DCH configuration studies using FastSim

Matteo Rama - INFN Lab. Nazionali Frascati Giuseppe Finocchiaro – INFN Lab. Nazionali Frascati

SuperB meeting, Orsay, Feb. 2009

FastSim

- Fast simulation developed for SuperB
- V0.0.2 just released
 - <u>http://mailman.fe.infn.it/superbwiki/index.php/SuperB_fast_simulation_User_Guide</u>
- Geometry, material and resolutions are easily configurable through xml interface
- Developed in the BaBar framework → composition and analysis tools developed in BaBar are compatible with FastSim output

- short term goal (subject of this talk)
 - test and improve the drift chamber simulation in FastSim
 - compare the performance of different configurations
- longer term goal:
 - optimize the design using additional inputs: machine bkg, spatial reso. for different cell/gas configuration, etc.

Standard BaBar material vs. our calculation

- Homogeneous effective medium with combined gas+wires properties
- spatial resolution is 125µm (flat)

name	rho	Zeff	Aeff		X0	λ	
dch-He-Ibu-Wir_I	8.40e-4	15.	31.	0	28.56	84.00	standard
dch-He-Ibu-Wir_4	1.01E-03	25.9	52.I	0	27.47	87.28	our estimate

resolution [MeV]	dch-He-Ibu-Wir_I flat reso I 25um	dch-He-Ibu-Wir_4 Flat reso 125um
ΔE (B→π+π-)	24.6±0.3	23.9±0.3
∆E (B→Phi Ks)	14.5±0.2	14.7±0.2
Pt [1.0,2.0]	10.0±0.2	9.5±0.1
Pt [2.0,2.5]	12.7±0.1	12.7±0.1
Pt [2.5,3.0]	15.5±0.2	I 5.3±0.2

0 0

Homogeneous material vs."gas + wires"

- Gas + wires: cylindrical shells of dense material immersed in a gas atmosphere
 - if the track hits the "wire shell" (which happens with a given probability, depending on the amount of material) then it undergoes a hard scattering, otherwise it only senses the low density gas
 - <u>BaBar-like configuration (10 SL, 40 layers)</u>

homogeneous material	name	rho	Zeff	Aeff		X0	λ
	> dch-He-Ibu-Wir_4	1.01E-03	25.9	52.I	0	27.47	87.28
	dch-He-lbu_14	6.408E-04	23.8	46. I	0	51.16	75.65
gas and wire	dch-Wires_14	6.237E+00	29.0	62.4	0	15.31	118.56
material							

Homogeneous material vs."gas + wires"

homogeneous mat.

resolution [MeV]	homog. material flat reso 125um	gas+wires flat reso 125um
ΔE (B→π+π-)	23.9±0.3	26.1±0.3
∆E (B→Phi Ks)	14.7±0.2	16.3±0.2
Pt [1.0,2.0]	9.5±0.1	10.5±0.2
Pt [2.0,2.5]	12.7±0.1	3.8±0.
Pt [2.5,3.0]	15.3±0.2	16.3±0.2

Use of realistic cell spatial resolution

the spatial resolution is not constant

resolution [MeV]	Gas+wires flat reso 125um	Gas+wires realistic reso 125um
Δ Ε (Β→ π+π-)	26.1±0.3	25.4±0.3
∆E (B→Phi Ks)	16.3±0.2	15.6±0.2
Pt [1.0,2.0]	10.5±0.1	10.2±0.2
Pt [2.0,2.5]	13.8±0.1	13.4±0.1
Pt [2.5,3.0]	16.3±0.2	I 5.8±0.2

x2 number of cells

• Same number of layers, x2 cells on each layer

resolution [MeV]	gas+wires realistic reso 125um	gas+wires realistic reso 125um x2 #cells
ΔE (B→π+π-)	25.4±0.3	26.3±0.3
∆E (B→Phi Ks)	15.6±0.2	17.0±0.2
Pt [1.0,2.0]	10.2±0.2	11.3±0.2
Pt [2.0,2.5]	13.4±0.1	13.9±0.2
Pt [2.5,3.0]	15.8±0.2	16.7±0.2

- Same number of layers, x2 cells on each layer
- spatial resolution enlarged to 140um

resolution [MeV]	gas+wires realistic reso 125um	gas+wires realistic reso 140um x2 #cells
ΔE (B→π+π-)	25.4±0.3	27.4±0.3
∆E (B→Phi Ks)	15.6±0.2	17.6±0.2
Pt [1.0,2.0]	10.2±0.2	11.7±0.2
Pt [2.0,2.5]	13.4±0.1	14.5±0.2
Pt [2.5,3.0]	I 5.8±0.2	17.5±0.2

Exercise: what happens with a 30-layer DCH

resolution [MeV]	gas+wires realistic reso 125um 40 layers	gas+wires realistic reso 125um 30 layers
ΔE (B→π+π-)	25.4±0.3	26.8±0.3
∆E (B→Phi Ks)	15.6±0.2	17.0±0.2
Pt [1.0,2.0]	10.2±0.2	11.0±0.2
Pt [2.0,2.5]	13.4±0.1	14.5±0.2
Pt [2.5,3.0]	I 5.8±0.2	17.2±0.2

Comparison with BaBar full simulation

resolution [MeV]	gas+wires realistic reso 125um	FullSim
Δ Ε (Β→ π+π-)	25.4±0.3	29.9±0.5
∆E (B→Phi Ks)	15.6±0.2	21.8±0.3
Pt [1.0,2.0]	10.2±0.2	11.9±0.3
Pt [2.0,2.5]	3.4±0.	16.7±0.3
Pt [2.5,3.0]	15.8±0.2	19.3±0.3

Next developments in FastSim

- non uniform hit efficiency
 - now the hit efficiency is set to 0.99 corresponding to what is measured in Babar DCH averaged over the polar angle
 - \circ in reality hit efficiency has minimum at $\theta \text{=} \text{90}^{\circ}$
 - effect expected to be small
- hit confusion
 - background + pattern recognition
 - LARGE effect on track reconstruction

Conclusions

- Preliminary study of DCH performance under different conditions
- Configurable spatial resolution implemented (from rel. V0.0.2)
- We do not observe large differences in track reconstruction among tested FastSim configurations. Observed differences are consistent with expectations.
- I 5-20% resolution difference between FastSim and full simulation. Main reason likely due to 'hit confusion' not simulated in FastSim. Ongoing work in fast simulation group to include it.

backup

flat vs. realistic spatial reso function

Measured hit position – True hit position

