Luminosity measurements at DAFNE

M. Boscolo, F. Bossi, B. Buonomo, G. Mazzitelli, F. Murtas, P. Raimondi, G. Sensolini INFN LNF

M. Schioppa

INFN Cosenza

In2p3

Paolo Valente

P. Branchini INFN Roma Tre

N. Arnaud, D. Breton, L. Burmistrov, A. Stocchi, A. Variola, B. Viaud LAL, CNRS-IN2P3, Université Paris-Sud

Orsay SuperB workshop

February 16th 2009

Overview

- Why and how measuring the luminosity?
- Detectors
- Simulation
- Performances
- Results
- Conclusions

Measurements

• New DAFNE interaction region (2007)

→ Goal: measuring the performances of the crab waist scheme
→ Significant luminosity gain expected w.r.t. previous Runs

- **Before upgrade**
- Use Bhabha scattering and radiative Bhabha for luminosity measurements and IP diagnosis
 [SIDDHARTA collaboration looking for Φ → K⁺K⁻ production]
 → Different interactions ⇒ different detectors

Processes & detectors

- Bhabha scattering: $e^+e^- \rightarrow e^+e^-$
 - \rightarrow Few 100's Hz rate @ 10³² cm⁻²s⁻¹ in the relevant θ -range
 - \rightarrow Clean process, back-to-back events
 - \rightarrow Luminosity measurements
 - → Calorimeter [+ GEM tracker]
- Radiative Bhabha: $e^+e^- \rightarrow e^+e^-\gamma$
 - \rightarrow 95% of the photons emitted in a cone of 1.7 mrad (very low angle!)
 - \rightarrow High rate, high background
 - \rightarrow IP diagnosis
 - \rightarrow Photon detector
- Absolute luminosity measurements
- Fast feedback to control room required
- Compare results to other measurements (beam monitors, etc.) ⁴

Very steep dependence

DAFNE interaction region layout

Calorimeter is 19cm thick and starts at 32.5cm from IP

γ monitor is at 1.7m from IP

5

Included in this talk: Bhabha calorimeter, y monitor and GEMs

The Bhabha calorimeter

- Lead-scintillator sandwich calorimeter

 → On each side of the IP
 → 11 layers of lead: first 8 0.5 cm thick last 3 1.0 cm thick
 → 12 layers of scintillator
 → Longitudinal size matches QD0 quadrupoles

The Bhabha calorimeter (cont'd)

'Wheels' of lead and scintillator

Building one module (= set of 5 sectors)

Calorimeter installed @ the IP

More on the scintillator tiles

Three 2mm-deep radial grooves in each tile containing wavelength shifting fibers of 1mm Ø

Each tile wrapped in TyvekTM (Dupont) paper to improve light collection

In total for one sector: 12 tiles × 3 fibers / tile = 36 fibers feed to a single PMT

The y monitor

- 4 PbWO₄ crystals on each side, 170 cm away from IP
- PMT readout
- Compact and fast detector
 → Ideal for online monitoring
- Very close from beam pipe

One such monitor on each side of the IP

12 cm \Leftrightarrow 13 X₀

GEM tracker

• Triple layers, half-moon shaped \Rightarrow amplification ~ $20^3 = 8000$

• Aim was to help identifying e⁺/e⁻ tracks before reaching calo

• Couldn't be used for actual lumi measurements so far due to space conflict with SIDDHARTA shielding

sandwich pads induction gap GEM 3 GEM 2 GEM 1 Cathode

Kapton/copper

• Helps monitoring bkg and Bhabha tracks angular correlation

Simulation

• GEANT3-based

- Geometry, material (shielding), detector responses taken into account
- BHWIDE used as (radiative) Bhabha generator
- Touscheck events used for dedicated studies

11

Simulation (cont'd)

- Predicts Bhabha rate @ given luminosity
 → Bhabha selection algorithm implemented (see later)
 → Comparison with actual rates provides machine luminosity
- Estimation of systematics (~15% in total)

 \rightarrow components alignment, reconstruction, background, etc.

Different shieldings

DAQ

- Hardware and software mainly KLOE-based
 - \rightarrow Simple and efficient system
 - \rightarrow No deadtime up to tens of kHz
 - \rightarrow Whole system installed in the DAFNE hall
- Calorimeter
 - \rightarrow TDC (ADC) resolution of 1.04 ns (25 pC)
 - \rightarrow Sectors readout when trigger asserts (see next slide)

• γ Monitor

 \rightarrow Signal sent to the DAFNE control room via a scaler readout module

• GEM tracker

 \rightarrow Readout triggered by the calorimeter

- ADC Counts from the same *module* (group of 5 adjacent sectors) are summed up and discriminated
- Trigger: two high enough energy deposits in back-to back modules
 m0-m2 or m1-m3
 0

Performances

• Good energy resolution

 \rightarrow like during test beams

 $\sigma_{\rm E}/{\rm E}=17.5\%$ @510 MeV \Leftrightarrow 12.4%/ $\sqrt{{\rm E}}$ (GeV)

Timing resolution allows bkg rejection online
 → real events: energy deposits in opposite
 modules occur simultaneously

 \rightarrow background: fake coincidences \Rightarrow no time correlation

Measured E (ADC counts)

15

More on the online background rejection

More on the online background rejection (cont'd)

• Online subtraction performed every1000 events (DAQ) or averaged over 15 seconds (control room signal)

Corrected signal insensitive to periods of bad background!

Online luminosity measurements

- Example from last Friday
- Correction very stable and working without problem since May last year

Performances

• Much higher lumi: crab sextupoles work!

huminosity/te28

Luminosity vs Current Product

Sextupoles ON Sextupoles OFF

120*Amp² /Nbunc h

Performances (cont'd)

Bunch Luminosity

- Calorimeter timing accurate enough to separate contributions from individual bunches (when rings not completely filled)
- Rate \Rightarrow bunch by bunch lumi. information
- Bunch spacing consistent for the different patterns: ~ 2.6 ns in average

Outlook

- Bhabha luminometer fulfilled specifications
- Very smooth running since beginning of data taking
- Luminosity measurements + various IP diagnosis
- DAFNE improvements are significant and consistent with expectations
- NIM paper in preparation
 → To be submitted 'soon' once background studies completed

Crosschecks

• Bhabha timing peak disappears when beams out of collision

• What happens when crab sextupoles are turned off

