

Update on LYSO Studies

Ren-Yuan Zhu California Institute of Technology February 16, 2009

EMC R&D Meeting, SuperB Workshop at Orsay, France

SIPAT Ø60 x 250 mm LYSO Ingots

Production of LYSO at SIPAT

Growth is mature. R&D on following Issues:

• Optimization of Cerium doping;

• Light response uniformity.

LYSO Longitudinal Uniformity

Good light response uniformity is crucial for a crystal calorimeter to achieve its designed energy resolution at high energies. The distribution of the cerium activator, however, is not uniform along the crystal.

Sipat's Φ60 x 250 mm ingot may be cut to two SuperB crystals, significantly increasing the ingot usage. The key issue: longitudinally uniformity.

Cube Samples from SIPAT

Two ingots grown by Czochralski method at SIPAT were cut to 11 & 12 cubes of 1.7 cm.

UV Excitation & Emission Spectra

Consistent excitation (red) and emission (blue) spectra observed from seed to tail for both ingots.

Transmission Spectra

 $EWLT = \frac{\int LT(\lambda)Em(\lambda)d\lambda}{d\lambda}$

 $\overline{\int Em(\lambda)}d\lambda$

Transmissions are position dependent:

Correlations exist between EWLT/cut-off and cube position, indicating possible correlation with the cerium concentration.

February 16, 2009

SuperB Workshop at Orsay, Ren-yuan Zhu, Caltech

Light Output

Light Outputs are position dependent, indicating possible correlation with the cerium concentration.

February 16, 2009

SuperB Workshop at Orsay, Ren-yuan Zhu, Caltech

FWHM Energy Resolution

Energy resolutions are position dependent, indicating possible correlation with the cerium concentration.

L.O. and E.R. versus Position

Correlations exist between L.O./E.R. and cube position.

Cerium & Yttrium Segregation

- Concentrations of cerium and yttrium were measured by using Glow Discharge Mass Spectrometry (GDMS) analysis.
- Segregation coefficients of cerium and yttrium in LSO were fitted to be 0.30 and 0.88 respectively: $ln \frac{C_{crystal}}{C} = lnk_e + (k_e 1)ln(1 g)$

EWLT & Cut-off vs. Ce Concentration

Strong correlations observed between EWLT and the cut-off wavelength versus the Ce concentration.

February 16, 2009

SuperB workshop at Orsay, Ren-yuan Zhu, Caltech

L.O. and E.R. versus Ce Concentration

A 'plateau' observed between 125 ~ 325 ppm, indicating a possibility to grow uniform crystal with optimized Ce doping. This observation consists with private data from C. Melcher.

Phosphorescence vs. Ce Concentration

Correlation observed between radiation induced phosphorescence and the Ce concentration, but not before gamma-ray irradiation.

EWLT, L.O. and Phosphorescence after irradiation vs. the Yttrium Concentration

No correlations were observed between the yttrium concentrations and EWLT, the light output and the intensity of phosphorescence after gamma-ray irradiations.

Light Response Uniformity

February 16, 2009

SuperB Workshop at Orsay, Ren-yuan Zhu, Caltech

L.R.U. of 20 cm Long LYSO

Diverse light response uniformities observed with δ = 1.2/-3.3, 4.4/-3.9, -0.5/-2.8 for CPI, CTI & SG respectively

Distance from the end coupled to PMT (mm)istance from the end coupled to PMT (mmDistance from the end coupled to PMT (mm

Progress Achieved in L.R.U.

The L.R.U. of SIPAT samples is improved from 0.9/-2.4 to -1.9/-2.2, opening a possibility to cut two crystals from one ingot. 1st SIC sample shows good L.R.U.: -0.4/-1.4

Distance from the end coupled to PMT (mm)stance from the end coupled to PMT (mm) stance from the end coupled to PMT (mm)

Before Optimization

After Optimization

1st SIC Sample

Radiation Effect on L.R.U.: CTI-LSO-L1

Radiation Effect on L.R.U.: SG-LYSO-L3

Radiation Effect on L.R.U.: SG-LYSO-L3

Radiation Effect on L.R.U.: SIPAT-L5

Radiation Effect on L.R.U.: SIPAT-L5

Radiation Effect on L.R.U.: SIC-L1

Radiation Effect on L.R.U.: SIC-L1

LSO/LYSO L.R.U. Summary

Consistent L.R.U. before & after irradiations. Different slopes between PMT & APD readout. Investigations are under way.

ID	Integrated dose	δ% (A or Seed end coupling)		δ (B or Tail end coupling)	
	(rad)	PMT (\pm 1)	APD (\pm 1.5)	PMT (\pm 1)	APD (\pm 1.5)
CTI-LSO-1	0	1	10	-8	-11
	10 ⁶	-2	3	-6	-7
SG-LYSO-3	0	-0.5	1.2	-3.1	-5.4
	10 ⁶	-2.1	1.1	-4.2	-5.5
SIPAT-LYSO-5	0	-1.9	0.8	-2.2	-5.1
	10 ⁶	-1.4	1.0	-3.4	-4.7
SIC-LYSO-1	0	-0.4	-4.7	-1.4	6.1
	10 ⁶	-0.6	-5.6	1.1	4.4

Ray-Tracing Simulation

Area Coverage Effect for PMT and APD

Different area coverage of PMT (2.5 ×2.5 cm²) and APD (2×0.5×0.5 cm²) determines the different light collection efficiencies, but has no effect on the L.R.U.

Consistent L.R.U. by PMT & Mask

Data confirm simulation: no geometry effect.

PMT without Mask

PMT with Mask (APD coverage)

A CONTRACTOR OF A CONTRACTOR O

L.R.U. by PMT and APD for BGO

No difference between PMT & APD readout. This seems a particular issue for LYSO.

No Self-absorption: BGO, PWO, BaF₂, NaI(TI) and CsI(TI)

Emission Weighted QE

It may be due to the QE difference between PMT & APD. Investigation is under way with optical filters.

300°C Annealing: Absorption in SIC-L1

Transverse transmittance indicates color centers (impurities?) at the tail end after 300°C annealing

500°C Annealing eliminated Absorption

Fully recovered after 500°C thermal annealing

300°C Sufficient for SIPAT-LYSO-L5

Fully recovered after 300°C annealing

Summary

- LYSO crystals with blight, fast scintillation and good radiation resistance is an excellent material for SuperB ECAL endcap.
- The optimized cerium concentration in LYSO was found to be between 125 and 325 ppmw. An optimized SIPAT sample shows a possibility of cutting one ingot into two tapered crystals.
- Different L.R.U. was found between the PMT and APD readout, which can not be explained by detector geometry. Investigation is under way to understand the nature of this difference.
- The 1st SIC sample shows adequate L.R.U.. Its thermal annealing induced absorption is suspected to be caused by contamination.

February 16, 2009

SuperB Workshop at Orsay, Ren-yuan Zhu, Caltech