Focusing Aerogel RICH with SiPM Photodetectors

E.A.Kravchenko Budker INP, Novosibirsk, Russia

FARICH for the SuperB detector (MRS APD)

Barrel EMC

- CPTA MRS APD (Moscow) --- silicon photomultiplier
 - 2.1x2.1 mm sensor
 - 3x3 mm case size
 (50% active/total area)
 - PDE=40% @ 600 nm
- 3-layer focusing aerogel, n_{max}=1.07, total thickness 25 mm
- Number of channels 160000
- Amount of material, (X₀) = 3%(aerogel) + 1%(SiPM) + 6% (electronics,cooling, support, cables) = 10% !

MRS APD parameters

- Producer Center of Perspective Technology and Apparatus – CPTA, Moscow http://www.spta-apd.ru/
- Genuine name MRS APD (other names:SiPM, PPD, MPPC...)
- 2.1x2.1 mm sensor
- 4x4 mm case size (could be reduced to 3x3 mm)
- PDE=40% @ 600 nm
- Gain ~ 4·10⁵
- Time resolution ~100 ps
- Dark counts ~10 MHz (0.5pe threshold, room temperature)

FARICH expected performance, Monte Carlo results

N_{pe} = 18
σβ/β = 8·10⁻⁴

FARICH momentum resolution

Potentially this could be the very strong argument for Forward PID

What about noise?

Estimation

S/N=N_{pe}/(N_{px}·f_n·τ), where :

5/<u>8</u> =

- N_{pe} number of Cherenkov photons,
- N_{px}= ring area/(pixel size)²
 number of pixels in the ring of the width ±3σ_r,
- \Box f_n noise rate,
- \Box T time window.

Suggestion for the read-out electronics

CERN has developed for ALICE TOF high performance chips (high rate, small dead time):

- 8-channel NINO ASIC chip (very high rate >10MHz, low power front-end amplifier discriminator)
- 32-channel HPTDC ASIC chip (programmable TDC with clock period between 25ps to 800ps, 5 ns dead time, up to 16MHz)

Work on Fast MC simulation

- Results of Alexey Berdyugin visit to Padova.
- Geometry description is done:
 - Aerogel 3 cm, 3% X₀
 - 7 cm gap
 - 5 cm for photodetector block, (NEMA G10 4 3% X₀)
- Hit information is prepared (particle type, coor
- Tasks for the second visit (March):
 - To add the identification
 - To add the momentum measurement

We are planning the second visit of Alexey to Padova in March. The Fast MC with Forward PID option will be ready for the

SiPM radiation hardness

• Need to be carefully investigated:

- What will be the neutron flax in SuperB? MC simulation of background conditions is needed.
- Is it possible to use shielding?
- It is known that the main effect from the irradiation is the increase of dark noise rate:
 - We need fast, small dead time electronics.
 - Cooling will help
 - Optical collection devices could increase signal to noise ratio.

What we have for the test beam and prototype

64 channel TDC CAEN - V1190B Based on 2 HPTDC chips

 35 MRS APD for the first stage

Our plans

- Prototype to make the first test with the beam at the end of 2009
- Fast MC Forward PID description will be ready for use in April

Test beam at VEPP-4M, Novosibirsk

- \circ E_{max}beam = 5.5 GeV
- We insert the converter in the beam halo to receive bremstrahlung gammas
- We convert gamma-quants to electron-positron pairs in the target.
- To select electrons (positrons) with the required energy we use the magnet

Test beam apparatus

What we have for the test beam and prototype

- Experimental hall reconstruction is n progress.
- Magnet+power supply (B = 1.5 Tesla)

Our plans for the test beam

- Magnet will be ready in April-May
- Prototype will be ready at June-July
- The first experiment November-December 2009
- MRS-APD tests and characterization we are planning to do together with Padova group

Plans on forward PID fast simulation

Alexey Berdyugin will come to Padova next week
 (Visit is supported by Padova group).

- Geometry and material description
- PID performance according to MC simulation

Additional slides

FARICH for the SuperB detector (MCP PMT)

Barrel EMC

- Burle MCP PMT with 3x3 mm pixels (16x16 matrix), photoelectron collection efficiency 70%, geometrical factor 85%
- 3-layer focusing aerogel, n_{max}=1.07, total thickness 30 mm
- Number of PMTs 550
- Number of channels 140000
- Amount of material, (X₀) = 3.5%(aerogel)+14%(MCP PMT)+5÷10% (support, electronics, cables) > 23÷28% !

Forward TOF and FARICH comparison

The amount of material is almost the same

Multilayer aerogel characterization

Xray measurement, density distribution

The increase in density at the internal borders is the result of the production procedure (diffusion). Does it effect the performance?

Layer	<n></n>	n, (optimal)	n, (design)	h, mm	h, mm (design)
1	1.046	1.046	1.050	12.6	12.5
2	1.041	1.040	1.044	13.2	13.3
3	1.037	1.035	1.039	15.2	14.2

Monte Carlo simulation of longitudinal refractive index fluctuations

- 200 mm expansion gap
- 3 types of radiators
 - 3layer as designed (ideal)
 - Xray data avereged to 3 layers
 - Xray data avereged to 14 layers

Simulation results, π/K separation

- Npe =14
- $\sigma_{\beta} = 5.10^{-4}$
 - 'optimal' radiator \rightarrow best resolution for 4 GeV/c pions
 - • 'real' experimental radiator
 → best resolution for 3.5

 GeV/c kaons
- π/K separation up to 8 GeV/c (>3σ)

