



### **Fwd ECAL Simulation**

SuperB Workshop LAL, Orasy 15-18/02/2009



C. Cecchi - S. Germani INFN Perugia





- Fill the same BaBar angular region but
  - leave space for TOF:  $\Delta Z = (100 \text{ mm})^* \cos(22.7)$
  - Xtals material : LSO (LYSO)
    - Xtal depth = 200 mm (~17.5 X<sub>0</sub>)













- Due to maximum boule size (SIPAT) there are some constraints on Crystal size
- Crystal size constraints depend also on whether Ce doping uniformity will be an issue
  - For production
  - For ECAL performances

W/O Uniformity Issue:

Back Face < 26.3 mm</td>

Front Face < 23 mm</td>

With Uniformity Issue:

Back Face < 25 mm</td>

















16/02/09









- Particles:
  - e-γ
- Energies:
  - 50, 100, 200, 350, 500, 750, 1000, 2000, 5000, 7000 MeV
- Surface:
  - Particles uniformely distribuited in one quandrant between  $\theta_{min} \theta_{max}$
- Primary vertex position:
  - Interaction point (x=y=z=0)





#### **Algorithm:**

- 1. Get Xtal deposited energy
- 2. Perform Poisson smearing with 8k pe/MeV
- 3. Assign 1% calibration error to crystals
  - Reconstruct with 8k±1% pe/MeV
- 4. Apply minimum energy cut for each xtal
  - 1 MeV to be tuned
- 5. Sum Xtal energy

#### Comments:

- All distributions have asymmetric low energy tails
  - Backsplash for low E particles
  - Forward leakege for high E particles
- Energy distributions fit with asymmetric Gauss function:  $\sigma = \sigma(E)$
- Proposed parameterisation uses fit of p1,p2,p3 vs Energy





## Energy distribution examples





16/02/09

FWD ECAL Simulation

### **Energy Resolution vs Energy: e-**





16/02/09

Perugia

INFN

# **Energy Resolution vs Energy (log scale): e-**



- The fit with sqrt[x](E) seems to give a better agreement
  - index = 0.77



16/02/09







- electrons:
  - p0 = 0.21
  - p1 = 1.35
  - p2 = 0.77

γ: - p0 = 0.11

•

- p1 = 1.45
- p2 = 1.0









- Geometry options
  - naive
  - geometry from mechanical egineer
  - only opticla isolation
- Geometry with only optical isolation gives a small improvement
- Geometry with larger empty spaces worsen the resolution







• Empty gap between modules

has a big impact on the resolution

- Al layer
  - has some effect on the resolution
  - compared to the module gap effect is small





- Constraints on Fwd ECAL geometry are still evolving
  - Fwd PID
  - Limits on crystal size
- Several dead material option have been investigated
- Baseline has CF structure
  - Simulation with optical isolation only (Tyvek) shows some (small) improvement
- Al layer (30  $\mu$ m) affect resolution but the effect is not large
- Empty space between modules seems to affect the resolution in a significant way