Comments on hadronic form factors in exclusive *B* and *D* decays

Alexander Khodjamirian

SuperB workshop, Orsay, 15-18 Feb. 2009

Alexander Khodjamirian

Comments on hadronic form factors in exclusive B and D decays

B & *D* leptonic and semileptonic (exclusive) channels:

not accessible at LHCb

 important for CKM determination, hypothetical new physics effects (charged Higgs, CP violation,..)

• current precision:

 $\begin{array}{l} BR(B^- \to \tau \bar{\nu}) = (1.65 \pm 0.38 \pm 0.38) \times 10^{-4} \text{ [Belle '08]} \Rightarrow \sim \pm 4\% \\ BR(\bar{B}^0 \to \pi^- l \bar{\nu}) = (1.36 \pm 0.09) \times 10^{-4} \text{ [PDG '08]} \Rightarrow \sim \pm 2 \div 4\% \end{array}$

 $\pm \delta BR$ projected at SuperB (75 ab⁻¹)

need hadronic form factors with comparable accuracy
 form factors needed also for charmless and rare decays as an input (e.g., *B* → *PP*, *B* → *K***II*)

Hadronic form factors

$$\Gamma(B^- \to l\bar{\nu}_l) = \frac{G_F^2 |V_{ub}|^2}{8\pi} m_l^2 m_B \left(1 - \frac{m_l}{m_B}\right)^3 f_B^2$$

$$d\Gamma(\bar{B}^0 o \pi^+ l \bar{
u})/dq^2 = rac{G_F^2 |V_{ub}|^2}{24\pi^3} p_\pi^3 |f_{B\pi}^+(q^2)|^2$$

form factor

• $B \rightarrow \tau \nu_{\tau}$ dominates

• $B \rightarrow \pi \mu \nu_{\mu}, \pi e \nu_{e},$ semileptonic region: • $0 < q^{2} < (m_{B} - m_{\pi})^{2} = q_{max}^{2} \simeq 26.4 \text{ GeV}^{2}$ • $B \text{ rest frame, } p_{\pi} \rightarrow 0 \text{ at } q^{2} \rightarrow q_{max}^{2}$

B and $D_{(s)}$ decay constants [in MeV]

a sample of recent results:

method	f _B	f _D	f _{Ds}
exp.	$(242 \pm 28) \frac{3.99 \times 10^{-4}}{V_{vb}}$	$205.8\pm8.5\pm2.5$	$259.5 \pm 6.6 \pm 3.1$
$\oplus CKM$	[Belle '08]	[CLEO'08], $V_{cd} = V_{us}$	[CLEO'09], $V_{cs} = V_{ud}$
lattice	190± 13	207 ± 4	241 ± 3
	[HPQCD,'09]	[HPQCD,UKQCD '08]	[HPQCD,UKQCD '08]
QCD SR	210 ±19	-	
	[Jamin-Lange '01]		
	206±20	195 ± 20	
	[Penin-Steinhauser'01]	[Penin-Steinhauser'01]	
		203 ± 20	235 ± 24
		[Narison '02]	[Narison '02]
OPE	-	<230	<270
bound			

- f_{B_s}/f_B , SR in agreement with lattice QCD
- still some tension of exp. vs lattice f_{D_s} (and vs the bound)
- already some tension in f_B ?

• $B \rightarrow I\nu_I$, $D \rightarrow I\nu_I$ are important tasks for SuperB

- $B \rightarrow l\nu_l$, $D \rightarrow l\nu_l$ are important tasks for SuperB
- Can QCD provide ~ ±1 ÷ 2% accuracy for the hadronic decay constants?

- $B \rightarrow l\nu_l$, $D \rightarrow l\nu_l$ are important tasks for SuperB
- Can QCD provide ~ ±1 ÷ 2% accuracy for the hadronic decay constants?
- lattice QCD: "Yes, we can !" [appendix A of SuperB report '07]

- $B \rightarrow l\nu_l$, $D \rightarrow l\nu_l$ are important tasks for SuperB
- Can QCD provide ~ ±1 ÷ 2% accuracy for the hadronic decay constants?
- lattice QCD: "Yes, we can !" [appendix A of SuperB report '07]
- lattice (HPQCD-UKQCD) :
 factorial base almost achieved that low

 $f_{D_{(s)}}$ has almost achieved that level (see table) (discussions within lattice community)

- QCD sum rules, based on two-point correlation functions provide reliable estimates of *f*_{*B*,*D*} but with a limited accuracy:
- sources of uncertainties:
 - errors in the input (quark masses, condensates)

- QCD sum rules, based on two-point correlation functions provide reliable estimates of f_{B,D} but with a limited accuracy:
- sources of uncertainties:
 - errors in the input (quark masses, condensates)
 - truncation of the OPE: expansion in powers of α_s and $O(\Lambda_{QCD}/\sqrt{m_b\tau})$, $\tau \sim 1 \text{ GeV}$

- QCD sum rules, based on two-point correlation functions provide reliable estimates of f_{B,D} but with a limited accuracy:
- sources of uncertainties:
 - errors in the input (quark masses, condensates)
 - truncation of the OPE: expansion in powers of α_s and $O(\Lambda_{QCD}/\sqrt{m_b\tau})$, $\tau \sim 1 \text{ GeV}$
 - quark-hadron duality approximation

 \Rightarrow "systematic" uncertainty (with model-dep. estimate) minimized by Borel transform., fixing the hadron mass from SR

- QCD sum rules, based on two-point correlation functions provide reliable estimates of f_{B,D} but with a limited accuracy:
- sources of uncertainties:
 - errors in the input (quark masses, condensates)
 - truncation of the OPE: expansion in powers of α_s and $O(\Lambda_{QCD}/\sqrt{m_b\tau})$, $\tau \sim 1 \text{ GeV}$
 - quark-hadron duality approximation

 \Rightarrow "systematic" uncertainty (with model-dep. estimate) minimized by Borel transform., fixing the hadron mass from SR

 currently: ~ 10% error no way to get < 5% accuracy level in future

OPE bounds for f_{D_s} and f_D

[A.K., hep/ph-0812.3747]

the hadronic matrix element:

$$(m_c+m_s)\langle 0|ar{s}i\gamma_5c|D_s
angle=f_{D_s}m_{D_s}^2$$

• Correlation function of two charmed-strange currents:

$$j(x) = (m_c + m_s)\bar{s}(x)i\gamma_5 c(x)$$

$$\Pi(q^2) = i \int d^4 x e^{iqx} \langle 0 \mid T\{j(x)j^{\dagger}(0)\} \mid 0 \rangle$$

$$= \frac{f_{D_s}^2 m_{D_s}^4}{m_{D_s}^2 - q^2} + \sum_{h=D^*K,...} \frac{\langle 0 \mid j|h\rangle \langle h|j^{\dagger} \mid 0 \rangle}{m_h^2 - q^2}$$

$$s
ightarrow d$$
, $D_s
ightarrow D$,

Alexander Khodjamirian

Comments on hadronic form factors in exclusive B and D decays

OPE diagrams

- inputs: \bar{m}_c , $\bar{m}_s \langle \bar{q}q \rangle$ (GMOR), $\langle \bar{s}s \rangle$, d = 5, 6 condensates
- including O(α²_s) correction to heavy-light correlator [K.Chetyrkin, M. Steinhauser (2000)]

Deriving the bound

• calculate $\Pi(q^2)$ and apply Borel transformation:

$$\Pi(M^2) = \sum_{n=0,1,2} \int_{(m_c+m_d)^2}^{\infty} ds \left(\frac{\alpha_s}{\pi}\right)^n \rho^{(n)}(s) e^{-s/M^2}$$

+
$$\sum_{n=0,1} \left(\frac{\alpha_s}{\pi}\right)^n \Pi^{(n)}_{\langle \bar{q}q \rangle}(M^2) + \sum_{d=4,5,6} \Pi_d(M^2).$$
(1)

• equate to the hadronic sum and use the positivity of it: $f_D^2 m_D^4 e^{-m_D^2/M^2} + ... = \Pi(M^2; m_c, m_s, \alpha_s, \text{cond.}, \mu,)$

• the same OPE as QCD SR , with no duality assumption involved

$$\Rightarrow f_D < \sqrt{\Pi(M^2)/(m_D^4 e^{-m_D^2/M^2})}$$

M > 1.0 $\rm{GeV^2}$ and $\mu >$ 1.5 GeV, OPE convergence

Alexander Khodjamirian

Results

$\mathit{f_D} < 230~\textrm{MeV}$, $\mathit{f_{D_s}} < 270~\textrm{MeV}$

- the estimated error of 10 (20) MeV for $(f_D)_{up}$ $((f_{D_s})_{up})$ added
- lattice results obey the bounds
- experimental *f*_D < bound
- experimental f_{Ds} almost saturate the bound an unnatural SU(3)_{ff} violation !
- no constraining bound for f_B

What else can be done to improve $f_{B,D_{(s)}}$ determination

• investigate the processes of the experimental background (e.g. $D_s \rightarrow I \nu_l \gamma$, $B^- \rightarrow I \nu_l \gamma$ at low E_{γ})

(hadronic form factors from QCD at large E_γ)

• to improve quark-hadron duality approximation: better data on the hadron spectroscopy in *D*_(s) and *B* channels :

- identify and study radial excitations:
 (wide) D' -resonances , D' → Dππ , D*π etc.,
 e.g. in semileptonic B → D^(*)Xlν_l channels ,
- radial excitations of B: a task for LHCb

$B \rightarrow \pi$ form factor and $|V_{ub}|$

the current status accumulated in a single figure:

from [Bourrely, Caprini, Lellouch, 0807.222 hep-ph]

• $q^2 = 0$: Light-cone sum rules (LCSR), recent update [G.Duplancic, A.K., B.Melic, Th.Mannel, N.Offen (2007)

 $f^+_{B\pi}(0) = 0.26^{+0.04}_{-0.03}$

- large q^2 lattice [FNAL-MILC, HPQCD]: $f^+(q^2)$ with errors at the level of $\pm 12\%$
- the curve: analyticity \oplus "conformal mapping" $q^2 \rightarrow z \oplus z$ -expansion \Rightarrow model independent shape parametrizations
- fitting theory \oplus exp. dBR/dq^2 [BaBar, Belle]
- to *z*-parameterization

Recent $|V_{ub}|$ determinations from $B \rightarrow \pi I \nu_I$

[ref.]	$f_{B\pi}^+(q^2)$	$f^+_{B\pi}(q^2)$	$ V_{ub} imes 10^3$
	calculation	input	
Okamoto et al. '05	lattice	-	$3.78{\pm}0.25{\pm}0.52$
	$(n_f = 3)$		
HPQCD '06	lattice	-	3.55±0.25±0.50
	(<i>n</i> _f = 3)		
Flynn et al '07	-	lattice ⊕ LCSR	$3.47 \pm 0.29 \pm 0.03$
Ball, Zwicky '04	LCSR	-	$3.5\pm0.4\pm0.1$
DKMMO '07	LCSR	-	$3.5 \pm 0.4 \pm 0.2 \pm 0.1$
Bourrely, Caprini,	-	lattice⊕ LCSR	3.54 ± 0.24
Lellouch '08			

• *f*⁺'s from "lattice " and "non-lattice" (LCSR) have comparable uncertainties,

- this will change , if lattice calculations achieve their goal of $\sim1\div2\%$ accuracy [<code>App.A SuperB report '07]</code>

• LCSR uncertainties : the same counting as for *f_B* SR higher twist effects to be investigated, duality error larger

• < 10% accuracy is hardly achievable with LCSR , future aim: to better assess OPE/input/duality uncertainties

- other "non-lattice" tools:
 - effective theories (HQET,SCET)

[LCSR in SCET F. De Fazio, Th. Feldmann T.Hurth '06

• LCSR with *B* meson distribution amplitudes [A.K., N. Offen, Th. Mannel '06]

$D \rightarrow \pi, K$ form factors from LCSR

Alexander Khodjamirian

Comments on hadronic form factors in exclusive B and D decays

How to improve "non-lattice" determinations of f^+ 's

- more accurate data on *q*² distribution ⇒ refine/adjust the input
- radial excitations of *B* and *D* ⇒ a better control over quark-hadron duality ansatz

Other semileptonic channels

Channel	BR[10 ⁻⁴]	hadronic :
$(I = e, \mu)$	[HFAG] [PDG]	form factor(s)
$B^0 \rightarrow \pi^- I^+ \nu_I$	$1.39 \pm 0.06 \pm 0.06$	$f_{B\pi}^+$
$B^+ \rightarrow \pi^0 I^+ \nu_I$	0.74 ± 0.11	
$B^0 \rightarrow \pi^- \tau^+ \nu_l$	-	$f_{B\pi}^+, f_{B\pi}^0$
$B^+ o \eta l^+ u_l$	$0.84 \pm 0.27 \pm 0.21$	$f^+_{B\eta}$
$egin{array}{l} B^0 & ightarrow ho^- l^+ u_l \ B^+ & ightarrow ho^0 l^+ u_l \end{array}$	$\begin{array}{c} 2.38 \pm 0.20 \pm 0.32 \\ 1.24 \pm 0.23 \end{array}$	$A_1^{B ho}, A_2^{B ho}, V^{B ho}$
$B^+ ightarrow \omega I^+ u_I$	$1.3 \pm 0.4 \pm 0.2 \pm 0.3$	$A_1^{B\omega}$, $A_2^{B\omega}$, $V^{B\omega}$

Comments on hadronic form factors in exclusive B and D decays

Hadronic uncertainties with ρ, K^*

- ρ(770) (K*(890)) are P-wave resonant states of 2π (Kπ)
 not precisely defined in QCD, only in quark model
- their experimental identification involves:
- Breit-Wigner resonance with energy dependent width
- model of nonresonant hadronic background (radial excitations ρ',....; K*,.... involved)

• an example :

 $\tau \rightarrow K^* \nu_{\tau}$ identification, [Belle 0706.023[hep/ex]] involving a model with 2 radial excitations of K^*

 these models originate in hadron phenomenology and have no direct connection to QCD (recent AdS/QCD ?) (a topical task: refresh/improve/update these models)
 e.g. vector mesons in the pion/kaon form factor [C.Bruch, A.K., J.Kühn '04]

• ω and ϕ are narrow and hence somewhat better

• a measurement of $BR(B \rightarrow \rho...)$, $BR(B \rightarrow K^*...)$ always contains a "systematic" uncertainty, due to resonance identification , optimistically few % ,

• puts a certain limit on our abilities to calculate/measure obsrevables involving ρ , K^* with $\sim 1\%$ percent accuracy