

Beyond the SM with flavour physics: why?

Indirect searches look for new physics through virtual effects of new particles in loop corrections

- * SM FCNCs and CP-violating processes occur at the loop level
- * SM quark FV and CPV are governed by the weak interactions and suppressed by mixing angles
- * SM quark CPV comes from a single source (neglecting θ_{QCD})
- New Physics does not necessarily share the SM pattern of FV and CPV: very large NP effects are possible

Past (SM) successes:1970: charm from $K^0 \rightarrow \mu^+ \mu^-$ (GIM)1973: 3rd generation from e_K (Kobayashi & Maskawa)early 90s: heavy top from Δm_B Marco CiuchiniSuperB Workshop - Orsay -17 February 2009Page 2

 $\mathcal{P}_{eff}^{\text{INP}} = \mathcal{L}_{SM} + \sum_{k} (\sum_{i} C_{i}^{k} Q_{i}^{(k+4)}) /$

NP flavour effects are governed by two players:

- i) the new physics scale Λ
- ii) the effective flavour-violating couplings C's

The "flavour problem": if $\Lambda \approx 1$ TeV, C's $\ll 1$ The bright side: flavour physics could probe NP scales beyond the reach of the LHC

SuperB physics goals

NP found at LHC

- determine the FV and CPV couplings of the NP Lagrangian
- look for heavier
 states beyond the
 LHC discovery reach

NP not found at LHC

look for any deviation
 from the SM signalling
 NP in the energy
 region 5-100 TeV

 exclude regions of the NP parameter space

What SuperB is for

- improve precision/sensitivity
 of B-factories x5-10
- test the CKM paradigm and determine V_{CKM} at 1% level
- increase sensitivity to LFV in τ decays by 1 order of magnitude
- explore CPV with charm
- many other studies...

feasible with 75 ab^{-1} collected at Y(4S) (+ $D\bar{D}$ & $\tau\bar{\tau}$ thresholds)

T. Browder at al., arXiv:0710.3799 SuperB Workshop 6, arXiv:0810.1312

 $\boldsymbol{\alpha}$ K $\bigcirc \pi^+$ 111 N Ζ SIG ш 0 PTUAL ш ONC A High-Luminosity Asymmetric e⁺e⁻ Super Flavour Factory ()

320 signers of ~80 institutions

476 pages (~130 about physics)

arXiv:0709.0451

SuperB physics

B_d physics @Y(45) in tables

Observable	B factories (2 ab^{-1})	$\operatorname{Super} B$ (75 ab^{-1})
$sin(2\beta) (J/\psi K^0)$	0.018	0.005 (†)
$\cos(2\beta) (J/\psi K^{*0})$	0.30	0.05
$sin(2\beta)$ (Dh ⁰)	0.10	0.02
$\cos(2\beta)$ (Dh ⁰)	0.20	0.04
$S(J/\psi \pi^0)$	0.10	0.02
$S(D^+D^-)$	0.20	0.03
$S(\phi K^0)$	0.13	0.02 (*)
$S(\eta' K^0)$	0.05	0.01 (*)
$S(K_S^0 K_S^0 K_S^0)$	0.15	0.02 (*)
$S(K_S^0\pi^0)$	0.15	0.02 (*)
$S(\omega K_{0}^{s})$	0.17	0.03 (*)
$S(f_0 K_S^0)$	0.12	0.02 (*)
$\gamma (B \rightarrow DK, D \rightarrow CP \text{ eigenstat})$	$\sim 15^{\circ}$ $\sim 15^{\circ}$	2.5°
$\gamma (B \rightarrow DK, D \rightarrow \text{suppressed st})$	tates) $\sim 12^{\circ}$	2.0°
$\gamma (B \rightarrow DK, D \rightarrow \text{multibody st})$	ates) $\sim 9^{\circ}$	1.5°
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°
$\alpha (B \rightarrow \pi \pi)$	$\sim 16^{\circ}$	3°
$\alpha (B \rightarrow \rho \rho)$	$\sim 7^{\circ}$	1-2° (*)
$\alpha (B \rightarrow \rho \pi)$	$\sim 12^{\circ}$	2°
α (combined)	$\sim 6^{\circ}$	$1-2^{\circ}$ (*)
$2\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K^{0}_{S}\pi^{\mp})$	20°	5°
$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$ V_{cb} $ (inclusive)	1% (*)	0.5% (*)
$ V_{ub} $ (exclusive)	8% (+)	3.0% (*)
$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)
$BR(B \rightarrow \tau \nu)$	20%	4% (†)
$BR(B \rightarrow \mu\nu)$	visible	5%
$BR(B \rightarrow D\tau\nu)$	10%	2%
$BB(B \rightarrow a\gamma)$	15%	3% (t)
$BR(B \rightarrow \omega \gamma)$	30%	5%
$A_{CP}(B \rightarrow K^* \gamma)$	0.007 (†)	0.004 († *)
$A_{CP}(B \rightarrow \rho \gamma)$	~ 0.20	0.05
$A_{CP}(b \rightarrow s\gamma)$	$0.012(\dagger)$	0.004 (†)
$A_{CP}(b \rightarrow (s + d)\gamma)$	0.03	0.006 (†)
$S(K_c^0\pi^0\gamma)$	0.15	0.02 (*)
$S(\rho^0 \gamma)$	possible	0.10
$A_{CP}(B \rightarrow K^*\ell\ell)$	7%	1%
$A^{FB}(B \rightarrow K^*\ell\ell)s_0$	25%	9%
$A^{FB}(B \rightarrow X_s \ell \ell) s_0$	35%	5%
$BR(B \rightarrow K\nu\overline{\nu})$	visible	20%
$BR(B \rightarrow \pi \nu \bar{\nu})$	-	possible

arXi	v:0709.0451	Mode	Observable	B Factories (2 ab ⁻¹	¹) Super <i>B</i> (75 ab ⁻¹)
arXi	v:0810.1312	$D^0 \rightarrow K^+ K^-$	y_{CP}	$2-3 \times 10^{-3}$	5×10^{-4}
		$D^0 \rightarrow K^+ \pi^-$	y'_D	$2-3 \times 10^{-3}$	7×10^{-4}
			$x_{D}^{\prime 2}$	$1-2 \times 10^{-4}$	3×10^{-5}
ab^{-1})	charm	$D^0 \rightarrow K^0_s \pi^+ \pi^-$	y_D	$2-3 \times 10^{-3}$	5×10^{-4}
·)			x_D	$2-3 \times 10^{-3}$	5×10^{-4}
	physics	Average	y_D	$1-2 \times 10^{-3}$	3×10^{-4}
			x_D	$2-3 \times 10^{-3}$	5×10^{-4}
	Channel		Sensitivity	-	•
)	$D^0 \rightarrow e^+ e^-, D^0$	$\rightarrow \mu^{+}\mu^{-}$	1×10^{-8}		1YSICS
)	$D^0 \rightarrow \pi^0 e^+ e^-, L$	$D^0 \rightarrow \pi^0 \mu^+ \mu^-$	2×10^{-8}	Decom	Siti-it-
Ś	$D^0 \rightarrow \eta e^+ e^-, D^0$	$\rightarrow \eta \mu^+ \mu^-$	3×10^{-8}	Process	Sensitivity
)	$D^0 \rightarrow K_s^0 e^+ e^-, L$	$D^0 \rightarrow K_s^0 \mu^+ \mu^-$	3×10^{-8}	$\mathcal{B}(\tau \to \mu \gamma$) 2×10^{-9}
,	$D^+ \rightarrow \pi^+ e^+ e^-$,	$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	1×10^{-8}	$\mathcal{B}(\tau \to e \gamma)$) 2×10^{-9}
				$\mathcal{B}(\tau \rightarrow \mu \mu)$	$(\mu) 2 \times 10^{-10}$
	$D^0 \rightarrow e^{\pm} \mu^{\mp}$		1×10^{-8}	$\mathcal{B}(\tau \to eee$	2×10^{-10}
	$D^+ \rightarrow \pi^+ e^{\pm} \mu^{\mp}$		1×10^{-8}	$\mathcal{B}(-)$	4×10^{-10}
)	$D^0 \rightarrow \pi^0 e^{\pm} \mu^{\mp}$		2×10^{-8}	$\mathcal{B}(\tau \to \mu \eta)$) 4 X 10
)	$D^0 \rightarrow \eta e^{\pm} \mu^{\mp}$		3×10^{-8}	$\mathcal{B}(\tau \to e\eta)$	6×10^{-10}
<i>.</i>	$D^0 \rightarrow K^0_s e^{\pm} \mu^{\mp}$		3×10^{-8}	$\mathcal{B}(\tau \rightarrow \ell K$	${}^{0}_{s}$) 2 × 10 ⁻¹⁰
)				+ τ FC phy	sics (CPV,)
9 3	$D^+ \rightarrow \pi^- e^+ e^+$,	$D^+ \rightarrow K^- e^+ e^+$	1×10^{-8}		
<u>ś</u>	$D^+ \rightarrow \pi^- \mu^+ \mu^+,$	$D^+ \rightarrow K^- \mu^+ \mu^+$	1×10^{-8}	+B, phys	$ics @\gamma(5S)$
	$D^+ \rightarrow \pi^- e^\pm \mu^\mp$,	$D^+ \rightarrow K^- e^{\pm} \mu^{\mp}$	1×10^{-8}	-s p/-	
	Mode O	bservable $\Upsilon(4S)$	$\psi(3770)$	LHCb	SuperB
		(75 ab^{-1})	1) (300 fb ⁻¹) (10 fb^{-1})	ouper o
	$D^0 \rightarrow K^+ \pi^-$	x'^2 3 × 10 ⁻	5	6×10^{-5}	a
*)	D0 T 1 T	$y' 7 \times 10^{-1}$	4	9 × 10 ⁻⁴ "+pc	acuna chact"
.)	$D^0 \rightarrow K^+ K^-$ $D^0 \rightarrow K^0 - +$	$y_{CP} = 5 \times 10^{-10}$	- 4	5 × 10-4	cusure chest
ý	$D \rightarrow K_S \pi \pi$	$x = 4.9 \times 10^{-10}$ $u = 3.5 \times 10^{-10}$	- 4	and the second second	s of new
		$ q/p $ 3×10^{-10}	2		ale valor
		ϕ 2°		Non Con	physics-
	$\psi(3770) \rightarrow D^0 \overline{D}^0$	x^2	$(1-2) \times 10$	- 8	sensitive 🔊
		y	$(1-2) \times 10$		
		cos δ	(0.01-0.02		observables
Vorksh	op - Orsay -17 l	February 2009)		Page 6

Marco Ciuchini

Golden modes or not golden modes... no single golden mode many observables sensitive to New Physics H^+ Minimal Non-Minimal Non-Minimal NP Right-Handed high $tan\beta$ \mathbf{FV} FV (2-3) FV (1-3) Z-penguins currents Х $\mathcal{B}(B \to X_s \gamma)$ Ο \mathbf{O} Х $A_{CP}(B \to X_s \gamma)$ O $\mathcal{B}(B \rightarrow \tau \nu)$ X-CKM $\mathcal{B}(B \to X_s l^+ l^-)$ O \mathbf{O} Ο $\mathcal{B}(B \to K \nu \overline{\nu})$ Х \mathbf{O} $S(K_S \pi^0 \gamma)$ Х X-CKMΟ Examples X The GOLDEN channel for the given scenario from the B (-CKM) requires an improved CKM determination O Not the GOLDEN channel for the given NP scenario sector but can show measurable deviations from the SM SuperB Workshop VI, arXiv:0810.1312

SuperB Workshop - Orsay -17 February 2009

Marco Ciuchini

Overture: CKM matrix at 1%

First scenario: SUSY!

Suppose in 201x we will have:

- several candidate sparticles (incl. squark(s))
 with masses below 1 TeV compatible with
 - a MSSM spectrum found at Atlas and CMS
- a value of the B_s - B_s mixing phase much larger than the SM expectation measured at LHCb
- inconclusive hints of deviation from the SM in BR($B_s \rightarrow \mu^+ \mu^-$) at LHCb, Atlas and CMS

Great success of the LHC!!! Evidence for a non-MFV MSSM, but which one?

MSSM: reconstructing the Lagrangian

	Parameters	MSSN	٨	S	5M
	gauge+Higgs	14			6
	masses	30(+v _R	36)	9	(+v _R 12)
	mixing angles	39(+v _R	54)	3	$(+v_{R}6)$
	phases	41 (+v _R	56)	1	(+v _R 2)
	Total	124 (+v _R	160)	19	(+v _R 26)
	SM parameter m	natch:	FC vs FV	V&CPV	16-8
	MSSM paramete	er match:	FC vs FV	V&CPV	50-110
7	* fast increase of	f the # of	FV&CP	/ paran	neters
7	* FV&CPV are rel	ated to bo	sic prop	erties	of the
	NP Lagrangian ((e.g. SUS)	/ breakir	ig in th	e MSSN

Flavour violation in the squark sector

and similarly for $M^2{}_{\widetilde{u}}$

NP scale: $m_{\tilde{q}}$ FV & CPV couplings: $(\delta^{d}_{ij})_{AB} = (\Delta^{d}_{ij})_{AB}/m_{\tilde{q}}^{2}$

Back to our scenario...

Assume that the LHC measured: $m_{\tilde{q}} \sim 500 \text{ GeV}$ $\Phi_s \sim 10 \Phi_s^{SM} \sim -20^{\circ}$ This would already imply: $|(\delta^d_{23})_{LL}(\delta^d_{23})_{RR}| \sim 0.003$

 $|\Delta S|$ up to 0.1 in b \rightarrow s penguindominated CP asymmetries

Im $(\delta^{d}_{23})_{LR}$ vs Re $(\delta^{d}_{23})_{LR}$ reconstruction of $(\delta^{d}_{23})_{LR}$ =0.028 e^{i π /4} for $\Lambda = m_{\tilde{g}} = m_{\tilde{q}} = 1$ TeV

Determination of (δ^d23)_{LR} using SuperB data

i) sensitive to $m_{\tilde{q}} < 20 \text{ TeV}$ ii) sensitive to $|(\delta^{d}_{23})_{LR}| > 10^{-2}$ for $m_{\tilde{q}} < 1 \text{ TeV}$

An example: hierarchical soft terms

Sparticles at the EW scale Sparticles at the EW scale Cohen, Kaplan, Nelson, hep-ph/9607394but for 1st and 2nd generation squarks and sleptons - no "unnatural" correction to the Higgs mass - alleviate the flavour problem - indicate "natural" values for the δ 's:

$$\begin{split} \tilde{\delta}_{db}^{LL} &\approx V_{td}^* \sim 0.01 \qquad \tilde{\delta}_{sb}^{LL} \approx V_{ts}^* \sim 0.05 \\ \hat{\delta}_{i3}^{LR} &\equiv \frac{\mathcal{M}_{L3,R3}^2}{\tilde{m}^2} \hat{\delta}_{i3}^{LL} \qquad i, j = 1, 2 \end{split}$$

$$\hat{\delta}_{ij}^{LL} \equiv \hat{\delta}_{i3}^{LL} \hat{\delta}_{j3}^{LL*} \quad \hat{\delta}_{ij}^{LR} \equiv \frac{\mathcal{M}_{L3,R3}^2}{\tilde{m}^2} \hat{\delta}_{i3}^{LL} \hat{\delta}_{j3}^{RR*}$$

these figures are in the ballpark of SuperB sensitivities

Are there SUSY-GUT's?

mass insertion analysis in a

In the UTfit range for the B_s mixing phase: BR($\tau \rightarrow \mu \gamma$) > 3 x 10⁻⁹ !! Hisano, Shimizu, arXiv:0805.3327

In a SU(5) SUSY-GUT with v_R and supergravity-like boundary conditions: large φ_s requires too large BR($\tau \rightarrow \mu \gamma$): marginal !!!

In SO(10), due to the richer Higgs structure, the correlation φ_s -BR($\tau \rightarrow \mu \gamma$) can be relaxed large φ_s correspond to large CP asymmetries in B $\rightarrow X_s \gamma$

τ flavour violation

Process Sensitivity 2×10^{-9} $\mathcal{B}(\tau \to \mu \gamma)$ 2×10^{-9} $\mathcal{B}(\tau \to e \gamma)$ 2×10^{-10} $\mathcal{B}(\tau \to \mu \,\mu \,\mu)$ 2×10^{-10} $\mathcal{B}(\tau \to eee)$ 4×10^{-10} $\mathcal{B}(\tau \to \mu \eta)$ 6×10^{-10} $\mathcal{B}(\tau \rightarrow e\eta)$ probing the interesting region $\mathcal{B}(\tau \to \ell K_s^0)$ 2×10^{-10}

- help disentangle SUSY and LHT models

Isidori, 4th SuperB workshop

not just yet-another

order of magnitude: start

- in Grand-Unified models:
- * can identify the origin of LFV (CKM or PMNS);
- * is complementary to the MEG sensitivity to BR(μ ->e γ) ~10⁻¹³

Lepton MFV GUT models

 $B(\tau \rightarrow \mu \gamma): B(\tau \rightarrow e \gamma): B(\mu \rightarrow e \gamma) \sim \lambda^{-6}: \lambda^{-4}: 1 \sim 10^4: 500: 1 \blacktriangleleft LFV \text{ from CKM}$

 $B(\tau \rightarrow \mu \gamma): B(\tau \rightarrow e \gamma): B(\mu \rightarrow e \gamma) \sim [500-10]: 1:1$

Marco Ciuchini

SuperB Workshop - Orsay -17 February 2009

LFV from PMNS

OVERALL SUSY ASSESSMENT

Combining high-p_t and flavour data we can constrain \mathscr{L}_{SUSY} and thus learn about:

- * the SUSY-breaking mediation mechanism
- * the flavour breaking mechanism
- * the underlying presence of a GUT structure
- * the origin of lepton flavour violation

Okada et al., arXiv:0711.2935

Model	$A_{\rm CP}(s\gamma)$,	$S_{\rm CP}(K^*\gamma)$	$A_{\rm CP}(d\gamma)$	$S_{\rm CP}(\rho\gamma)$	$\Delta S_{\rm CP}(\phi K_S)$	$S_{\rm CP}(B_s \to J/\psi\phi)$	$\Delta m_{B_s}/\Delta m_{B_d}$ vs. ϕ_s	$\mu \to e\gamma$	$\tau \to \mu \gamma$	$\tau \to e \gamma$
mSUGRA										
MSSM+RN										
Degenerate ν_R , NH			irne	devi	intion	exnecte	h			
Degenerate ν_R , IH		V IC	i ge	uevi	union	chpecie				
Degenerate ν_R , D										
Non-degen. ν_R (1), NH		• d	ster	table	e devi	ation no	ssible			
Non-degen. ν_R (II), NH										
SU(5)+RN										
Degenerate ν_R , NH		•		•	•	•				
Degenerate ν_R , IH				•	\checkmark	\checkmark	•		\sim	
Degenerate ν_R , D		•		•	•	•			\sim	
Non-degen. ν_R (1), NH				,	\checkmark	\checkmark	•			,
Non-degen. ν_R (II), NH	,			√	,		•			
U(2)FS	\sim	\checkmark			\sim	\sim	•	_	_	_

Second scenario: SUSY or little Higgs?

Let's change scenario:

- MEG observed LFV in $\mu \rightarrow e_{\gamma}$
- evidence of new particles but no clear NP picture emerges at LHC
- LFV possibly observed at LHCb in $\tau \rightarrow \mu \mu \mu$ if BR is very large

Could it still be SUSY? Or is it Little Higgs model? Or something else? How can we tell?

SuperB can help telling SUSY and LHT apart

Blanke et al., hep-ph/0702136 SuperB CDR, arXiv:0709.0451

ratio	LHT	MSSM (dipole)	MSSM (Higgs)
$\frac{\mathcal{B}(\tau^- \rightarrow e^- e^+ e^-)}{\mathcal{B}(\tau \rightarrow e\gamma)}$	0.42.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathcal{B}(\tau \to \mu \gamma)}$	0.42.3	$\sim 2\cdot 10^{-3}$	0.060.1
$\frac{\mathcal{B}(\tau^- \to e^- \mu^+ \mu^-)}{\mathcal{B}(\tau \to e\gamma)}$	0.31.6	$\sim 2\cdot 10^{-3}$	$0.02 \dots 0.04$
$\frac{\mathcal{B}(\tau^- \to \mu^- e^+ e^-)}{\mathcal{B}(\tau \to \mu \gamma)}$	0.31.6	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{\mathcal{B}(\tau^- \to e^- e^+ e^-)}{\mathcal{B}(\tau^- \to e^- \mu^+ \mu^-)}$	1.31.7	~ 5	0.30.5
$\frac{\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathcal{B}(\tau^- \to \mu^- e^+ e^-)}$	1.21.6	~ 0.2	510

The ratio $BR(\tau \rightarrow \ell \ell \ell)/BR(\tau \rightarrow \ell \gamma)$ is not suppressed by α_e in LHT. It could allow distinguishing between LHT and e.g. MSSM

FC right-handed quark currents

New FC right-handed currents may:

- change the effective y/g vertex,
 particularly the magnetic dipole term
 constraints (b -> sy) b -> sll
- change the effective Z vertex (+box)
- introduce a new effective Z' vertex
 constraints: b -> sll, b -> svv

Disentangling the different contributions helps identifying the NP model extreme example: leptofobic Z'

$$\eta = \frac{-\text{Re}\left(C_L^{\nu} C_R^{\nu*}\right)}{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}$$

E

η

SuperB Workshop - Orsay -17 February 2009

Conclusions and outlook

Presented scenarios reflect the taste of the speaker but the messages are plain: i) if new physics is found, we want to know its flavour structure as we can learn a lot from it ii) if not, precision flavour physics is a good handle to access the multiTeV region In the table of SuperB measurements, several are not limited by systematics or theory The name of the game is statistics: SuperB can be a winner

from S. Tomassini, SuperB Workshop VII

Marco Ciuchini

Flavour physics confronts NP searches

The problem of today particle physics:

where is the NP scale Λ_{NP} ? 0.5, 1, 10, 10¹³, 10¹⁶ TeV?

The quantum stabilization of the weak scale suggests < 1 TeV (naturalness argument)

$$m_H^2 \rightarrow m_H^2 + \delta m_H^2$$

$$\delta m_H^2 = \frac{3G_F}{\sqrt{2}\pi^2} m_t^2 \Lambda_{\rm NP}^2 \sim \left(0.3\Lambda_{\rm NP}\right)^2$$

* LHC explores this energy range..

EFT approach to New Flavour Physics a game of scale and couplings

$\mathscr{L}_{eff} = \mathscr{L}_{SM} + \sum_{k=1} (\sum_{i} C_{i}^{k} Q_{i}^{(k+4)}) / \Lambda^{k}$

NP flavour effects are governed by two players: i) the value of the new physics scale Λ

ii) the effective flavour-violating couplings C's

In explict models:

Λ ~ mass of virtual particles (Fermi th.: M_W)
 C ~ loop coupling x flavour coupling
 (SM/MFV: α_w x CKM)

Pictorially:

- exp. constraints give
 a bound on A for any
 given C and vice-versa
- curves correspond to different model classes

For example: present lower bound on the NP scale from $\Delta F=2$ transitions (TeV @95%) B + K UTfit, arXiv:0707.0636 B only (w/o new Φ_{c})

<u>B + k</u>		UTFIT, arXiv	1:0/0/.0636
Scenario	strong/tree	α_s loop	α_W loop
MFV	5.5	0.5	0.2
NMFV	62	6.2	2
General	24000	2400	800

$\rm strong/tree$	strong/tree α_s loop				
_	—	—			
14	1.4	0.4			
2200	220	66			

Marco Ciuchini

What about theoretical errors?

- * how much does the SuperB physics program count on improvements of the theory?
- * what are the theoretical tools needed for doing precision flavour physics? Are they available?
- * could theoretical uncertainties hinder NP contributions irrespective of the achieved experimental precision?

Theory keeps up...

- lattice QCD can reach the O(1%) precision goal in time
- some progress for inclusive techniques for SL B decays
- non-leptonic B decays are more problematic

Magurament	Hadronic	Present	6 TELODO	60 TELODA	1-10 PFlops	
Weasurement	Parameter	Error	0 IF lops	o friops of friops		
$K \to \pi l \nu$	$f_+^{K\pi}(0)$	0.9%	0.7 %	0.4%	< 0.1 %	
ε_K	\hat{B}_K	11%	5 %	3 %	1~%	
$B \rightarrow l \nu$	f_B	14%	3.5 - 4.5 %	2.5 - 4.0 %	1.0-1.5~%	V. Lubicz,
Δm_d	$f_{Bs}\sqrt{B_{B_s}}$	13%	4-5 %	3-4%	1 1.5 %	4 SuperB Workshop
$\Delta m_d / \Delta m_s$	ξ	5 %	3 %	1.5-2 $%$	0.5- $0.8~%$	and
$B \to D/D^* l \nu$	$\mathcal{F}_{B \to D/D^*}$	4%	2%	1.2~%	0.5~%	SuperB
$B \to \pi / \rho l \nu$	$f_+^{B\pi},\ldots$	11%	5.5 - 6.5 %	4-5 %	2-3 %	CDR
$B \to K^* / \rho \left(\gamma, l^+ l^- \right)$	$T_1^{B \to K^*/\rho}$	13%			3-4~%	
Marco Ciuchini	Sup	perB Worksho	op - Orsay -17	February 2009		Page 31

no theory improvements needed	β(J/ψ K), γ(DK), α(ππ)*, lepton FV and UV, S(ρ ^o γ) CPV in B->Xγ, D and τ decays zero of FB asymmetry B->X _s ⁺ ⁻	NP insensitive or null tests of the SM or SM already known with the required accuracy
improved lattice QCD	meson mixing, B->D(*)Iv, B->π(ρ)Iv B->K*γ, B->ργ,B->Iv, B₅->μμ	target error: ~1-2% Feasible (see below)
improved OPE+HQE	B->X _{u,c} Ιν, Β->Χγ	target error: ~1-2% Possibly feasible with SuperB data getting rid of the shape function. Detailed studies required
improved QCDF/SCET or flavour symmetries	S's from TD A _{CP} in b -> s transitions	target error: ~2-3% large and hard to improve uncertainties on small corrections. FS+data can bound the th. error

Higgs-mediated NP in MFV at large tanß

SuperB Workshop - Orsay -17 February 2009

Marco Ciuchini

Page 33

B physics on LHC benchmarks: SNOWMASS points

Typical points in the mSUGRA parameter space

SPS	<i>M</i> _{1/2} (GeV)	<i>M</i> ₀ (GeV)	<i>A</i> ₀ (GeV)	$tan\beta$	μ
1 a	250	100	-100	10	> 0
1 b	400	200	0	30	> 0
2	300	1450	0	10	> 0
3	400	90	0	10	> 0
4	300	400	0	50	> 0
5	300	150	-1000	5	> 0

	SI	PS1a	SPS4	SPS5
$\mathcal{R}(B \to s\gamma)$	0.919	± 0.038	0.248	0.848 ± 0.081
$\mathcal{R}(B \to \tau \nu)$	0.968	± 0.007	0.436	0.997 ± 0.003
$\mathcal{R}(B \to X_s l^+ l^-)$	0.916	± 0.004	0.917	0.995 ± 0.002
$\mathcal{R}(B \to K \nu \overline{\nu})$	0.967	± 0.001	0.972	0.994 ± 0.001
$\mathcal{B}(B_d \to \mu^+ \mu^-)/10^{-10}$	1.631	± 0.038	16.9	1.979 ± 0.012
$\mathcal{R}(\Delta m_s)$	1.050	± 0.001	1.029	1.029 ± 0.001
$\mathcal{B}(B_s \to \mu^+ \mu^-)/10^{-9}$	2.824	± 0.063	29.3	3.427 ± 0.018
$\mathcal{R}(K \to \pi^0 \nu \overline{\nu})$	0.973	± 0.001	0.977	0.994 ± 0.001

SPS4 ruled out by the present value of BR($b \rightarrow s\gamma$)

SPS1a is the least favorable point for flavour, yet SuperB can observe 2σ deviations in several observables

Marco Ciuchini

LFV on LHC benchmarks: SNOWMASS points

	Snowmass points predictions						Super <i>B</i>	
LFV	1a	1 b	2	3	4	5	90% UL	5σ disc
$BF(\tau \to \mu \gamma) \times 10^{-9}$	4.2	7.9	0.18	0.26	97	0.019	2	5
$BF(\tau \rightarrow 3\mu) \times 10^{-12}$	9.4	18	0.41	0.59	220	0.043	200	880

- * SuperB could find >2σ LFV effect even in the unfavourable mSUGRA case
- * $\tau \rightarrow \mu \gamma$ could be the only observable LFV in minimal scenarios with vanishing neutrino mixing angle θ_{13}

BR(
$$\mu \rightarrow e\gamma$$
) vanishes as $\theta_{13} \rightarrow 0$
for at all SPS points
BR($\tau \rightarrow \mu\gamma$) is independent of θ_{13}

 $\tau FV, A_{CP}(b \rightarrow s), b \rightarrow s penguins,$

CKM at 1% (with LQCD help),

 $B \rightarrow I_{\mathcal{V}}, S(K^*\gamma), B \rightarrow Kvv, D CPV, ...$

2006LP