MCP PMT aging

A.Yu.Barnyakov, *M.Yu.Barnyakov*, V.V.Barutkin, V.S.Bobrovnikov, A.R.Buzykaev, D.A.Tsigankov, S.A.Kononov, E.A.Kravchenko, A.P.Onuchin

.

Design of MCP PMT

Borosilicate glass window Multialkali photocathode Two MCPs with channel diameter of 8 μ m Channel bias angle 5° MCP open area ratio ≈ 0.6 Dark counting rate $< 10^5$ cps Gain deterioration in axial magnetic field of 2 T is less than 5 times Transit time spread \approx 30 ps (M.Akatsu, et al.,

NIM-A 528(2004)763)

MCP PMT at BINP

- Why MCP ?
 - -Immunity to magnetic field
 - -Compactness

80 counters have worked since 2003

ASHIPH counters of the KEDR detector

- π/K separation in momenta range 0.6 ÷ 1.5 GeV/c
- 160 MCP PMT
- Magnetic field up to 1.8T
- Aerogel n=1.05 (1000 litres)

ASHIPH counters for SND detector

- π/K separation in momenta range 300 \div 870 MeV/c
- 9 MCP PMT
- No magnetic field
- Aerogel n=1.13
- Why MCP ?
 - Compactness
 - Availability at the lab

TOF counters for CMD-3 detector

- Antineutron identification
- BC-408 scintillator (16 bars)
- 32 MCP PMT
- Why MCP ?
 - Good time resolution
 - Compactness

University of Nagoya ageing tests

- MCP with protective layers could work at Super B
- The cost of this is 50% drop in photon detection efficiency

• - Hamamtsu with protective layer, _o - Hamamatsu without, • Novosibirsk with, ^o Novosibirsk without

Improvement of lifetime

I. Al_2O_3 protective layer •protection of photocathode versus feedback ions •decrease of photoelectron collection efficiency

II. Three MCPs •additional barrier for feedback ions •higher gain possible

more sensitive to magnetic field ?worse time resolution ?

Speed of QE degradation versus counting rate

No dependence observed for PMT with protective layer and Z-stack

QE degradation versus wavelength

MCP PMT #2071 (two MCPs)

Results of aging tests

Geant 4 calculations of the protective layer transparency

- What is the homogeneity of the protective layer?
- Are there any holes?

<u>Remarks</u>

•Aging strongly depends on vacuum conditions

•The idea of 3 MCP plates works, but not so effective as protection layer.

•

PMT with three MCPs (aka Z-stack)

The same package Three MCPs with channel diameter of 8 μ m

Controlled parameters:

•Quantum efficiency	> 20%@500nm	•Gain	> 10 ⁶
 Photoelectron collection efficiency 	≻ 0.6	 Noise counting rate 	< 5×10 ⁴ cps

Fast test of photocathode lifetime is needed

Aging test conditions

"Low rate test" **Relative gain** Gain $\approx 10^6$ 1 Counting rate $\approx 2 \times 10^5 \text{ cps}$ Exposure time 1 week \rightarrow Q_{ANODF} \approx 20 mC PMT with three MCPs #407 "High rate test" 10 -1 <u>Initial</u> gain $\approx 10^6$ Counting rate $\approx 10^9 \text{ cps}$ Exposure time 30 minutes → $Q_{CATHODE} \approx 300 \text{ nC}$ \rightarrow Q_{ANODE} ~ 6 mC 10 104 10⁵ 108 109 106 107

Photoelectron counting rate, s⁻¹

Photocathode lifetime

 $\begin{array}{l} \mbox{Gain} = (0.5 \div 1.0) \times 10^6 \\ \mbox{Continuous illumination} \\ \mbox{Photon counting rate \sim10^6$ cps} \\ \mbox{Quantum efficiency at λ=500nm} \\ \mbox{Anode charge from whole area of} \\ \mbox{photocathode 2.54 cm}^2 \end{array}$

Working conditions
ASHIPH counter of the KEDR: Gain ≈ 0.3×10⁶ Counting rate ≤10⁵ cps
Anode current ~ 150 mC/year
TOP counter at super-B: Gain ≈ 2×10⁶ Counting rate ≈ 7×10⁴ cps/cm²
Anode current ~ 700 mC/year/cm²
(N. Kishimoto, NIM-A 564(2006)204)

PMT with three MCPs in magnetic field

Moderate gain decrease even for tilt angles < 45° Photoelectron collection efficiency does not change in axial field

QE degradation versus wavelength

Possibility to control photocathode aging after short exposure

Requirements: • QE(500nm) change < 25% after 5 years of operation in the KEDR • QE(800nm) change ≥5% → Anode charge ≥ 20 mC

Criterion: $\Delta QE(800nm) < 5\% @ Q_{ANODE} = 20mC$ (~ 7 weeks at working conditions)

Reliability of High Rate test

Useful for fast comparison of photocathode aging

QE degradation versus wavelength

19