SuperB Workshop 15-18 February 2009

IFR Simulation General overview & Fast Simulation

M. Rotondo INFN Padova *M. Andreotti, G. Cibinetto and M. Munerato* Ferrara University and INFN

Orsay 16 Feb 2009

M. Rotondo

IFR Simulation: general overview

- Full Simulation
 - Present version mainly to perform background studies
- Fast Simulation
 - Tool to study feasibility of new analysis in a SuperB environment
- Detector Geometry Working Group: Optimization of the subdetector design
 - Other subdetectors use the Fast Simulation. We cannot... (next slide)
- Manpower available:
 - G. Cibinetto: Detector Geometry, Background
 - M Munerato: Full Sim. and Background
 - MR: Fast Sim. and Detector Geometry

IFR Simulation: Detector Optimization

- It is not possible to use only the Fast Sim. for the IFR detector optimization
 - The hadronic interaction at low momentum, crucial to π - μ separation: in particular the later and the longitudinal development of the shower require detailed studies.
 - The same fot Neutral Hadrons
- Timescale of the DGWG are short: **end 2009**. A complete Full Sim. will not be ready in time:
 - Digitization, patter recognition, tracking...
- Use the Full Sim. geometry only to study the shape of he hadronic shower in a sampling detector
 - Parameterize the shower with a functional form in the Fast Sim.
 - This is crucial for the Fast Sim itself, but could be used to optimize the detector geometry
- Any better idea or suggestion?
- This study require to involve the Full Sim. WG in this subject

IFR Fast Simulation: Geometry

- IFR Geometry in the V02 of the Fast Simulation
 - Simplified geometry: cylinders (barrel) + rings (endcaps)

configuation file)

Orsay 16 Feb 2009

M. Rotondo

IFR geometry for the Super B

- A first SuperB IFR configuration is available in PacSim
- According to CDR:
 - Reduced number of active layers to 8
 - More # of Interaction lenghts (6.5-7.5 instead of 5-6 we have now in BaBar)

-400 <u>-</u> -300

-200

-100

0

100

200

300

Orsay 16 Feb 2009

М.

400 z

IFR Fast Simulation: interaction

- *IFR in the V02 of the Fast Simulation*
 - Cylindrical geometry:
 - *N*-gone are available: this geometry will be used for V03
 - Outside the coil the magnetic field is modelled with a 0-Field
 - Tracks in the IFR are straight lines
- Material effects computed each step through the full detector
 - (multiple scattering, energy loss...)
 - interaction probability for hadrons given by the interaction length

IFR Fast Simulation: design

Performances

• mu/pi separation based on the # of traversed layers in the Iron: N>9 Layers

Hadronic Showers

- When a hadron showers, PacSimHits are created within the IFR, with shower informations available (David Brown talk):
 - Longitudinal development is parameterized (actual range is properly fluctuated)
 - For now, we do not take any other action for hadronic showers!
- Priority: better simulate the detector response to hadron showers and optimize the shower parameters in segmented environment
 - A relevant aspect is the lateral development: some measurements (for E>10GeV) are available (Barreiro et al. DESY 89-171, 1989).
 - Generate (fluctuate) mutiple PacIfrHit per layer, according to the transverse development
 - This will affect
 - the average size of the 2D cluster
 - the chi2 of the fit to the IFR tracks

M. Rotondo

Next PacSim (V03) version

- Properly fill the IfrQual object with all the relevant quantity
 - Up to now only the number of penetrated layers is filled
- *IFR response to hadronic showers*
 - Optimize the shower developemtn parameters
- Perform a fit to the 2D clusters with a straight line
 - Evaluate the matching between the fitted helix of the track and the track in the IFR, at the coil
 - Fitter chi2 and the matching are crucial to properly discriminate between muons and pions
- Start to look at the K_L

Conclusion

Output of the workshop

- Optimize the manpower available
- Prioritize the various activities on the IFR Simulation:
 - Fast Simulation
 - Detector Optimization activities: fast-full sim interplay
 - # of interaction lenghts
 - Spatial resolution, baseline: 4cm x 20cm
 - Transverse segmentation: better identify the neutral hadrons
 - Esplore the possibility to have a cylindrical active layer outside the EMC
 - Background studies: require the full sim, can affect the Geometry
- Further manpower will be very very welcome
 - Timeline is short!
- Any idea?