

μ/π Separation and the New Dirc

B. Meadows University of Cincinnati

Outline

- How well does BaBar do now?
- Effect of TOF
- The Fast Focussing Dirc (fDirc)
- Conclusions

Introduction

- These are (pre-simulation) thoughts and observations relating to the effect of time-of-flight (TOF) measurements on the efficiency of the new detector for the study of $B \rightarrow X_s \mu^+ \mu^-$ decays.
- These decays require good identification of µ's in the momentum range below 1 GeV/c
- It may be that the fDirc upgrade, if it goes ahead, will provide much of what we need in this respect.
- It is anticipated that TOF in a forward PID will help this decay mode considerably.
 (Achille will follow with a physics case for forward PID)

μ Identification in BaBar

- Babar selectors combine dE/dx, Dirc, IFR (and EMC) information to identify µ with reasonable efficiency except for a "gap" below ~ 1 GeV/c where the IFR dominates.
- Recent improvements in dE/dx calibration have prevented disastrous performance in this region
- The Dirc separates μ/π quite well in the low momentum part of this range, BUT
 - it is rather inefficient below 400 MeV/c.
 - Track momentum uncertainty feeds significantly into the Cherenkov angle error
 - ALSO, μ's in this range tend to decay, or to be decay products of π's and K's.
- μ/π separation is good over entire range above 1 GeV/c.
- The Dirc is inefficient at low momentum because µ's do not have sufficient transverse momentum to hit it.
 - A case for forward PID may be made on this basis.

Dirc and dE/dx Information

TOF in Low Momentum Region

TOF does better than Dirc at low momentum where:

- Dirc efficiency falls
 off AND
- Difference between μ and π depends more critically on measurement of | p_µ |

Rudiments of the fDirc

- Conventional PMT's
 - τ resolution ~1.6 ns
- Water stand-off box
- No focussing
 - Size of PMT window and crosssection of bar introduce uncertainties in photon direction

- PMT array (Hamamatsu H-8500 Flat-panel MaPMT
 - τ resolution ~ 140 ps
- Oil (or quartz ??) SOB
- Focussing mirror (f~0.5 m) maps a direction onto a "point" in the detector plane.

Rudiments of the fDirc

- Two main accomplishments:
 - Reduces chromatic error (dispersion in bar)
 - Reduces geometric error arising from finite crosssection of bar and diameter of PMT photo-cathode.

Contribution to	Present BaBar	Focusing DIRC	Ultimate DIRC
resolution [mrads]		prototype	of the future
$\Delta \theta_{ m track}$	~1	~]	~l
$\Delta \theta_{ m chromatic}$	~5.4	~1	~l
$\Delta \theta_{\text{transport along the bar}}$	2-3	2-3	~1
$\Delta \theta_{\text{bar thickness}}$	~4.1	~1	~1
$\Delta heta_{ extsf{PMT} extsf{ pixel size}}$	~5.5	~4	~1
$\Delta \theta_c^{\text{track}}$	~2.4	~1.5	~1
Total $\Delta \theta_c^{\text{photon}}$	~9.6	~4.8	2-3

Chromatic Dispersion

See: NIM A533 (2005) 96-106 and: NIMA595 (2008) 104-107

Cherenkov angle depends on photon wavelength λ because n does

 $\cos heta_c(\lambda)\!=\!1/[eta n(\lambda)]$

 \rightarrow Gives ~ 4 mrad spread in θ_c

 Photons propagate distance L_{drift} in bar at group velocity v_{group}:

 $v_{ ext{group}}\!=\!c/[n(\lambda)-\lambda dn(\lambda)/d\lambda]$

- → Gives spread in drift time t_{drift} of several 100's of ps.
- Precise measurements of t_{drift} improve resolution of θ_c

More Precisely ...

This leads to an interesting interplay between TOF and θ_c !

Tracks with no Dip (TOF Poorest)

The "Open Ring Problem"

Conclusions

- It appears that the fDirc should bring good improvements to all PID, especially in μ ID in the low momentum region.
- Forward PID will increase efficiency for low momentum muons that typically miss the barrel Dirc.
 - A TOF measurement in this momentum range is quite effective.
- A simulation, within the FastSim framework, is needed to make a quantitative evaluation of any gains there may be from fDirc and forward TOF.

(See also Nicolas Arnaud's talk this morning:

<u>http://agenda.infn.it/getFile.py/access?contribId=99&sessionId=17&resId=0&materialId</u> =slides&confId=959)

