

Breco in FastSim: first studies on PID devices geometry

and

Renga Francesco Università Roma "La Sapienza" and INFN Sez. Roma

<u>Elisa Manoni</u>

Università di Perugia and INFN Sez. Perugia

detector geometry group SuperB workshop Orsay, 15-18 February 2009

Why studying Breco

In many BaBar analysis, one of the 2 B's is reconstructed in hadronic or semileptonic modes:

SL Breco	HAD Breco
B→D ^(*) lv	B \rightarrow D ^(*) n ₁ π n ₂ K n ₃ K _s n ₄ π ⁰
reconstruc	tion efficiency O(10 ⁻³)

- * High statistic and clean sample
- * Allow to search for rare decays with missing energy (RECOIL TECNIQUE)
 - $B \rightarrow \tau \nu$ -
 - $\ \ \, {}^{\scriptstyle \sim} \ \ \, B \to K^{(*)} \nu \, \nu^{\checkmark}$
 - ~ $B \rightarrow invisible$

elisa manoni

..... golden channels for the physics program

Reconstructed modes

$B \rightarrow D l \nu X$	$\left[X=\gamma,\pi ight]$			
$D^0\!\to\!K^-\pi^+$	$D^+ \rightarrow K^- \pi^+ \pi^+$		$D^{*+} \rightarrow D^0 \pi^+$	
$D^0 \rightarrow K^- \pi^+ \pi^0$	$(\gamma\gamma)$	j	$D^{*+} \rightarrow D^+ \pi^0$	
$D^0 \rightarrow K^- \pi^+ \pi^+$	π^{-}	i	$D^{*0} \rightarrow D^0 \gamma$	
D D.11		(-	~
$B \rightarrow DX$	$D^+ \rightarrow K^- \pi^+ \pi^-$	-	$X = n\pi + mK + rK_S^0 -$	$\vdash q\pi^0$
$B \rightarrow DX$ $D^0 \rightarrow K^- \pi^+$	$D^+ \rightarrow K^- \pi^+ \pi^-$ $D^+ \rightarrow K^- \pi^+ \pi^- \pi^0$		$X = n\pi + mK + rK_S^0 - n + m + r + q$	$+ q\pi^0$
$B \rightarrow DX$ $D^0 \rightarrow K^- \pi^+$ $D^0 \rightarrow K^- \pi^+ \pi^0(\gamma \gamma)$	$D^+ \to K^- \pi^+ \pi^-$ $D^+ \to K^- \pi^+ \pi^- \pi^0$ $D^+ \to K^0_S \pi^+$	$D^{*+} \rightarrow D^0 \pi^+$	$X = n\pi + mK + rK_S^0 - n + m + r + q$	$+ q\pi^0$
$B \longrightarrow DX$ $D^{0} \rightarrow K^{-}\pi^{+}$ $D^{0} \rightarrow K^{-}\pi^{+}\pi^{0}(\gamma\gamma)$ $D^{0} \rightarrow K^{-}\pi^{+}\pi^{+}\pi^{-}$	$D^+ \to K^- \pi^+ \pi^-$ $D^+ \to K^- \pi^+ \pi^- \pi^0$ $D^+ \to K^0_S \pi^+$ $D^+ \to K^0_S \pi^+ \pi^- \pi^+$	$D^{*+} \rightarrow D^0 \pi^+$ $D^{*0} \rightarrow D^0 \pi^0$	$X = n\pi + mK + rK_S^0 - n + m + r + q$	$+ q\pi^0$

- * Reconstruction of SL and HAD Breco modes implemented in FastSim (v0.0.1)
- * High track (K, π) multiplicity sample \rightarrow can be used to study the performance of particle ID and the impact of new PID devices

Sample and variables used

- Study BB events in which
 - the Breco has been reconstructed in SL or HAD modes
 - ~ the Bsig has decayed in a low multiplicity final states
 - (\rightarrow signal signature for a generic analysis on the recoil, in which a rare decay is searched for)

- * generate and reconstruct $\nu \overline{\nu} K^{0*} \leftarrow B^0 \overline{B}^0 \rightarrow$ generic
- * study the distribution of two variables:
 - SL reconstruction: m_D D invariant mass
 - HAD reconstruction: $m_{ES} = \sqrt{E_{beam}^2 |p_B^*|^2}$

Implementation of a "raw" PID

- Implementation of PID selector in FastSim : ongoin
- * Study effects of the kaon and pion PID by using MC-truth information
 - choose a K and a π selector assuming the BaBar performancies

selector	efficiency	misID
Kaon: KLHTight	85%	1% (with pion)
Pion: piLHVeryLoose	99%	20% (with kaon)

- for each reconstructed Breco check the a K has been correctely reconstructed using MC truth info: if yes accept the K with a probability = K eff. of a given selector
 If the K has been misidentified as a π, accept the hadron with a probability = K-π misID of a given selector
- iterate for each K associated to the Breco and do the same for all π
- select the B candidate if all the daughters have been accepted

PID devices geometry (I)

different PID device coverage (by Leonid)

* Study the impact of the three devices by selecting Breco candidates with all tracks crossing:

- ~ DIRC
- DIRC + FW TOF
 DIRC + FW TOF + BW TOF

implemented by cutting in θ_{Lab}

- * "geometric" gain wrt DIRC-only by adding:
 - FW TOF : 6.1%
 - **BW TOF :** 0.6%

PID devices geometry (II)

 π VeryLoose, K Tight

HAD RECONSTRUCTION	signal region	sideband:	
	m _{ES} >5.27GeV/c ²	m_{ES} <5.26GeV/c ²	
K PID + Dirc	5140	5514	
K PID + π PID + Dirc	5023	5005	
K PID + π PID + Dirc + Fw TOF	5969	6273	
K PID + π PID + Dirc + Fw TOF + BW TOF	6045	6386	

Conclusions and next steps

- Reconstruction of HAD and SL Breco implemented in FastSim
- First studies to understand the impact of the PID device geometry on physics (FW and BW TOF)

Next steps:

- study the effects of different "raw" PID and compare HAD and SL reconstruction
- use PID selectors implemented in FastSim
- ~ Reconstruct signal side (i.e. $B \rightarrow K^* \nu \nu$)
- study signal side PID
- study signal side related distributions: i.e. Extra energy deposited in the $EMC \rightarrow inputs$ for EMC geometry (hermeticity) and performances (energy resolution)
- * Thanks to Achille, Leonid, Alejandro and Nicolas for discussions and suggestions!