SuperB FastSim status

David Brown, LBNL on behalf of the Fast Simulation Working Group

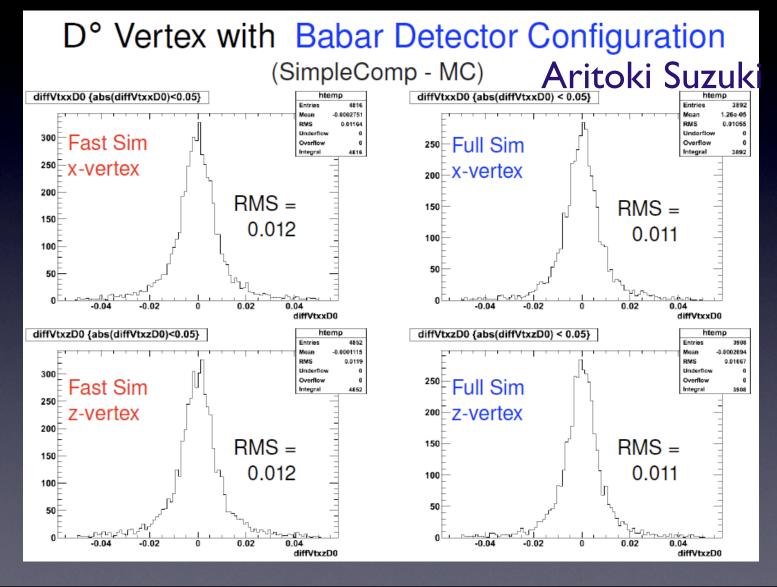
> SuperB Workshop Orsay 17 Février 2009

SuperB FastSim Goals

- Detector optimization studies
 - beampipe, tracker layout, Z=0?, ...
 - forward PID, forwards+backwards EMC, ...
 - Coordinated by the Geometry Task Force
- Physics reach studies
 - performance on benchmark channels
 - high-statistics studies of rare channels
- Both needed for TDR + mini-TDR

SuperB FastSim Design

- Simplify detector element description
 - cylinders, rings, cones, ...
- Fully model particle passage through detector
 - Energy loss, multiple scattering, interactions, showering...
- Parameterize detector response
 - track hit resolution, cluster shape, Cherenkov ring resolution, ...
- 'Reconstruct' tracks, clusters, rings, ...
 - Model overlaps and background effects
- Output compatible with BaBar analysis tools
 - Vertexing, tagging, PID, BtuTuple, ...

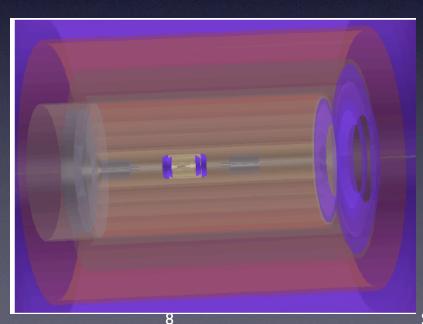

Progress since Elba

- Simulation of neutral particles
- Simulation of outer detector (coil+IFR)
- Ring and cone geometries
- Daughters for decay, conversion, and brems
- EM and hadronic shower modeling
- Tuning and refinement of detector response
 - Dirc, Emc, Svt, Dch, ...
- XML-based configuration description
- Release System prototype
- Update Layer0, DCH configuration
- All in release FastSim/V0.0.2

Tracking Simulation

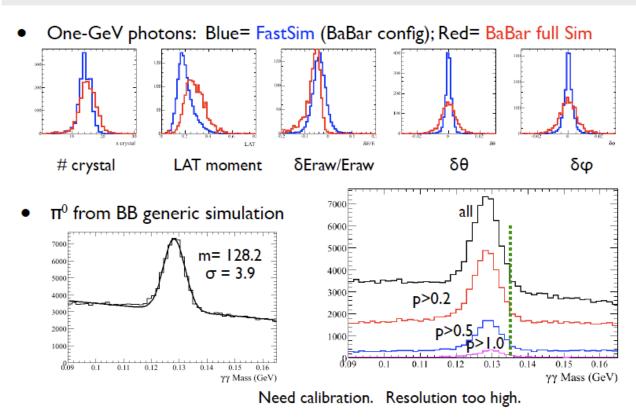
- Multiple measurement types supported
 - double-sided Si strips, Si pixels, wires, ...
 - Can be associated to any geometry
 - cylinder, cone, ring, ...
- Hit positions smeared by an analytic function
 - double-Gaussian for Svt, 'T2D' function for Dch
- Electronic Inefficiency, geometric overlaps and gaps modeled statistically
 - EG Svt support ribs are modeled as a thick layer of CF with very large gaps

Tracking Response



Dirc Simulation (Rolf Andreassen)

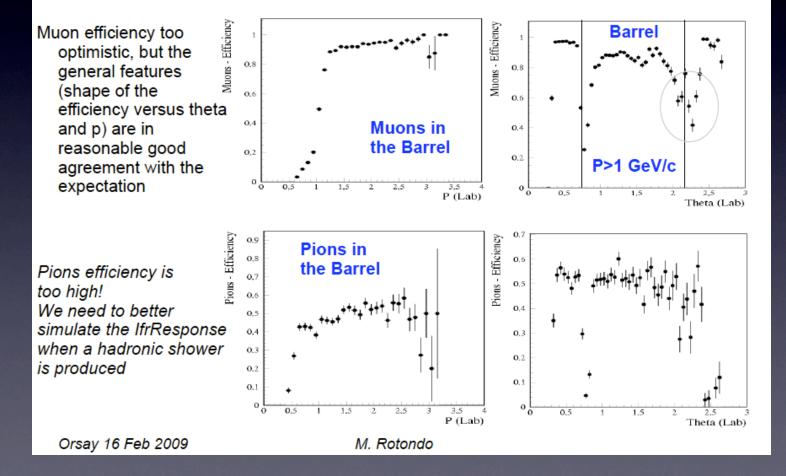
- Seed rings on true position, direction
- Generate photons according to ring dictionary
- Smear Θ_C with reconstructed track angle error
 - By adjusting parameters, can model BaBar Dirc or focusing Dirc


Emc Simulation (Chih-hsiang Cheng)

- Parameterized clusters based on energy deposition on a grid
- Parameterized resolution and shape
- Also forward (LYSO) and backwards (Pb-Scintilator) calorimeters

EMC Response

Performance


Ifr Simulation (Marcello Rotondo, Giuliano Castelli

- Outer-detector is modeled as 0-Field
 - straight-line trajectories
- (muon) hits are reconstructed as 2-D clusters
- Fit to hits gives chisquared
- mu/pi separation based on # of hit layers
 - reasonable agreement with full sim

IFR Response

Performances: muon selector

• mu/pi separation based on the # of traversed layers in the Iron: N>9 Layers

XML-based configuration

<edml>

<measures>

```
<device id="SiCyl" type="DoubleSiliconCylinder" phirms="0.0015" zrms="0.002"</pre>
phieff="0.95" zeff="0.95" />
    <device id="Axial" type="DriftChamber"</pre>
                                                              eff="0.99"
                                                rms="0.0125"
                                                                           angle="0.0" />
    <device id="Stereo+" type="DriftChamber"</pre>
                                                rms="0.0125"
                                                              eff="0.99" angle="0.06" />
                                                                           angle="-0.06" />
    <device id="Stereo-" type="DriftChamber"</pre>
                                                rms="0.0125"
                                                              eff="0.99"
 </measures>
 <detector name="PacCylDetector">
    <cyl name="Beampipe" zmin="-5.366314" zmax="10.033158" radii="2.500" thick="0.250"
mat="pep-BPipeB" />
    <cyl name="SvtL1" zmin="-6.763534" zmax="12.923769" radii="3.300" thick="0.034"</pre>
mat="svt-Silicon" meas="SiCyl" />
    <cvl name="SvtL2" zmin="-7.986102" zmax="15.453053" radii="4.000" thick="0.034"</pre>
mat="svt-Silicon" meas="SiCyl" />
    <ring name="EmcForward" z="207" lowradii="81" hiradii="105" thick="30.0" mat="emc-</pre>
CsI" meas="Emc" />
    <ring name="IfrIron1" z="239.5" lowradii="81" hiradii="300" thick="2"</pre>
                                                                                 mat="ifr-
Iron" />
. . .
```

</detector> </edml>

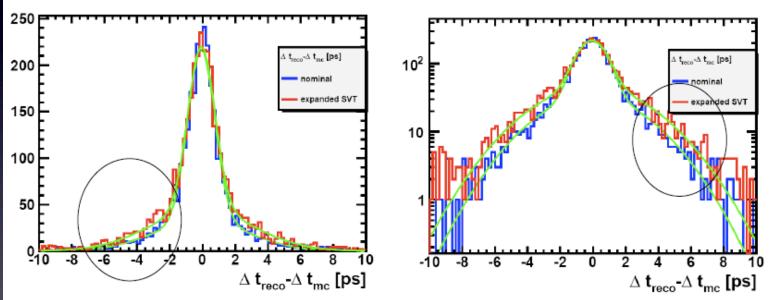
FastSim SuperB Computing

- Subversion code repository
- Release definition and configuration system
 - ie Releases/FastSim/V0.0.2
- BaBar package access for SuperB users
- First attempts to build a standalone SuperB release

Ongoing Development

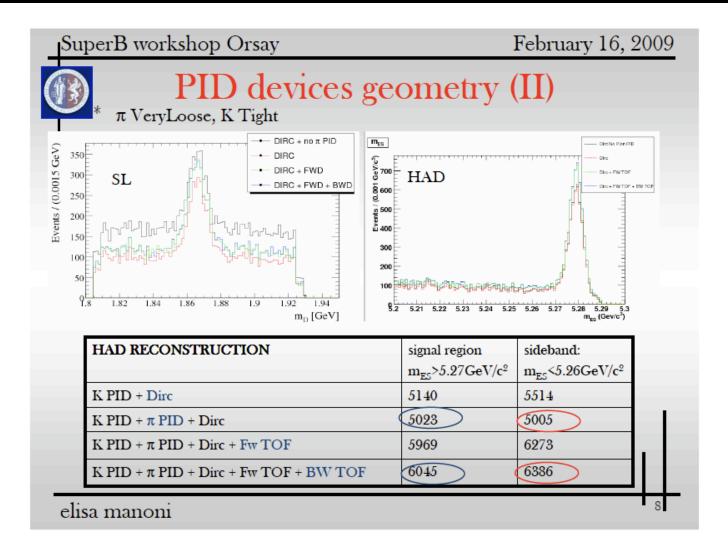
- Decays-in-detector (Mike, Gabriele)
 - mostly working code, still chasing leaks
- Hadronic interaction daughter generation (Dave)
- Cluster merging (Chih-hsiang)
- Hadronic showers in Ifr (Marcello)
- Add 'time' to PacSimHit (Nicolas)
- N-agon geometry (Dave)

Missing Pieces


- Track hit confusion (Doug)
- dE/dx simulation
 - Svt and Dch!
- Trigger simulation
- Background mixing
- Forward PID alternative measurements
- PID selectors (Orsay group)
- Tagging for SuperB
- Other?

FastSim in TDR Phase

- For the TDR, FastSim must evolve from a development project to a production tool
 - Completion schedule of ongoing development
 - Describe known missing essential pieces and (if necessary) find people to work on them
- People are starting to use FastSim for real work
 - examples from DGWG meeting yesterday


Expanded layer 4+5

∆t resolution Gabriele Simi

 most of the additional events are populating mainly the tails of the resolution

BReco with FastSim

Conclusions

- SuperB FastSim V0.0.2 is ready
 - Useful studies already possible
- Remaining features needed for TDR under development
 - Hope to make progress on key issues here
 - Aim for full functionality by April 2009 Physics Workshop
- Users and contributors are welcome!