$B \rightarrow D$ exclusive

Benoît Blossier

LPT Orsay

SuperB Workshop, 17^{th} February 2009

- Generalities
- Decay into *S* states
- Decay into *P* states: "1/2 vs. 3/2" puzzle
- Outlook

Generalities

Without constraint: $\delta V_{ij} < 5\%$, $\delta V_{ij} > 5\%$, $\delta V_{cb} \sim 1.5\%$ $|\epsilon_K| = \bar{\eta} A^2 \hat{B}_K [1.11(5) A^2 (1 - \bar{\rho}) + 0.31(5)], \quad V_{cb} \sim \lambda^2 A$

 $\delta \epsilon_K < 1\%, \quad \delta \hat{B}_K \sim 7\%, \quad \delta \bar{\eta}(V_{cb}) \sim 6\%$

 $|V_{cb}|(\bar{B} \to D^* l \bar{\nu}) = (38.6 \pm 0.9_{\text{exp}} \pm 1.0_{\text{theo}}) \times 10^{-3}$ [PDG, '08] $|V_{cb}|(\text{incl.}) = (41.6 \pm 0.7) \times 10^{-3}$ [PDG, '08]

It is important to well figure out the QCD nonperturbative dynamics which enters in all processes involving bound quarks \implies their SM contribution can be more easily distinguished from the contribution coming from a new physics.

		Mass (MeV)	Width (MeV)	J^P	j_l^P
$S: D^{(*)}$	D^{\pm}	1869±0.5	-	0^{-}	1-
	$D^{*\pm}$	2010±0.2	$96{\pm}25$	1^{-}	$\overline{2}$
$P: D^{**}$	D_0^*	2352 ± 50	261 ± 50	0^{+}	1+
	D_1^*	$2427{\pm}~26{\pm}~25$	$384^{+107}_{-75} \pm 74$	1^{+}	$\overline{2}$
	D_1	$\textbf{2422.3} \pm \textbf{1.3}$	$\textbf{20.4} \pm \textbf{1.7}$	1^{+}	3 +
	D_2^*	$2461.1{\pm}~1.6$	43± 4	2^{+}	$\overline{2}$

 $D^{**} \rightarrow D^{(*)}\pi$ is the main decay channel: parity and orbital momentum conservation \implies the decay occurs with the pion in a *S* wave or in a *D* wave

$$D_{0,1}^* \to D^{(*)}\pi$$
: **S** wave $D_2^* \to D^{(*)}\pi$: **D** wave

 $D_1 \rightarrow D^*\pi$: S and D wave are *a priori* allowed; however the S wave is forbidden by Heavy Quark Symmetry

Decay to *S* **states**

$$\frac{d\Gamma}{dw}(\bar{B} \to D\ell\bar{\nu}_{\ell} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{192\pi^3} K_V(w) G(w)^2 \left(1 - \frac{m_{\ell}^2}{m_B^2} \left|1 + \frac{t(w)}{(m_b - m_c)m_{\ell}} C_{NP}^{\ell}\right|^2 K_s(w) \Delta_S(w)^2\right)$$
$$w = \frac{p_B \cdot p_D}{m_B m_D} \quad t(w) = m_B^2 + m_D^2 - 2wm_B m_D$$
$$\mathcal{B}(\bar{B} \to D\tau\bar{\nu}_{\tau}) > 50 \times \mathcal{B}(\bar{B} \to \tau\bar{\nu}_{\tau}) \quad \delta[\Delta(w)]^{\text{quenched}} \sim 2\%$$

[G. M. de Divitiis, R. Petronzio, N. Tantalo, '07] [U. Nierste, S. Trine, S. Westhoff, '08] [J. Kamenik, F. Mescia, '08]

The computation on the lattice of quantities involving heavy quarks is not straightforward because of cut-off effects: $am_b \gtrsim 1$. It is cared by considering effective theories (HQET, NRQCD) which integrate out $\mathcal{O}(m_b)$ degrees of freedom.

Other technique used to measure G and Δ_s : the Step Scaling Functions integrate out the various degrees of freedom between m_b and Λ_{QCD} by doing the calculation in different physical volumes and taking for each of them the continuum limit:

Lattice data on G cover a kinematical region hardly reachable by the experiment.

The function $\Delta^{B \to D}$ can be measured experimentally from $\frac{d\Gamma^{B \to D \tau \nu_{\tau}}}{d\Gamma^{B \to D(e,\mu)\nu_{e,\mu}}}$. Lepton-flavour universality checks on the extraction of V_{cb} .

 $\frac{d\Gamma}{dw}(\bar{B} \to D^* \ell \bar{\nu}_{\ell}) = \frac{G_F^2}{4\pi^2} |V_{cb}|^2 m_{D^*}^3 (m_B - m_{D^*})^2 \sqrt{w^2 - 1} G'(w) |\mathcal{F}_{B \to D^*}(w)|^2$ $G'(1) = 1 \quad \mathcal{F}_{B \to D^*}(1) \text{ depends on the single form factor } h_{A_1}(1):$

$$\langle D^*(v,\epsilon')|A^{\mu}|\overline{B}(v)\rangle = \sqrt{2m_B 2m_{D^*}} \ \bar{\epsilon'}^{\mu} h_{A_1}(1)$$

Heavy Quark Symmetry: $h_{A_1}(1) = \eta_A \left[1 - \frac{\ell_v}{(2m_c)^2} + \frac{2\ell_A}{2m_c 2m_b} - \frac{\ell_P}{(2m_b)^2} \right]$

The "double ratio" technique has been used by FNAL/MILC [C. Bernard et al, '08]:

$$\frac{\langle D^* | \bar{c} \gamma_j \gamma_5 b | \overline{B} \rangle \langle \overline{B} | \bar{b} \gamma_i \gamma_5 c | D^* \rangle}{\langle D^* | \bar{c} \gamma_0 c | D^* \rangle \langle \overline{B} | \bar{b} \gamma_4 b | \overline{B} \rangle} = h_{A_1}(1)$$

Discretisation errors are reduced by tuning the parameters entering in the heavy quark action.

The Step Scaling method has been also used to measure the form factor $\mathcal{F}_{B\to D^*}$ at non zero recoil [G.M. de Divitiis et al, '08].

$$\mathcal{F}_{B \to D^*}^{N_f = 0}(1) = 0.917(8)(5)$$

At maximal recoil LCSR have obtained results for $B \to D^{(*)} l\nu$ form factors in reasonable agreement with experimental data [S. Faller et al, '08]: $\mathcal{G}(w_{\text{max}}) = 0.61 \pm 0.11 \pm (0.10)_{f_B} \pm (0.07)_{f_D}$ $h_{A_1}(w_{\text{max}}) = 0.65 \pm 0.12 \pm (0.11)_{f_B} \pm (0.07)_{f_D*}$

Decay to *P* **states: ''1/2 vs. 3/2'' puzzle**

Corroborated features

Theory: – OPE and HQE \implies Bjorken, Uraltsev, Voloshin and moments sum rules

– Quark models that are covariant in the $m_Q \rightarrow \infty$ limit example: models à *la* Bakamijan-Thomas – Lattice QCD

Experiment: B factories, LEP, Tevatron

States	% of $\Gamma(\bar{B} \to X_c l \bar{\nu})$
D, D^*	75 %
D(3/2)	\sim 10 %

[Babar, '07] [HFAG, '07] [ALEPH, '97] [DELPHI, '06] [D0, '05] [V. Morénas *et al*, '97] BT models

 D, D^* and D(3/2) do not saturate the total width; ~ 15 % is composed of an unknown part D_X

D^* D collitting $2(1 \text{ G}_{-} \text{V}) = 0.2 \text{ C}_{-} \text{V}^2$	[O. Buchmüller, H, Flächer, '05]		
$B^{+} - B$ splitting: $\mu_{G}^{-}(1 \text{ GeV}) = 0.35(3) \text{ GeV}^{-}$	[Belle, '06]		
$\mu_\pi^2(\mu) > \mu_G^2(\mu)$	[Babar, '07]		
$\mu_{\pi}^2 (1 \mathrm{GeV}) _{\mathrm{ref}} = 0.45 \mathrm{GeV}^2$	[I. Bigi <i>et al</i> , '95] OPE		

OPE treatment is successful for subclasses of inclusive transitions

Generalisation of the IW function $\xi(w)$

$$\begin{split} &\Gamma(\bar{B} \to D_{1/2[3/2]}^{(n)} l\bar{\nu}) \propto |\tau_{1/2[3/2]}^{(n)}(w_n)|^2 \\ &\sum_n \left[\tau_{3/2}^{(n)}(1)\right]^2 - \sum_n \left[\tau_{1/2}^{(n)}(1)\right]^2 = \frac{1}{4} \\ &\tau_{3/2}^0(1) > \tau_{1/2}^0(\mathbf{1}) \end{split}$$

$$au_{1/2}^0(1) \in [0.20, 0.40], \, au_{3/2}^0(1) \in [0.55, 0.70]$$

Suppression of D(1/2) with respect to D(3/2) due to kinematics

Factorisation in the Class I $\bar{B} \to D^{**}\pi$: from analyses at *B* factories it is expected that $\tau^0_{3/2} > \tau^0_{1/2}$ as well

- [V. Morénas et al, '97] BT models
- [A. K. Leibovich et al, '98]
- [D. Ebert et al, '98] Relativistic model
- [P. Colangelo et al, '98] Sum rules à la SVZ
- [N. Uraltsev, '01] Uraltsev sum rule
- [D. Bećirević et al, '05] Lattice
- [B. B. et al, '09, preliminary] Lattice

[Belle, '04] [Babar, '06]

D(3/2) is expected to dominate D(1/2) in $\bar{B}
ightarrow X_c l ar{
u}$.

Issues

DELPHI found a larger component of broad states than of the narrow states. Interpretation as D_0^* and D_1^* ? \implies Clear conflict with theory, '1/2' vs. '3/2' puzzle [V. Morénas et al, '01], [N. Uraltsev, '04]

Up to now the experimental verdict about $\bar{B} \to [D/D^*\pi]_{broad} l\bar{\nu}$ is not clear.

No obvious theoretical candidates for those broad states if the mass distribution is centered below 2.5 GeV.

[I. Bigi et al, '07]

Outlook

- The experimental measurement of $B \rightarrow D\tau \nu_{\tau}$ is essential to perform the lepton-flavour universality check on the extraction of V_{cb} .
- Nice improvement of lattice calculations of the heavy-heavy form factors at non zero recoil have been done recently, especially in regions of the phase space where the experimental uncertainty is large.
- B decay into P states is still controversial: the "1/2 vs. 3/2" puzzle is not solved yet.
- On the experimental side, a large integrated luminosity might help to better figure out the broad structure observed in the D^(*)π spectrum around 2.5 GeV.
- On the theoretical side, taking account of $1/m_Q$ corrections is crucial, either in the analytical treatement of QCD (OPE, quark models) or in its numerical one (lattice).