm 3.9 \pm 2.1$ Pd (1.25%) $M_f^{**} -$ $3.0 \pm 5.9 \pm$ $-16.5 \pm 5.9 \pm$ $4.8 \pm 5.9 \pm$ $5.1 \pm 5.9 \pm$ $7.9 \pm 5.9 \pm$ $8.0 \pm 5.0 \pm$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} (n2j)_{\alpha} \\ \hline 2jl)_{\alpha} \\ \hline 110 \\$	$(n2jl)_{\beta}$ ϵ^*_{α} $(n2jl)_{\beta}$ (110) 110 210) 211) 310) 211	ϵ_{α}^{*} 5 65.3 ϵ_{α}^{*} 24.35 24.35 24.35 24.35 24.35 24.35 24.35 24.35 24.35 24.35	$ \begin{array}{c c} $	Γ. 5.9 >	Hal $\alpha\beta$ (10^{-2}) All mass $\Gamma_{\alpha\beta}$ $7.1 \ 10^{-1}$ $7.1 \ 10^{-1}$ $3.6 \ 10^{-1}$ $3.6 \ 10^{-1}$ $3.6 \ 10^{-1}$ $3.6 \ 10^{-1}$ $3.6 \ 10^{-1}$ $3.6 \ 10^{-1}$	$\tilde{T}_{1/2}^{\min}$ $\tilde{T}_{1/2}^{\min}$ 3×10^{22} ses/energie $\tilde{T}_{1/2}^{\min}$ -3 $2 \ 10^{23}$ -3 $2 \ 10^{23}$ -3 $3 \ 10^{23}$ -3 $5 \ 10^{25}$ -3 $1 \ 10^{24}$ -3 $1 \ 10^{26}$	$\tilde{T}_{1/2}^{max}$ $\tilde{T}_{1/2}^{max}$ 5×10^{27} es in keV $\tilde{T}_{1/2}^{max}$ $8 \ 10^{29}$ $4 \ 10^{30}$ $7 \ 10^{30}$ $2 \ 10^{33}$ $4 \ 10^{31}$ $6 \ 10^{33}$	

Improved Q-value measurements Klaus Blaum (MPI Heidelberg)											
nucl. tr.	Q_{old}	$E = B + E_{\gamma}$	Orbit.	$\Delta = Q(old) - E$	Q_{new}	$\Delta = Q(new) - E$					
$^{112}Sn \rightarrow ^{112}Cd$	1919.5(4.8)	1901.7	KL_1	17.8(4.8)	1919.82(16)	18.12(16)					
		1924.4	KK	-4.9(4.8)		-4.56(16)					
$^{152}Gd \rightarrow ^{152}Sm$	54.6(3.5)	54.79 + 0	KL_1	-0.19(3.50)	55.70(18)	0.91(18)					
$^{164}Er \rightarrow ^{164}Dy$	23.3(3.9)	18.09	l_1L_1	5.21(3.90)							

Remeasured Q-value:¹¹²Sn, ⁷⁴Se, ¹³⁶Ce, ⁹⁶Ru, ¹⁵²Gd, ¹⁶²Er, ¹⁶⁸Yb, ¹⁰⁶Cd, ¹⁵⁶Dy, ¹⁸⁰W need to be remeasured: ¹²⁴Xe, ¹³⁰Ba, ¹⁸⁴Os, ¹⁹⁰Pt ^{6/25/2015} Fedor Simkovic

126

				1.035	í			m _{ββ}	=50	meV				
Оvее half-lives			10^{10} $10^{3^{2}}$ $10^{3^{2}}$ $10^{3^{2}}$		<u>і</u> 1s2р	≖ 1s3s		* 2s2s	≭ 2s2p	x 2s3s	1s2 X	s.		
$m_{\beta\beta}=50meV$		$\begin{array}{c} \mathbf{\dot{A}} & 10 \\ \mathbf{\dot{A}} & \mathbf{\dot{C}} & 10^{30} \\ \mathbf{\dot{L}} & 10^{29} \\ 10^{28} \\ 10^{28} \\ 10^{27} \\ 10^{26} \\ $		2s					olo					
				10		¹⁵² Go	I			¹⁶⁴ E	r	180,	W	
Nucleus	$(n2jl)_a$	$(n2jl)_b$	E_a	E_b	E_C	Γ_{ab} (ke	eV)	Δ	(keV)	Т	$_{1/2}^{\min}$ (y)	$T_{1/2}^{n}$	$\frac{1}{2}$ (y)
$^{152}\mathrm{Gd}$	110	210	46.83	7.74	0.34	2.3×1	0^{-2}	-0.8	3 ± 0).18	4.	7×10^{28}	4.8	$\times 10^{29}$
	110	211	46.83	7.31	0.32	2.3×1	0^{-2}	-1.2	7 ± 0	0.18	4.2	2×10^{31}	1.1	$\times 10^{32}$
101-	110	310	46.83	1.72	0.11	3.2×1	0^{-2}	-7.0	7 ± 0	0.18	9.4	4×10^{31}	1.1	$\times 10^{32}$
$^{164}\mathrm{Er}$	210	210	9.05	9.05	0.22	8.6×1	0^{-3}	-6.8	2 ± 0).12	7.5	5×10^{32}	8.4	$\times 10^{32}$
	210	211	9.05	8.58	0.23	8.3×1	0^{-3}	-7.2	8 ± 0).12	4.2	2×10^{34}	4.6	$\times 10^{34}$
180337	210	310 110	9.05 62.25	2.05 62.25	U.II 1.96	1.8×1	0^{-2}	-13.9	92 ± 100	0.12	3.	0×10^{31}	3.9	$\times 10^{30}$ $\times 10^{31}$
100 VV	110	110	03.30	03.30	1.20	1.2×1	0 -	-11.2	$24 \pm$	0.27	1.0	5×10^{51}	1.8	$\times 10^{51}$

A comparison

 $(A,Z) \rightarrow (A,Z+2) + e^{-} + e^{-}$

Perturbation theory

Resonance enhancement of neutrinoless double electron capture M.I. Krivoruchenko, F. Š., D. Frekers, and A. Faessler, Nucl. Phys. A 859, 140-171 (2011)

$$e^- + e^- + (A,Z) \rightarrow (A,Z-2)^{**}$$

Breit-Wigner form

$$\frac{1}{T_{1/2}^{0\nu}} = \left|\frac{m_{\beta\beta}}{m_e}\right|^2 G^{01}(E_0, Z) \left|M^{0\nu}\right|^2 \qquad \Gamma^{0\nu ECEC}(J^{\pi}) = \frac{|V_{\alpha\beta}(J^{\pi})|^2}{(M_i - M_f)^2 + \Gamma_{\alpha\beta}^2/4} \Gamma_{\alpha\beta}$$

- 2νββ-decay background can be a problem
- Uncertainty in NMEs factor ~2, 3
- $0^+ \rightarrow 0^+, 2^+$ transitions
- Large Q-value

VIEN EVIN

- ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe ...
- Many exp. in construction, potential for observation in the case of inverted hierarchy (2020)

- 2νεε-decay strongly suppressed
- NMEs need to be calculated
- 0⁺→0⁺,0⁻, 1⁺, 1⁻ transitions
- Small Q-value
- Q-value needs to be measured at least with 100 eV accuracy
- ¹⁵²Gd, looking for additional
- small experiments yet

Jor Simkovic

Universe as a laboratory to study LN violation Belyaev, Ricci, Simkovic, Truhlik, arXiv: 1212.3155, Truhlik, MEDEX13 presentation

Cooling of strongly magnetized iron White dwarfs

(Partly)bosonic or fermionic neutrinos?

Bosons: In the ground state (T=0) all bosons occupy lowest energy state. **Fermions:** No two fermions can occupy the same state, so in the ground state (T=0), fermions stack from The lowest energy level to higher Energy levels, leaving no holes.

6/25/2015

Mixed statistics for neutrinos

- Definition of
mixed state $|\nu \rangle = \hat{a}^{\dagger}|0 \rangle$ $\equiv \cos \delta \ \hat{f}^{\dagger}|0 \rangle + \sin \delta \ \hat{b}^{\dagger}|0 \rangle$ $= \cos \delta \ |f \rangle + \sin \delta \ |b \rangle$
- with commutation $\hat{f}\hat{b} = e^{i\phi}\hat{b}\hat{f}$ $\hat{f}^{\dagger}\hat{b}^{\dagger} = e^{i\phi}\hat{b}^{\dagger}\hat{f}^{\dagger}$ Relations $\hat{f}\hat{b}^{\dagger} = e^{-i\phi}\hat{b}^{\dagger}\hat{f}$ $\hat{f}^{\dagger}\hat{b} = e^{-i\phi}\hat{b}\hat{f}^{\dagger}$

Amplitude for $2\nu\beta\beta$ $A^{2\nu} = [\cos \delta^4 + \cos \delta^2 \sin \delta^2 (1 - \cos \phi)] A^f + [\cos \delta^4 + \cos \delta^2 \sin \delta^2 (1 + \cos \phi)] A^b$ $= \cos \chi^2 A^f + \sin \chi^2 A^b$

Decay rate

$$W^{2\nu} = \cos \chi^4 W^f + \sin \chi^4 W^b$$

$$= (1-b^2) W^f + b^2 W^b$$

Partly bosonic neutrino requires knowing NME or log ft values for HSD or SSD

(calculations coming up soon)

6/25/2015

Fedor Simkovic

Looking for a signature of bosonic v

2νββ-decay half-lives
$$(0^+ \rightarrow 0^+_{g.s.}, 0^+ \rightarrow 0^+_1, 0^+ \rightarrow 2^+_1)$$

• HSD – NME needed
• SSD – log ft_{EC}, log ft_β needed

Normalized differential characteristics

- •The single electron energy distribution
- •The distribution of the total energy of two electrons
- •Angular correlations of two electrons

(free of NME and log ft)

