Forward TOF

J. Va’vra, SLAC

Light travels $300 \mu \mathrm{~m}$ in one ps

Content of this talk

- SLAC \& Fermi lab beam test results
- Initial aging tests
- Upcoming tests in the cosmic ray telescope
- Options for the SuperB TOF application
- Comment on operation in magnetic field \& aging

SLAC TOF counter prototype

- Cherenkov light for ultra-fast response.
- Burle/Photonis MCP-PMTs with $10 \mu \mathrm{~m}$ MCP holes.
- Short together 4 pads to get a signal; all the rest of pads grounded.
- A 10 mm -long, 10 mm dia, quartz radiator, Al-coating on cylinder sides:
(a) Fermilab test: good coating by Photonis, (b) SLAC test: poor coating.
- Calculation using all known efficiencies: Npe ~30.
- Calibration of the Fermilab beam test: Npe ~45 ± 10.

My best $\sigma_{\text {TTS }}$ was achieved with slower electronics

J.Va' vra et al., Nucl.Instr.\&Meth. A 572 (2007) 459-462, and my log books 3 \& 6, 2006 \& 2008

1) $\sim 300 \mathrm{MHz}$ BW electronics:

HPK C5594-44 amp, Phillips 715 CFD:

Ortec VT-120 amp.+6dB, Phillips 715 CFD :

- Slow down amplifiers by a long cable between Amp \& CFD (optimum was found to be $\sim 20 \mathrm{~ns}$).
- Photonis Planacon, s/N 11180401
- $10 \mu \mathrm{~m}$ MCP hole diameter
- $\quad 2.8 \mathrm{kV}$
- Single pe sensitivity

My best $\sigma_{\text {TTS }}$ was achieved with slower electronics

J.Va'vra et al., Nucl.Instr.\&Meth. A 572 (2007) 459-462, and my log books 3 \& 6, 2006 \& 2008

1) $\sim 300 \mathrm{MHz}$ BW electronics:

HPK C5594-44 amp, Phillips 715 CFD:

Ortec VT-120 amp.+6dB, Phillips 715 CFD :

- Slow down amplifiers by a long cable between Amp \& CFD (optimum was found to be $\sim 20 \mathrm{~ns}$).

2) $\sim \mathbf{1 ~ G H z ~ B W}$ electronics:

Ortec 9327CFD, TAC566, ADC114:

J. Va'vra, Forward TOF

CFD timing:
$\sigma_{\text {time }}=\sigma_{\text {noise }} /(\mathbf{d} / \mathbf{d t})_{\text {zero crossing point }}$ $\sigma_{\text {noise }} \frac{d s / d t}{t h} \sigma_{\text {time }}$

$\sigma_{\text {TTS }}$ with beam test electronics \& at low gain

J.Va’vra et al., Nucl.Instr.\&Meth. A 595 (2008) 270-273

Nominal MCP voltages, $\mathrm{G} \sim 2 \times 10^{4}$:

- Photonis Planacon, S/N 11180401 \& 7300714
- $10 \mu \mathrm{~m}$ MCP hole diameter
- $2.2 \mathrm{kV} \& 2.0 \mathrm{kV}$ on MCP-PMTs
- Not sensitive to single pe, instead, linear for Npe ~30-50

$$
\begin{aligned}
& \sigma \sim \sqrt{ }\left[\sigma_{\mathrm{MCP} \cdot \mathrm{PMT}}^{2}+\sigma_{\text {Laser }}^{2}+\sigma_{\text {Electronics }}^{2}+\ldots\right]= \\
& \left.=\sqrt{ }\left[\sigma_{\mathrm{TTS}} / \sqrt{ } \mathrm{N}_{\mathrm{pe}}\right)^{2}+\sqrt{ }\left((\mathrm{FWHM} / 2.35) / \sqrt{ } \mathrm{N}_{\mathrm{pe}}\right)^{2}+(4.2 \mathrm{ps})^{2}\right]
\end{aligned}
$$

- The same electronics as in the test beam - Ortec electronics (9327CFD, TAC566, ADC114)
- Extrapolating to Npe $=1$, one obtains much worse $\sigma_{\text {TTS }} \sim 110 \mathrm{ps}$.

Beam tests at SLAC and Fermilab

J. Va’ vra, D.W.G.S. Leith, B. Ratcliff, E. Ramberg, M. Albrow, A. Ronzhin, H. Frisch, T. Natoli, E. May, K. Byrum, "Beam test of a TOF detector prototype", to be published in NIM.

SLAC beam test, $10 \mathrm{GeV} \mathrm{e}^{+}$:

Fermilab beam test, 120 GeV p:

- Take all events - no ADC cuts.
- No ADC correction to CFD timing.
- Difference between two tests: use a new quartz radiator with a new aluminum coating in the in Fermilab test (coated by Photonis).

Beam test at Fermilab

120 GeV protons:

ADC0 correction to CFD:

ADC1 with loose cuts:

ADC1 correction to CFD:

- ADC correction to CFD timing \& loose ADC cuts

Beam test at Fermilab

120 GeV p:

Tight ADC cuts and pulse height correction:

Tight ADC cuts to eliminate doubles:

- ADC correction to CFD timing \& tighter ADC cuts

Are the results consistent with expectations ?

$$
\begin{aligned}
& \quad \sigma \sim \sqrt{ }\left[\sigma^{2}{ }_{\text {MCP-PMT }}+\sigma^{2} \text { Radiator }+\sigma_{\text {Pad broadening }}^{2}+\sigma_{\text {Electronics }}^{2}+\ldots\right]= \\
& =\sqrt{ }\left[\left(\sigma_{\text {TTS }} / \sqrt{ } \mathrm{N}_{\text {pe }}\right)^{2}+\left(\left(\left(12000 \mu \mathrm{~m} / \cos \Theta_{\mathrm{C}}\right) /(300 \mu \mathrm{~m} / \mathrm{ps}) / \mathrm{n}_{\text {group }}\right) / \sqrt{ }(12 \mathrm{Npe})\right)^{2}+\right. \\
& \left.+((6000 \mu \mathrm{~m} / 300 \mu \mathrm{~m} / \mathrm{ps}) / \sqrt{ }(12 \mathrm{Npe}))^{2}+(4.7 \mathrm{ps})^{2}\right]
\end{aligned}
$$

For Npe $=30$, contributions from each term: $\quad 22 \mathrm{ps} \quad 2.1 \mathrm{ps} \quad 1.1 \mathrm{ps} \quad 4.7 \mathrm{ps}$

- Calculation for Fermi lab test: Npe~30.
- Calibration measurement for Fermi lab test: Npe (ave of TOF1 \& TOF2) ~45 ± 10.
- Hard to improve the resolution by adding photoelectrons (slowly varying function).
- How do we jump to blue curve?

FPGA array
TOF2:
Photonis
MCP-PMT:

64 pads instrumented with a waveform digitizing electronics,
4 BLAB2 chip / MCP-PMT,
Waveform sampling rate: ~2 GSa/s
>1.6 GeV muon:

Note:
This solution requires a full single pe sensitivity => high gain operation

Better alternative: run at lower gain

Photonis
MCP-PMT:
TOF2:
FPGA array

Option \#3

"DIRC-like" Forward TOF detector?

MCP needs to run at 16 kG

Mirrorized surface

Side view:

Pads are strips

Need track parameters

- mirror

A photon will be accepted if: $\Sigma\left(\right.$ TOP $\left._{\mathrm{i}}{ }^{\text {measured }}-\mathrm{TOP}_{\mathrm{i}}{ }^{\text {expected }}\right)<\mathrm{Cut}$

What do we expect ?

- $\sigma_{\mathrm{TTS}} \leq 40 \mathrm{ps}$
- Npe ≥ 5 pe's on ave.
$\Rightarrow \sigma \sim \sigma_{\mathrm{TTS}} / \sqrt{ } \mathrm{Npe} \leq 18 \mathrm{ps}$

Is an MCP-PMT with $10 \mu \mathrm{~m}$ holes going to work at 16 kG ?

J.V., log book 3

Gain at $\mathrm{B}=0 \mathrm{kG}$:

Amplitude goes to ~0 at 15 kG :

Single pe's:
Ortec VT120A amp., 200x gain, MCP face perpendicular to magnetic

- My estimate: one has to run MCP voltage $\sim 400 \mathrm{~V}$ higher at 16 kG !!
- Will this work in a large system ?
- Should one go to smaller hole diameter ?

Photonis MCP-PMT QE aging at low gain mode

J.V., Log book 6, 2008

Photonis quotes a limit for the Planacon of a $\sim 40 \%$ QE efficiency loss and $\sim 10 \%$ gain loss after a total anode charge of $\sim 400 \mathrm{mC} / \mathrm{cm}^{2} \sim$ $\sim 4 \mathrm{mC} / \mathrm{mm}^{2}$ (a quote from P. Hink).

Aging test done with a laser diode:

S/N 09130303
Laser diode needs to be temp. stabilized and one has to use a reference PMT to correct for temperature-dependent light yield changes !

Aging test conditions:

Each laser pulse Q ~ one track equivalent Similar settings as in the Fermilab test Voltages set not to be sensitive to single pe's. Low gain operation ($\mathrm{G} \sim 2-3 \times 10^{4}$)
Npe ~ 50 pe / pulse in this test
Irradiated spot size: ~1 mm²
Laser rate: $20 \mathrm{kHz} / 1 \mathrm{~mm}^{2}$
Total \# of track hits: $\sim 3.5 \times 10^{10} / \mathrm{mm}^{2} /$ run
(Total charge: $\sim 7 \times 10^{3} \mathrm{mC} / \mathrm{mm}^{2} /$ run)

SuperB worst expectation:

Track rate in the forward region:
$\sim 2 \mathrm{kHz} / \mathrm{cm}^{2} \sim 6.3 \times 10^{9} / \mathrm{mm}^{2} / 10$ years

Photonis MCP-PMT QE aging at low gain mode

J.V., Log book 6, 2008

Intended method:

> At the moment I do not see any aging effect under a low gain condition and for this particular setup !

The 1-st run:

Relative QE:

MCP-PMT gain during the same interval:

Target chip \& TOF counter bench tests with the laser

TARGET chip was developed by G. Varner

- "Oscilloscope-like" software running on my MAC
- Pulses from a Photonis MCP-PMT (a pair of counters used in the Fermi lab test beam)
- Light source: PiLas laser diode
- HPK amplifier with a gain of 63 x
- Maximum sampling speed: $2.5 \mathrm{GSa} / \mathrm{s}$
- Two TOF counters in tandem, collected some events and will try to develop a strategy for waveformbased timing between two MCP-PMTs, and compare them to earlier Ortec 9327 CFD results.
- Acknowledgement for help to: G. Varner, Larry Ruckman, Andrew Wong

