

Simulation Study of Drift Chamber Performance

D. M. Asner, G. Tatishvili

SuperB Workshop LAL, Orsay, 02/16/09

- There is considerable data on the tracking and dE/dx performance of drift chambers used in high energy physics experiments.
- The initial goal of our study is to understand the measured performance of drift chambers using the available software tools: Garfield, Magbolz, Heed.
- Our studies will focus on the BaBar and CLEO chambers (as the Canada SuperB effort includes both BaBar and CLEO members).
- This will (hopefully) allow us to understand the design decisions that were made by BaBar, CLEO etc.
- More importantly if the simulations correctly model the observed performance then we have a set of powerful tools to optimize the design of the SuperB DCH.

Software Tools

Simulation studies have been performed using Garfield, Magboltz and Heed programs.

- **Garfield** is a computer program for the detailed simulation of gaseous detectors.
- Magboltz provides the computation of electron transport properties in gas mixtures under the influence of electric and magnetic fields.
- Heed is a program that computes in detail the energy loss of fast charged particles in gases.
- We have used the newest Garfield 9 with Magboltz 7.

Principal Properties of e⁺e⁻ Collider Detectors

Drift Chamber:

- 93% of 4π
- Δp/p = 0.32% @ p=0.5-1.0 GeV/c.
- Csl Calorimeter (8000 crystals):
 - **95% of 4**π
 - ΔE/E = 4% @ E=100 MeV.

Muon Chambers:

- 85% of 4π
- Identify muons for p>1GeV/c

Particle Identification:

- **RICH detector & dE/dx in DCH**
- Combined ε (π or K) > 90%.

MDC:

- **93% of 4**π
- ∆p/p = 0.5% @ p=1.0 GeV/c.
- Csl Calorimeter (6240 crystals):
 - ΔE/E = 2.5% @ E=1 GeV.

Muon Counter:

- 9 Layers
- Particle Identification:
 - TOF. σT=100-110 ps
 - dE/dx in MDC

SuperB Workshop LAL, Orsay, 02/16/09

Principal Properties of e⁺e⁻ Collider Detectors, cntd.

DCH:

- -0.92<cosθ<0.96
- ▲p/p = 0.48%
- Csl Calorimeter (6580 crystals):
 - **∆E/E = 3.0%**

Detector for muons and neutral hadrons:

- Instrumented Flux Return
- 90% μ efficency

Particle Identification:

- Detector of Internally Reflected Cherenkov light (p>500 MeV/c)
- dE/dx in DCH (p<700 MeV/c)

CDC:

- 93% of 4π
- ▲p/p = 0.35%
- Csl Calorimeter (8736 crystals):
 - ΔE/E = 1.8% (Eγ > 3GeV)

Muon Detector:

- μ efficency is > 90% (p>1GeV/c)
 Particle Identification:
 - TOF σT=95 ps
 - Aerogel Cherenkov Counters
 - dE/dx in CDC

SuperB Workshop LAL, Orsay, 02/16/09

DCH Parameters of e+e- Collider Detectors

Detector	CLEO III	BaBar	BES III	BELLE
DCH Size (cm):	12.5 / 82 /	24 / 81 /	5.9 / 81 /	15 / 115 /
R_Inner/R_Outer/Length	(124.5 + 124.5)	(101.5 + 174.9)	(115.4 + 115.4)	(77.0 + 160.0)
The Active Volume	cosθ < 0.93	-0.92 <cosθ< 0.96<="" th=""><th> cosθ < 0.93</th><th> cosθ < 0.93</th></cosθ<>	cosθ < 0.93	cosθ < 0.93
Endplate Shape	Conical	Flat	Conical	Spherical
Number of layers	47	40	43	50
Number of Super-layers	8	10	11	18
DCH Cell# / Shape	9796 / Square	7104 / Hexagonal	6796 / Square	8400 / Square
Cell Size	1.4cm x 1.4cm	1.8cm x 1.2cm	1.2 cm x 1.2 cm	1.7 cm x 1.6 cm
			1.62cm x 1.62cm	
DCH Gas Mixture	He/Propane	He/Isobutane	He/Propane	He/Ethane
	(60% / 40%)	(80% / 20%)	(60% / 40%)	(50% / 50%)
Sense Wires Voltage	1900 V	1930 V	2150 V	2300 V
Magnetic Field	1.5 T	1.5 T	1.0 T	1.5 T
DCH Hit Resolution	85µm	125µm	130µm	130µm
Drift Time / Drift Dist.	~300ns / 7mm	~500ns / 9mm	~ 350ns / 8mm	~350ns / 8mm
σp/p	0.32%	0.48%	0.50%	0.35%
dE/dx Resolution	5.7%	7.5%	6.0%	6.9%

Comparison of the Spatial Resolutions for Different Detectors

The spatial resolutions as a function of the drift distance, separately for the left and the right side of the sense wire. The data is averaged over all cells in a layer.

Comparison of Time-to-Distance Relations for Different Detectors

The drift distance is estimated by computing the distance of closest approach between the track and the wire.

dE/dx for particles traversing the DCH for Different Detectors

The specific energy loss, dE/dx, for charged particles traversing the DCH as a function of track momenta.

Garfield Input

We studied the drift time dependence on:

- Gas composition
- Temperature & pressure variations
- Magnetic field

Garfield Input:

- Geometry of quadratic / hexagonal cells
- Voltage/E-field (1930V)
- Magnetic field (1.5T)
- Different gas compositions:
 - He / Propane
 - He / Isobutane
 - He / Ethane
 - Ar / Ethane
 - Ar / Ethane / CO₂
 - Ar / Methane / CO₂
- Gas Pressure

Gas Temperature

SuperB Workshop LAL, Orsay, 02/16/09

Quadratic and Hexagonal Cells in Garfield

With the1.5T magnetic field the drift lines have a curvature.

D. M. Asner & G. Tatishvili

Garfield Output

Garfield Output: Distance-to-Time correlation, Lorentz angle, Drift velocity, Ionization loss (dE/dx) distributions, etc.

EO Gas Mixtures

CLEOII - Ar/Ethane (50% / 50%) CLEOIII - He / Propane (60% / 40%)

He / Propane Improves hit efficiencies.

- > The peculiar distortions are caused by magnetic field.
- > The lines shown are isochrones, which are lines of equal drift time.
- The Helium-Propane mixture has an Improved behavior.
 - **He/Propane** Ar/Ethane
 - He / Propane has a smaller Lorentz angle and consistent drift velocity in 1.5 Tesla.

He/Propane gas mixture improves dE/dx performance

D. M. Asner & G. Tatishvili

0.5

dE/dx Performance at CLEO

dE/dx useful below RICH threshold and outside RICH solid angle.

For parameterization of dE/dx as a function of $\beta\gamma$ we fit dE/dx vs $\beta\gamma$ distribution in three $\beta\gamma$ region: (0.-0.5), (0.5-7.5) and (7.5-50).

 $dE/dx=Ax(bg)^{n}+B_{0}+B_{1}x(bg)+B_{2}x(bg)^{2}+B_{3}x(bg)^{3}$

Function values should be equal at the transition.

In the region bg>50 exponential function was used: dE/dx=C x exp(D x $\beta\gamma$) + E.

We use this parameterization to construct $\sigma(dE/dx)$ variables.

 $\sigma(dE/dx)$ is normalized deviation between observed $(dE/dx)_{meas}$ and predicted $(dE/dx)_{expected}$ values.

05/01/23 12.11

IE/dx Performance at CLEO, cntd.

BaBar Gas Mixture

He / Isobutane (80% / 20%)

Motivation:

- This mixture has a radiation length that is 5x larger than Ar based gases.
- Isobutane absorbs photons, prevents photoelectric electrons.
- Keeps ionization local to particles trajectory.
- The smaller Lorentz angle results in a rather uniform time-distance relationship and improved spatial resolution.

We varied He/Isobutane gas mixture to found better drift time and Lorentz angle.

He / Isobutane (75%/25%) has slightly better drift time but (80% /20%) has a smaller Lorentz angle.

He / Isobutane (80% / 20%) mixture is a good compromise for a small drift time and Lorentz angle.

SuperB Workshop LAL, Orsay, 02/16/09

D. M. Asner & G. Tatishvili

400

300

200

100

Drift time, ns

S

Ĉ

Time,

Drift

100/095/5 90/10 85/15 80/20 75/25 70/30 65/35 60/40 55/45

15

He/Isobutane Gas Mixture

50 / 50

dE/dx for He/Isobutane & He/Propane Gas Mixtures

The energy lost by a particle traversing a gas depends on: gas mixture, gas pressure, temperature, particle energy, mass, charge etc.

The goal is to maximize energy loss for a stronger pulse and greater resolution.

Using the Heed program we compute the energy losses in He/Isobutane and He/Propane gas mixtures for various particles, as a function of the energy of the incoming particles.

The Heed program predicts more energy loss in He/Propane gas mixture than in He/Isobutane.

Magnetic Field Effect

Simulation study have been performed investigating the drift time in He/Isobutane gas mixture for magnetic field varying from 0 to 2.5 Tesla.

Magnetic Field variation by -0.5 Tesla / +0.5 Tesla from the nominal value (1.5 Tesla) changed drift time by:

- -11.0% / +17.0% for D.D. = 9 mm,
- -9.8% / +15.0% for D.D. = 7 mm,
- -7.0% / +10.5% for D.D. = 5 mm

Pressure Effect

Gas equation: P=(n/V)RT. Temperature (T)=constant.

If pressure (P) (\uparrow) the mean free path (\downarrow) number of molecules per volume (n/V) (↑)

Temperature Effect

Gas equation: P=(n/V)RT. Pressure (P)=constant.

If temperature (T) (\uparrow) the mean free path (\uparrow)

number of molecules per volume (n/V) (↓)

SuperB Workshop LAL, Orsay, 02/16/09

D. M. Asner & G. Tatishvili

Drift Velocity Dependence on the Gas Composition & E-Field

Drift Velocity (He/Isobutane, 80%/20%) and Drift Velocity (He/Propane, 60%/40%) are consistent.

Lorentz Angle Dependence on the Gas Composition & E-Field

Lorentz Angle (He/Isobutane, 80%/20%) and Lorentz Angle (He/Propane, 60%/40%) are consistent.

SuperB Workshop LAL, Orsay, 02/16/09

D. M. Asner & G. Tatishvili

He/Propane & He/Isobutane Comparison

Same Lorentz Angle can be obtained for He/Isobutane and He/Propane gas mixtures at 300V: 92% He & 8% C_4H_{10} or C_3H_8 / 600V: 87% He & 13% C_4H_{10} or C_3H_8 / 1200V: 75% He & 25% C_4H_{10} or C_3H_8 / 2400V: 55% He & 45% C_4H_{10} or C_3H_8 ...

Conclusion

- A simulator of gaseous detectors Garfield was used to investigate the characteristics of different gas mixtures that could improve a drift chamber operation.
- We studied the drift time dependence on: Gas composition, Temperature & pressure variations, Magnetic field.
- Using the program Heed we compute the energy losses of various particles in different gas mixtures as a function of the energy of the incoming particles.
- Simulations confirm that dE/dx resolution with He / Propane (60% / 40%) should be superior to He / Isobutane (80% / 20%).
- > We do not yet understand the difference in momentum resolution
 - difficult to attribute to the choice of gas.
 - other design differences include
 - size and geometry of drift cell
 - structure of super layers
 - shape of endplates
 - support tube
- The optimal design of the SuperB DCH depends upon understanding the impact of these design choices on the momentum resolution.

SuperB Workshop LAL, Orsay, 02/16/09