

Fast Luminosity Feedback

Super-B 2-13-09

Kirk Bertsche

- Beam size at IP is very small
 - About 10 um (x), 0.04 um (y), 200 um (z for crab waist)
- Beams will move
 - Slow (mechanical)
 - Ground motion
 - Diurnal temperature variation
 - Fast
 - Power supply noise at 50, 150, 300, 600 Hz

- Dither LER at IP in x, y, y'
 - Nominally a few % modulation of lumi
- Frequency: 1-3 kHz
 - Above power supply freqs
 - Below synchrotron and betatron freqs
- 4 coil sets needed (each set has an x and y coil)
 - One near IP on each side
 - Want large $\sqrt{\beta} \sin \psi$
 - About 3.5 m from IP: just outside detector solenoid
 - Another further from IP on each side
 - Want large $\sqrt{\beta}\cos\psi$
 - Between QD2 and SDM2, between B10 and B1

Coil Locations

	Preferred Location	Alternate Location
X (1 um)	(3.5, 3.7)	(-2.3, 10)
Y (0.004 um)	(0.18, -0.03)	(0.23, -0.08)
Y' (100 urad)	(-1, -30)	(43, -76)
Total field (x)	(3.5, 4)	(2.5, 10)
Total field (y)	(1, 30)	(43, 76)

- Table entries are (Coil1, Coil2) excitations in G-cm
 - 4 GeV beam: 13 G-cm gives 1 urad deflection
 - Table assumes 10% shift of beam position--more than enough
- Alternate location puts coil 2 between B0 (soft bend) and B10
- Note high y sensitivity!
 - Even more sensitive at ends of -I insertion (because beta y large)
 - Has implications for QD, QF, S power supplies here
- Expect coupling between x and y; true excitations will be mixed

- Ceramic with ~1-2 um Cu coating
 - Skin Depth ~2 um at 1 GHz
- HOM considerations
 - Want multiple skin depths at ~8 GHz (for ~6 mm bunch)
- Dither frequency considerations
 - 1 um Cu induces ~0.2 degrees phase shift at 1 kHz
- Image current considerations
 - Resistance ~0.1 ohm/m (1 um Cu; 5 cm dia pipe)
 - Dissipates ~0.4 W/m at 2 A beam current

- Propose coil similar to CRT deflection coils
 - "Saddle" coils with $\cos(\theta)$ current distribution, ferrite shield
 - Much more efficient than PEP-II Helmholz coils
- Estimated parameters
 - 10 cm long
 - 1 ohm, 2 mH
 - 200 mA for "nominal" excitation, 2A allowed
 - ~\$1k per coil set from commercial vendors

- Luminosity Monitor
 - Statistical noise depends on lumi signal
 - Feedback system must change with lumi; reduced bandwidth at low lumi
- Corrections
 - LF (< ~1 Hz) through normal dipole correctors
 - HF (> ~1 Hz) through dither coil system
 - Can correct at 10-20% of dither freq at high lumi

- A.S. Fisher et al, "Commissioning the Fast Luminosity Dither for PEP-II", Proceedings of PAC 07, Albequerque, NM, 4165-4167; SLAC-PUB-12608, July 2007.
- S.M. Gierman et al, "New Fast Dither System for PEP-II", EPAC 2006, Edinburgh, U.K., 3029ff; SLAC-PUB-12679.