EMC in Fast Simulation

Chih-hsiang Cheng Caltech 2009.02.16 SuperB Workshop, LAL Orsay, France

SuperB baseline design

Geometry in the fastsim

- Barrel: cylinder. Fwd endcap: cone. Bkwd endcap: disk.
- 2D representation, with thickness used to calculate interaction probability and energy loss.
- Uniform $\Delta \phi$; uniform $\Delta \theta$ in endcaps; uniform $r\Delta \theta$ in barrel.

Display

Proposed backward calorimeter

- Behind DCH I propose to place Pb-scintillator sampling calorimeter
 - 2.8 mm thick Pb plates → 1/2 X₀
 - 3.0 mm thick scintillator tiles
 - Sizes vary from 3.8 cm \times 3.8 cm \rightarrow 7.8 cm \times 7.8 cm (R_M \sim 6.0 cm)
 - cylindrical geometry, r_i=0.31 m, r_a=0.75 m
 - → coverage~ 300mr
 - 24 planes with thickness of 12X₀
 - scintillator is segmented into tiles, size increasing outwards
 - → total: 11,520 channels
 - Scintillator tiles are read out with WLS fibers coupled to a SIPM

G. Eigen, SuperB meeting Elba, 31/05/2008

Gerald Eigen

8 ring, 60 tiles/ring

z view

Not projective

Pb: R_M=1.5 cm

New materials in MaterialsList.data

- Forward LSO: Lu₂SiO₅; LYSO: add ~5% Yttrium
 - d= 7.4 g/cm³; X₀^{*}= 1.14 cm; λ_1^* = 21 cm. (R_M= 2.07 cm)
- Backward Pb-scintillator plates: (2.8mm Pb + 3.0mm scintillator tiles)x24
 - Treated as a homogeneous material, rather than sampling plates.
 - 2.8mm Pb = 0.5 X₀; 3mm Polystyrene ~ 0.007 X₀.

	Z	A	X0	d	X_0^* (cm)	$\lambda_{l}^{*}(cm)$	R _M (cm)
Pb	82	207.2	6.37	11.35	0.56	17.6	1.6
Polystyrene	3.5	6.5	43.8	1.06	41.3	77.1	6.8

$$\langle d \rangle = (d_1 L_1 + d_2 L_2) / (L_1 + L_2) = 6.03$$

$$\langle A \rangle = 69.3 \qquad \langle Z \rangle = 28.1$$

$$\langle X_0^* \rangle = \frac{L_1 + L_2}{L_1 / X_{0;1}^* + L_2 / X_{0;2}^*} = 1.14 \qquad \langle X_0 \rangle = 6.87$$

New materials continued

• Moliere radius: Since the scintillator only contributes to a small amount of radiation length, only Pb contributes to creating shower particles. The spacing between Pb makes the shower profile larger, simply from geometric effect.

$$\langle R_M \rangle \simeq R_M^{\rm Pb} \frac{L_1 + L_2}{L_1} = 3.3 \text{cm}$$

EMC clusters

- An EMC cluster is represented by the class PacEmcCluster (inherit from AbsRecoCalo), which contains a list of PacEmcDigi. The latter represents the energy deposition in a single crystal.
- Both classes mimic the respective classes in BaBar, but no calibration, timing, and data flow information are represented.

lonization

- If a particle does not shower in the EMC (effects: normal, stop, interact, brems, compton, convert), we simply distribute the energy loss to the crystals it passes through. Energy is proportional to the path length in each crystal.
- Curving inside the EMC is ignored.
- Energy in each crystal is then smeared according to $\frac{\sigma_E}{E} = rac{a}{E^d} \oplus b$

a, b, d are configuration parameters

EM shower

- The lateral shower development is assumed to be symmetric
- On average 10% of the deposited energy lies outside R_M, and about 1% outside 3.5 R_M.
- The radial distribution can be modeled phenomenologically with

 R_M is allowed to fluctuate, so do energy in each crystal and eccentricity (axes along θ/ϕ , no rotation).

Performance

One-GeV photons: Blue= FastSim (BaBar config); Red= BaBar full Sim

0.09

0.11

0.1

0.12

0.13

0.14

0.15

yy Mass (GeV)

0.16

0.09

0.1

Need calibration. Resolution too high.

0.11

0.12

0.13

0.14

0.15

γγ Mass (GeV)

0.16

Longitudinal shower profile

- Need to know how much energy should be deposited on average, given the particle energy and the radiation lengths in and in front of the EMC, before creating clusters.
 - Not in PacEmc, but calculated in PacSim (D. Brown)
- Profile depends on the material atomic number Z.
- Tricky to model when shower transits from one material to another. But important for detector study.

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$$

The integral has no closed-form solution. We use numerical integration.

Expected energy deposition

- Except for very low energy, up to several percent energy leaks out of the back side.
- See energy loss due to preshower for low energy photons.
- Need to check against the full simulation.

Hadronic shower

• Similar way to calculate the longitudinal integral, replacing radiation length with interaction length. However, it grossly underestimates the energy deposition.

- Hadronic showers are irregular and difficult to model with simple parametrizations.
- Use random walk to navigate through crystals and create large fluctuation to create irregular patterns in a cluster.

Cluster merging

- Merging is straight forward, simply adding energies in each crystal.
- There is no cluster reconstruction process.We know which crystals belong to the same cluster to begin with.
- We only merge clusters that are close enough to produce a single bump cluster.
 - #bumps = #local maxima
 - local maxima≡crystal energy higher than its neighboring eight.
 - This function hasn't been turned on in V0.0.2.

Is this one- or two-bump?

Cluster splitting

- Need to split clusters to simulate hadronic shower split-offs.
- Split clusters that have more than one local maximum.
 - Assign a weight to each crystal j for each new one-bump clusters α :

$$w_j^{(\alpha)} = \frac{E^{(\alpha)} e^{-2.5|\vec{r}_{(\alpha)} - \vec{r}_j|}}{\sum_{\alpha} E^{(\alpha)} e^{-2.5|\vec{r}_{(\alpha)} - \vec{r}_j|}} \qquad \qquad E^{(\alpha)} = \sum_j w_j^{(\alpha)} E_j \qquad \qquad \sum_{\alpha} w_j^{(\alpha)} = 1$$

• Calculate weights and then new $E^{(\alpha)}$ and $r_{(\alpha)}$ iteratively until converge.

This function hasn't been turned on in V0.0.2.

More to do

- Ability to divide forward endcap into two regions (Csl, and LYSO).
- Track-cluster matching information.
- Truth association:
 - I GTrack ↔ n clusters (split); n GTracks ↔ I cluster (merge)
- Validation; QA; parameter tuning.
- Energy calibration.
- Hadronic shower.
- Background frame mixing.