0

Simulation tools for physics

Matteo Rama - INFN Lab. Nazionali Frascati for the FastSim working group

SuperB meeting, Orsay, Feb. 2009

FastSim – fast simulation of SuperB detector

As of today FastSim is the only tool available to do Physics simulations

Main features of FastSim design:

- Detector elements description
 - cylinders, cones, rings,...
 - xml-based configuration (geometry, material, resolutions)
- Passage of particles through matter
 - energy loss, multiple scattering, bremsstrahlung, Compton scattering, pair production, ...
- Detector response
 - track hit resolution, cluster shape, Cherenkov photon resolution, ...
- Particle reconstruction
 - charged tracks, calorimeter clusters, Cherenkov rings, ...

Outline

- Physics analysis with FastSim in 5 steps
 - Setup the release
 - Configure the detector
 - Choose the event generator
 - Configure your signal selector
 - Run the simulation
- Status of the art and future developments

I - Setup the release

- The FastSim release system uses subversion as code repository technology
- FastSim currently still requires the BaBar software release framework to work.
 The plan is to announce a BaBar-independent release within ~2 months

• Setup instructions in FastSim User Guide: http://mailman.fe.infn.it/superbwiki/index.php/SuperB fast simulation User Guide

```
newrel -s $BFROOT/build/<first letter>/<username> -t 24.3.5 2435
                                                                      create
cd 2435
srtpath <enter> <enter>
                                                                      test
addpkg workdir
                                                                      rel.
gmake workdir.setup
setenv SVNROOT https://opteron05.lbl.gov/svn
                                                                  download
wget http://opteron05.1bl.gov/~brownd/SuperB/sbboot
chmod u+x ./sbboot
                                                                  code from
./sbboot
SvnTools/newrel FastSim/V0.0.1
                                                                  repo
SvnTools/addpkg
make ldlink
gmake installdirs
                                                           link and
gmake lib
gmake PacMC.bin
                                                           compile
```

<mark>snapshot of instructions to</mark> setup a release

2 – Configure the detector (if you need to do it)

 XML-based description of geometry, materials and resolutions

measurement parameters (DCH in this case):

```
<device name="Axial"
    type="DriftChamber"
    rms_par0="0.0125"
    rms_par1="0"
    rms_par2="0"
    rms_par3="0"
    rms_par4="0"
    rms_par5="0"
    eff="0.99"
    angle="0" />
```

layers of wires and material definition:

```
<cyl name="DchLayer" id="1" zmin="-101.5" zmax="174.9" radius="26.040" thick="0.10" meas="Axial" />
<cyl name="DchLayer" id="2" zmin="-101.5" zmax="174.9" radius="27.230" thick="0.10" meas="Axial" />
<cyl name="DchLayer" id="3" zmin="-101.5" zmax="174.9" radius="28.420" thick="0.10" meas="Axial" />
<cyl name="dch-Wires" id="151" zmin="-101.5" zmax="174.9" radius="28.420" thick="0.10" meas="Axial" />
<cyl name="dch-Wires" id="151" zmin="-101.5" zmax="174.9" radius="28.420" thick="0.0120" mat="dch-Wires_12" gap="0.946" />
<cyl name="dch-He-Ibu" id="152" zmin="-101.5" zmax="174.9" radius="28.421" thick="5.7300" mat="dch-He-Ibu 12" />
<cyl name="DchLayer" id="4" zmin="-101.5" zmax="174.9" radius="29.610" thick="0.10" meas="Axial" />
<cyl name="DchLayer" id="5" zmin="-101.5" zmax="174.9" radius="28.421" thick="5.7300" mat="dch-He-Ibu 12" />
<cyl name="DchLayer" id="5" zmin="-101.5" zmax="174.9" radius="29.610" thick="0.10" meas="Axial" />
<cyl name="DchLayer" id="5" zmin="-101.5" zmax="174.9" radius="28.421" thick="5.7300" mat="dch-He-Ibu 12" />
<cyl name="DchLayer" id="5" zmin="-101.5" zmax="174.9" radius="29.610" thick="0.10" meas="Axial" />
<cyl name="DchLayer" id="5" zmin="-101.5" zmax="174.9" radius="31.240" thick="0.10" meas="Stereo+" />
```

3 – Choose the event generator

 Simulation is largely configurable via tcl files (which avoids recompiling after every change). The event generator is set via tcl, with parameters stored in .dec files

disableGenerators 0 module enable GfiEvtGen	1.000 MyB0 anti-B Enddecay #	0 VSS_MIX dm;
<pre>talkto GfiEvtGen { GENERATE set Upsilon(4S)</pre>	Decay MyB0 1.0000 pi+ pi- Enddecay	PHSP;
DECAY set RELEASE/PacMC/DECAY.DEC	C	
UDECAY set PARENT/ProdDecayFiles/B0bas	rallB0pipi_crn.dec	

Docov Uncilon(46)

• Event generators:

events	generator	status
$e+e-\rightarrow Y(4S)\rightarrow Bbbar$	EvtGen	ok
e+e-→qqbar (q=u,d,s,c)	EvtGen	ok
e+e→Psi(3770)→DDbar	EvtGen	ok
e+e-→tau+tau- including polarized beams	kk2f	setup for FastSim starting

Do we urgently need other generators?

4 - Configure your signal 'selector'

- The output of FastSim is a list of *BtaCandidates* (inherited by BaBar), objects representing reconstructed particle candidates.
- → Use the composition tools developed in BaBar.

```
## Make a B0->pipi from two charged tracks
mod clone SmpMakerDefiner SmpMyBtopipi
seq append MyAnalysisSequence SmpMyBtopipi
talkto SmpMyBtopipi {
    decayMode set "B0 -> pi+ pi-"
    daughterListNames set GoodTracksLoose
    daughterListNames set GoodTracksLoose
    fittingAlgorithm set Cascade
    fitConstraints set Geo
    postFitSelectors set "Mes 5.2:5.3"
    postFitSelectors set "DeltaE -0.1:0.1"
    createUsrData set true
```

 To store relevant quantities in root files for later analysis you can either use existing user packages, or write your own module.

Ex: BtaTupleMaker for fully reconstructed B decays (configurable via tcl).

5 - Run the simulation

run FastSim

../bin/Linux24SL3_i386_gcc323/PacMCApp ../PacMC/example_PacTrk.tcl

typical CPU time/evt ~20-25ms/evt (dual core cpus)

Reconstructed signal

Tracking

- SVT: SuperB baseline and BaBar configuration available
- DCH: SuperB baseline and BaBar configuration available

- 15-20% difference reso. difference between BaBar FastSim and BaBar full sim.
 - Ikely main reason: hit confusion, not implemented yet -- Work in progress
- dE/dx measurement not implemented yet: goal is to have it on the Warwick meeting time scale

PID

DIRC in BaBar default configurations

 use ring dictionary, now outside the BaBar condition DB (important step towards standalone FastSim)

good agreement between fast and full simulation

- Forward PID options:
 - Work going on (see Dave's talk in prev. session)
- PID selectors: combine >1 PID information to provide the best guess on particle nature
 - generally have to deal with correlations
 - activity now started

Calorimeters

• EMC simulation still needs some tuning but results are encouraging. Both forward (LYSO) and backward (Pb-scint.) endcap available.

- hadronic shower
 - Need to find better parameterization. Simulation output not usable yet for physics/optimization studies

Status of some important items

name	description	status
hit confusion	parametrization of effects given by pattern recognition	covered, work in progress
dE/dx	energy loss is simulated in FastSim, but not its measurement	not covered, but I person from next week!
tagging	need to setup it in FastSim and possibly implement new features	now I person!
PID selectors	needed to do analysis and optimization studies	work started, need complete set of PID info
tag vertex	see if we can exploit better vertex resolution	
Vertex and kinematic fits		ok
tuning of EMC response		work in progress
IFR response	need to find a way to improve IFR response	work in progress
forw. PID	implement response	work started

BACKUP

current activity

	People (22/jan/09)	Detector	Optimization studies	Physics	Items needing
		options		benchmarks	development
SVT	D. Brown, N. Neri, D.		internal geometry, radius of	B→Ksπ ⁰ /Ksπ ⁰ γ,	■ dE/dx
	Roberts, G. Simi		outer layer	beta, Recoil,	 endcap PID
				(tagging)	response
DCH	M. Rama, G.		longer DCH replacing forw. PID,	tracking	 PID selectors
	Finocchiaro		inner radius	performance,	 tuning of EMC
				dE/dx	response
PID	A. Stocchi, L.	forward PID	angular and momentum	B→(d,s) I ⁺ I ⁻ , Recoil,	hadron
	Burmistrov, N.	yes/no,	coverage range, needed PID	tagging,	shower sim.
	Arnaud, A. Perez, A.	backward PID	performance, #rad. length	B→Knunubar,	 Flavour
	Berdyugin, B.	yes/no	(impact on endcap EMC	B→tau nu	tagging
	Meadows, F. Renga		performance)		 Tag vertex
EMC	C. Cheng, E. Manoni,	backward EMC	angular coverage of forw/back	B→Ksπ ⁰ /Ksπ ⁰ γ,	
	A. Rossi	yes/no	endcaps, needed performance,	B→tau nu, b→sγ,	
			degradation due to endcap PID	B→K nu nubar	
				Recoil, tagging	
IFR	G. Cibinetto, M.		amount and distribution of	beta, Recoil,	
	Rotondo		absorber	tagging	
			Other: position of IR vertex		