SVT in FastSim

David Brown SuperB meeting@Orsay 16 February 2009

FastSim Configuration

- Simplified Geometry
 - cylindrical layers, Overlaps + Gaps modeled statistically
- Materials are described as in BaBar
 - weight-normalized admixtures of elements
- Configuration defined in XML file
 - PacTrk/Si_SuperB.xml
 - PacTrk/Si_BaBar.xml

Si_SuperB Baseline

- "Layer0" as described by G. Rizzo etal.
 - 1.5cm average radius, -3.5cm < Z < 9.5cm
 - 2x0.05 % (Si) + 0.35 % (CF) + 2x0.17% (AI + Kapton)
 - 10µm X 10µm resolution (+10% tails)
 - 95% efficiency, 1% overlap

• Outer layers as BaBar SVT

Outer layer tuning

- Use BaBar data to tune single-hit resolutions
 - BPC muons
 - tight quality cuts
 - NDch > 30
 - NSvt = 5 layers
- Look at hit residuals per layer
 - Estimate contribution from track
 - as a function of angle, ...

Resolution vs tan(dip)

Resolution at dip=0

NHits vs tan(dip)

Configuration Variations

Conclusions

- Si is reasonably modeled in FastSim
 - Experts should check Layer0 parameters!
 - Outer layer response tuned to BaBar data
- Configuration is easy to change
 - PacTrk/Si_SuperB.xml
- Preliminary simple configuration comparison
 - Arch vs Long Barrel vs Disks
 - Layer 2?