Feedback System Design

Alessandro Drago

SuperB Workshop LAL, Orsay 15-18 February 2009

Main Topics

- SuperB parameters for feedback design
- Design general consideration
- R & D main list
- Scalability
- Innovation
- Conclusion

	LER/HER	Unit	June 2008	Jan. 2009	$2N_b, I_b/\sqrt{2}$	$4\varepsilon_{ m y}$, 2N _b		
	E+/E- GeV		4/7	4/7	4/7	4/7		
	L	cm ⁻² s ⁻¹	1x10 ³⁶	1x10 ³⁶	1x10 ³⁶	1x10 ³⁶		
	*/ ·	Amp	1.85 /1.85	2.00/2.00	2.82/2.82	4.00/4.00		
	N _{part}	x10 ¹⁰	5.52 /5.52	5.97/5.97	4.23/4.23	5.97/5.97		
	N _{bun}		1250	1250	2500	2500		
	I _{bunch}	mA	1.48	1.6	1.13	1.6		
	θ/2	mrad	25	30	30	30		
	β _x *	mm	35/20	35/20	35/20	35/20		
	β _y *	mm	0.22 /0.39	0.21 /0.37	0.21 /0.37	0.21 /0.37		
	ε _x	nm	2.8/1.6	2.8/1.6	2.8/1.6	2.8/1.6		
	εγ	pm	7/4	7/4	7/4	28/16		
	σ _x	μm	9.9/5.7	9.9/5.7	9.9/5.7	9.9/5.7		
	σ _y	nm	39/39	38/38	38/38	76/76		
	σ	mm	5/5	5/5	5/5	5/5		
	ξ _x	X tune shift	0.0043/0.0025	0.0046/0.0027	0.0032/0.0019	0.0092/0.0054		
	ξy	Y tune shift	0.15 /0.15	0.128/0.128	0.090/0.090	0.064/0.064		
	RF stations	LER/HER	5/6	5/6	5/8	7/11		
	RF wall plug power	MW	16.2	18	25.5	39.3		
Super	Total wall plug power	MW			20			

SuperB feedback parameters

FB Sampling frequency	476	MHz	
Harmonic number	2850		
Revolution period	~ 6	us	
Stored bunches	~1250 (2500)	Ph-1 (Ph-2)	
Bucket length	~2	ns	
Ph-1 (ph-2) bunch spacing	1.26 (.63)	m	
n _s HER/LER	0.0141/0.0133		
Synchrotron frequency	~2.35/2.2	kHz	
Longitudinal damping time	~20	ms	
n _{x,y} HER/LER	0.52/.54 (???)		
Betatron frequency	86.8/90.2	kHz	
Transverse damping time	40	ms	
Transv. feedback expected damping time	>120	us	
	(> 20 turns)		
Power amplifier (long.)	4x250	W	
Power amplifier (trasv.)	2x500	W	
Trasverse kickers (1xV, 1xH)	2-ports	Stripline type	
Longitudinal kicker	4-ports	Cavity type	

Considerations on H

- H, harmonic number=2850
- Still if the stored bunches will be ~1250 (PH1) & ~2500 (PH2) to let ion clearing gaps, from a feedback point of view all buckets (2850=H) have to be processed
- H=2850 = 2*1425 = 2*5*285=2*5*57 that is not exactly a <u>wonderful</u> number for FB's
- PEPII_H = 3492 [with revolution period 7.336us]
- 3492 = 1746*2 = 2*2*3*3*97
- DAFNE_H = 120 = 2*2*2*3*5
- Virtex-5 has 1056 dsp: 1056=2*2*2*2*2*3*11
- In conclusion, for H, highly composed numbers are better than prime numbers or poorly composed numbers

Key points for starting to write a TDR for b-b-b feedback system

- Innovation
- Costs
- Manpower for design
- Design duration (on 5 8 years timescale)
- Design robustness /self & beam diagnostics
- Compatibility for new upgrade
- Flexibility
- Scalability
- Maintenance & manpower necessary for maintenance

Key points for starting TDR / 2

- Consequences:
 - Design based on last version components
 - Design based on stable (popular) components
 - Recycle what doesn't need changes
 - Unified technology choices as much as possible
 - Scale savings
 - Easy interface for not expert operators

Key points for starting TDR / 3

- Consequences of second orders:
 - Every design based on old FPGA (as iGp with V-II) should migrate to last version FPGA (as Xilinx V5)
 - Unified technology choices lead to possibly use same tools, parts or designs for similar systems:
 - Transverse feedback
 - Longitudinal feedback
 - Fast IP feedback
 - Timing/injection system (pulse generator)
 - Low level RF
 - 1-D Bunch-by-bunch and turn-by-turn diagnostics, as for example transverse and longitudinal dimension/position detectors
 - 2D Bunch-by-bunch and turn-by-turn diagnostics, as for example profile monitors, etc.

Design robustness

- Self diagnostics: internal efficient tools to identify quickly correct operation of every subsystem
- Easy timing procedures
- Beam diagnostics, in particular instability grow rate measurements
- Easy access for non expert operators

Positron grow-damp record made switching off the horizontal feedback, I=575mA, 105/120 bunch [October 14, 2008]

Real time waveform plot by the "iGp" feedback system

e+ instability behavior switching solenoids off (blue) & on (red)

• Switching off the solenoids installed in the positron ring the grow rates of the e+ instability does not change

e+ instability grow rates versus Δvx in PS1-PS2 and RCR

WGLs

In the past years, troubles were much smaller!!!

e+ instability grow rates versus orbit in the main ring dipoles

The orbit variation is performed changing the **RF** frequency and then compensating the beam energy

e+ instability grow rates versus orbit in the main ring dipoles

- The orbit
 variation shows
 important
 differences from
 the point of view
 of understanding
 the instability
 source
- but not to solve completely the e+ current threshold

e- beam, I=1140mA, 100/120 bunches, unstable mode=1, [October 7, 2008]

Different and <u>much slower</u> unstable mode compared with e+ beam

e- ring, Imax=1.5 A, 100/120 bunches [October 7, 2008]

Scalability

- Double feedback in the same oscillation plane to use at the best the power output
- A proved example of the scalability advantages
- Possibility to have and manage easily more than one feedback in a single oscillation plane
- Capability to damp coherent high order modes even if faster than foreseen

<u>New e+ Transverse Horizontal Feedback</u>

- The damping times of the two feedbacks add up linearly
- Damping time measured:
- ~100 ms-1 (1 FBKs) \rightarrow fb damps in 30 revolution periods (~10 us)
- ~200 ms-1 (2 FBKs) \rightarrow fb damps in 15 revolution periods (~ 5 us)
- The power of the H FBK has been doubled

Single horizontal feedback: I=560mA, mode -1 [=119], grow=34.5 (ms-1), damp=-127(ms-1)

Double horizontal feedback: I=712mA, mode -1 [=119], grow=43.7 (ms-1), damp=-233 (ms-1)

Damping time in 4.3 microsecond i.e. in ~13 revolution turns

Grow rates at higher e+ current, instability controlled by 2 feedback:

the unstable mode changes becoming slower!

The beam current does not seem limited by the horizontal instability

Innovation

R&D feedback for low emittance accelerator (proposed in July 08 MiniMac)

R&D list includes:

- 1) very low noise <u>analog front</u> end @ n*RF [n=3?]
- 2) maintain low cross-talk between adjacent bunches under 40 dB (better 60 dB) in front end
- 3) dual separated timing to pilot the <u>backend</u> power stage
- 4) digital processing unit with high dynamic range (12/16 bits) > 60dB
- 5) "dual gain" approach to minimize residual beam motion and feedback noise on the beam [in digital processing unit]
- 6) integrated beam-feedback model with easy code and parameter download to digital processing unit

Considering a feedback upgrade for low emittance accelerators

- Feedback are active system and can have strong negative impact on very low emittance beams
- The basic ideas of the upgrades consist in making the noise in the feedback loop as low as possible, and this means:
- a) Filtering at the best the external noise, i.e. coming or generated outside the feedback
- b) Reducing the internal noise, i.e. the noise coming from parts in the feedback system
- c) Reduce the crosstalk between bunch signals

R & D areas

- Analog R&D: Front End / Back End / transverse /longitudinal
- Digital processing unit R&D
- Beam/feedback Model R&D for coefficient generation/maintenance
- other important design areas:
 - Power amplifiers R&D: not strictly necessary but the high cost of commercial power devices <u>could</u> justify a R&D
 - Longitudinal & transverse kickers
 - Beam signal pickups

ADC dynamic range versus # of bits

- 7.5_bit ADC_= 45.15 dB } very poor dyn.range !
- 8_bit ADC _ = 48.16 dB
- 10_bit ADC _= 60.20 dB
- 12_bit ADC _= 72.25 dB
- 14_bit ADC _= 84.29 dB

[best value considering the analog blocks!]

- 15_bit ADC _= 90.31 dB
- $16_bit ADC = 96.33 dB$
- $24_bit ADC = 144.49 dB$

• Note: in general at least 0.5 bit (= 3dB) is not effective in the conversion

A factor liming the effectiveness of the ADC is the sampling clock jitter. I can <u>suppose</u> that a realistic value of the RMS jitter for the timing signal will be ~0.5 ps <u>This value must be included in SuperB Timing specifications</u>

In this case (yellow trace), the ADC dynamic range should be better than 60 dB (12bits)

FIR

- The core of a feedback digital processing unit is the FIR filter (=Finite Impulse Response filter)
- An FIR filter can have any kind of coefficients and transfer functions but the output y is always built as $y = sum_i (c_i^* x_i)$
- i = number of taps (of the filter)
- c_i = "static" but downloadable coefficients
- $x_i = previuos i input values for each bunches$

Virtex-5 has 1056 DSP48 and 550MHz clock speed

Table 1: Virtex-5 FPGA Family Members

	Configurable Logic Blocks (CLBs)			DSP48E	Block RAM Blocks		our-(4)	PowerPC	Endpoint Blocks for	Ethernet	Max RocketiQ Transceivers ⁽⁶⁾		Total	Max	
Device	Array (Row x Col)	Virtex-5 Slices ⁽¹⁾	Max Distributed RAM (Kb)	Silces ⁽²⁾	18 Kb ⁽³⁾	36 Kb	Max (Kb)	CMTS	Blocks	PCI Express	MACs(6)	GTP	GTX	Banks ⁽⁸⁾	User I/O(/)
XC5VLX30	80 x 30	4,800	320	32	64	32	1,152	2	N/A	N/A	N/A	N/A	N/A	13	400
XC5VLX50	120 x 30	7,200	480	48	96	48	1,728	6	N/A	N/A	N/A	N/A	N/A	17	560
XC5VLX85	120 x 54	12,960	840	48	192	96	3,456	6	N/A	N/A	N/A	N/A	N/A	17	560
XC5VLX110	160 x 54	17,280	1,120	64	256	128	4,608	6	N/A	N/A	N/A	N/A	N/A	23	800
XC5VLX155	160 x 76	24,320	1,640	128	384	192	6,912	6	N/A	N/A	N/A	N/A	N/A	23	800
XC5VLX220	160 x 108	34,560	2,280	128	384	192	6,912	6	N/A	N/A	N/A	N/A	N/A	23	800
XC5VLX330	240 x 108	51,840	3,420	192	576	288	10,368	6	N/A	N/A	N/A	N/A	N/A	33	1,200
XC5VLX20T	60 x 26	3,120	210	24	52	26	936	1	N/A	1	2	4	N/A	7	172
XC5VLX30T	80 x 30	4,800	320	32	72	36	1,296	2	N/A	1	4	8	N/A	12	360
XC5VLX50T	120 x 30	7,200	480	48	120	60	2,160	6	N/A	1	4	12	N/A	15	480
XC5VLX85T	120 x 54	12,960	840	48	216	108	3,888	6	N/A	1	4	12	N/A	15	480
XC5VLX110T	160 x 54	17,280	1,120	64	296	148	5,328	6	N/A	1	4	16	N/A	20	680
XC5VLX155T	160 x 76	24,320	1,640	128	424	212	7,632	6	N/A	1	4	16	N/A	20	680
XC5VLX220T	160 x 108	34,560	2,280	128	424	212	7,632	6	N/A	1	4	16	N/A	20	680
XC5VLX330T	240 x 108	51,840	3,420	192	648	324	11,664	6	N/A	1	4	24	N/A	27	960
XC5VSX35T	80 x 34	5,440	520	192	168	84	3,024	2	N/A	1	4	8	N/A	12	360
XC5VSX50T	120 x 34	8,160	780	288	264	132	4,752	6	N/A	1	4	12	N/A	15	480
XC5VSX95T	160 x 46	14,720	1,520	640	488	244	8,784	6	N/A	1	4	16	N/A	19	640
XC5VSX240T	240 x 78	37,440	4,200	1,056	1,032	516	18,576	6	N/A	1	4	24	N/A	27	960
XC5VTX150T	200 x 58	23,200	1,500	80	456	228	8,208	6	N/A	1	4	N/A	40	20	680
XC5VTX240T	240 x 78	37,440	2,400	96	648	324	11,664	6	N/A	1	4	N/A	48	20	680
XC5VFX30T	80 x 38	5,120	380	64	136	68	2,448	2	1	1	4	N/A	8	12	360
XC5VFX70T	160 x 38	11,200	820	128	296	148	5,328	6	1	3	4	N/A	16	19	640
XC5VFX100T	160 x 56	16,000	1,240	256	456	228	8,208	6	2	з	4	N/A	16	20	680
XC5VFX130T	200 x 56	20,480	1,580	320	596	298	10,728	6	2	3	6	N/A	20	24	840
XC5VFX200T	240 x 68	30,720	2,280	384	912	456	16,416	6	2	4	8	N/A	24	27	960

Ready for R&D: a Xilinx board with 288 digital signal processors inside

- The last version of feedback system (the "iGp") is built around a Virtex-II FPGA by Xilinx
- Virtex-II, aging ~10 years, has <u>168</u> multiplier blocks, as shown in the Xilinx table below
- The internal clock speed is <u>420MHz</u>

		CLB (1 CLB = 4 slices = Max 128 bits)				SelectF	AM Blocks		
Device	System Gates	Array Row x Col.	Slices	Maximum Distributed RAM Kbits	Multiplier Blocks	18 Kbit Blocks	18 Kbit Max RAM Blocks (Kbits)		Max I/O Pads ⁽¹⁾
XC2V40	40K	8 x 8	256	8	4	4	72	4	88
XC2V80	80K	16 x 8	512	16	8	8	144	4	120
XC2V250	250K	24 x 16	1,536	48	24	24	432	8	200
XC2V500	500K	32 x 24	3,072	96	32	32	576	8	264
XC2V1000	1M	40 x 32	5,120	160	40	40	720	8	432
XC2V1500	1.5M	48 x 40	7,680	240	48	48	864	8	528
XC2V2000	2M	56 x 48	10,752	336	56	56	1,008	8	624
XC2V3000	зМ	64 x 56	14,336	448	96	96	1,728	12	720
XC2V4000	4M	80 x 72	23,040	720	120	120	2,160	12	912
XC2V6000	6M	96 x 88	33,792	1,056	144	144	2,592	12	1,104
XC2V8000	8M	112 x 104	46,592	1,456	168	168	3,024	12	1,108

Table 1: Virtex-II Field-Programmable Gate Array Family Members

Conclusions

- Feedback systems needs internal and beam diagnostics tools
- The instability grow rates measured by FB show a good agreement with e-cloud model and simulations
- It is possible manage more power in the feedbacks installing as many systems as necessary
- Two separate feedback systems for the same oscillation plane work in perfect collaboration <u>doubling</u> the feedback damping time
- DAFNE feedback damping time is 4.3 microsecond i.e.
 ~13 revolution turns, this value can be used to design the SuperB feedback system